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Chapter 1

Morse Homology in Finite
Dimensions

1.1 Recollections from Morse Theory

Throughout this section, let M be a smooth n–manifold without boundary. Lecture 1, 4.4.23

Morse functions. Recall that a Morse function f : M → R is a smooth function for which
each critical point is non-degenerate, that is, for each p ∈ Crit(f) the Hessian

Hp(f) : TpM × TpM → R, Hp(v, w) = v(w̃(f)) (1.1.1)

is non-degenerate as a symmetric bilinear form. The Morse index of µ(p) is maximal
dimension of subspaces on which Hp(f) is negative definite. According to the Morse
Lemma (e.g. [Wal16, Prop. 4.8.1]), near a non-degenerate p ∈ Crit(f) one can find a Morse
chart (U,φ) in which f is represented by

f ◦ φ−1(x1, . . . , xn) = f(p)− x21 − · · · − x2µ(p) + x2µ(p)+1 + · · ·+ x2n. (1.1.2)

An inspection of the local model shows, in particular, that non-degenerate critical points
are isolated. It is known that the set of Morse functions is open and dense in C∞(M) with
the C∞ topology (e.g. [Wal16, Theorem 4.7.1]).

Morse gradients. A vector field ξ is called a Morse gradient for a Morse function f is
if ξ(f) = df(ξ) > 0 on M \ Crit(f) and near each p ∈ Crit(p) there is a Morse chart (U,φ)
in which ξ takes the form

φ∗ξ(x1, . . . , xn) = (−x1, . . . ,−xk, xk+1, . . . , xn). (1.1.3)

The pair (f, ξ) is called a Morse pair. The heart of Morse theory is the study the interplay
of the level sets of f and the integral curves of ξ, or equivalently −ξ. The latter is more
common in the literature, since it is more in line with physics where processes tend minimize
the internal energy (which would be measured by f) of a system as time evolves. Recall
that an integral curve of −ξ is a curve γ : J →M defined on some interval J ⊂ R satisfying
the negative flow equation

γ̇(t) = −ξ(γ(t)). (1.1.4)

By the existence and uniqueness theorems for ODEs (c.f. [Wal16, Ch. 1.4]), every integral
curve can be extended (as an integral curve) to a maximal interval. The image of a maximal
integral curve of −ξ will be called a −ξ–trajectory.
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We note for later reference that f is decreasing along integral curves of −ξ, since

(f ◦ γ)′(t) = −df(γ̇(t)) = −df(ξ(γ(t))) ≤ 0. (1.1.5)

As for the existence problem, Morse gradients can be constructed for any Morse function
using a simple partition of unity argument (c.f. [Mil65, Lemma 3.2]). However, the set of
Morse gradients for a fixed Morse function is neither open nor dense in the space of all
vector fields. In fact, Morse gradients are rather special.

Stable and unstable manifolds. For the moment, let us keep things simple and assume
that M is closed. This has three convenient consequences for Morse pairs:

(1) All maximal integral curves of all vector fields on M are define on R.

(2) Every Morse function on M has only finitely many critical points.

(3) For a Morse pair (f, ξ), all maximal integral curves γ : R→M of −ξ have limits

γ(±∞) = lim
t→±∞

γ(t) ∈ Crit(f). (1.1.6)

The last point suggests the following definition:

Definition 1.1 (Stable and unstable manifolds). Let (f, ξ) be a Morse pair on a closed
manifold M . The stable and unstable manifolds of p ∈ Crit(f) are defined as

Wu(p) = {x ∈M | γx(−∞) = p} and W s(p) = {x ∈M | γx(+∞) = p} (1.1.7)

where γx : R→M is the unique maximal integral curve of −ξ with γx(0) = x.

The name (un-)stable manifold is justified by the following lemma which is easy to prove
for Morse pairs.

Theorem 1.2 (Stable manifold theorem for Morse pairs). Let (f, ξ) be a Morse pair on a
closed n–manifold M and p ∈ Crit(f). Then Wu(p) and W s(p) are smooth submanifolds
of M and there are diffeomorphisms

Wu(p) ∼= Rµ(p) and W s(p) ∼= Rn−µ(p). (1.1.8)

Proof. Exercise. (Hint: Use Morse charts to compare the flow of ξ with that of the local
models in (1.1.3).)

Moduli spaces of trajectories. Since every point in M lies on a unique −ξ-trajectory,
the collections {W d(p)}p∈Crit(f) and {W a(p)}p∈Crit(f) form partitions of M . We can refine
them by fixing both limits.

Definition 1.3 (Moduli spaces of trajectories). For a Morse pair (f, ξ) let

M(p, q) =Wu(p) ∩Wu(q) = {x ∈M | γx(−∞) = p, γx(+∞) = q} . (1.1.9)

Note that R acts on M(p, q) by (x, t) 7→ γx(t). The orbit space M̂(p, q) = M(p, q)/R is
called the moduli space of ξ–trajectories from p to q. Points in M̂(p, q) are −ξ–trajectories
running from p to q.

Unlike Wu(p) and W s(q), the spaces M(p, q) and M̂(p, q) are not guaranteed to be
manifolds without further assumptions.

Definition 1.4. A Morse pair (f, ξ) satisfies the Smale condition if Wu(p) ⋔ W s(q) for
all p, q ∈ Crit(f). In this case we call (f, ξ) a Morse–Smale pair.
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The central idea of Floer homology is to exploit some features of the moduli spaces M̂(p, q)
for Morse–Smale pairs in more general situations. We begin with some trivial observations
in our toy example.

(1) Obviously, M(p, p) = {p} with trivial R–action so that each M̂(p, p) is a singleton.

(2) For p ̸= q with f(p) ≤ f(q) we have M(p, q) = ∅, because f is strictly increasing along
non-constant ξ–trajectories.

(3) If p ̸= q and µ(p) < µ(q), then M(p, q) = ∅ follows from transversality, since

dimWu(p) + dimW s(q) = µ(p) + (n− µ(q)) < n.

(4) Similarly, if p ̸= q and µ(p) = µ(q), then M(p, q) is a 0–dimensional submanifold of M
by transversality. Thus M(p, q) is the union of constant −ξ–trajectories, which can
never connect two different critical points. Again we find M(p, q) = ∅.

More generally, we have the following.

Lemma 1.5. Let (f, ξ) be a Morse–Smale pair on a closed manifoldM . For p ̸= q ∈ Crit(f)
the spaces M(p, q) and M̂(p, q) are smooth manifolds of dimensions

dimM(p, q) = µ(p)− µ(q) and dim M̂(p, q) = µ(p)− µ(q)− 1. (1.1.10)

Proof. We may assume that f(p) > f(q) and µ(p) > µ(q).

▶ The statements about M(p, q) follow immediately from transversality.

▶ In order to study M̂(p, q) choose a regular value a ∈ (f(q), f(p)) and note that every
ξ–trajectory intersects f−1(a) transversely in a single point.

▶ In particular, M(p, q) ∩ f−1(a) is canonically a smooth submanifold of M of dimen-
sion µ(p)− µ(q)− 1.

▶ The map M̂(p, q)→M(p, q) ∩ f−1(a) sending a −ξ–trajectory to its unique intersection
with f−1(a) is a homeomorphism. Indeed, it is continuous (by ODE theory) with contin-
uous inverse given by restricting the orbit map M(p, q)→ M̂(p, q) to M(p, q) ∩ f−1(a).

▶ If b ∈ (f(q), f(p)) is another regular value, than translation along ξ trajectories gives a
diffeomorphismM(p, q)∩f−1(a) ∼=M(p, q)∩f−1(b) so that we get a well–defined smooth
structure on M̂(p, q).

Lecture 2, 11.4.23
Compactness of moduli spaces. The key feature of the moduli space M̂(p, q) is that
one can reasonably understand the nature of limit points. Here is the simplest instance:

Proposition 1.6. If µ(p)−µ(q) = 1, then M̂(p, q) is a compact 0–manifold and thus finite.

Proof. We argue as in [Flo89, Lemma 2.1]:

▶ As before, let a be a regular value of f with f(q) < a < f(p). It suffices to show
that M(p, q) ∩ f−1(a) is compact.

▶ Let xi ∈ M(p, q) ∩ f−1(a) be a sequence and γi = γxi
the corresponding sequence of

integral curves in M(p, q).

▶ Since M is compact, so is f−1(a) and we can replace xi by a convergent subsequence
with limit x∞ ∈ f−1(a).

▶ Suppose that x∞ ̸=M(p, q), that is γ∞ = γx∞ lies in M(p′, q′) with p′ ̸= p or q′ ̸= q.
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▶ Repeating this argument with several different regular levels a eventually gives a sequence
of critical points p = p0, p1, . . . , pr = q, r ≥ 2, and trajectories in M(pi−1, pi) in the
closure of M(p, q) in M .

▶ Since µ(pi) > µ(pi−1) for each i, this contradicts µ(p)− µ(q) = 1.

▶ We conclude that x∞ ∈M(p, q) ∩ f−1(a).

For µ(p)−µ(q) ≥ 2 the moduli spaces need no longer be compact. This is already clearly
visible on the “tilted 2–torus” in R3 and it’s instructive to keep this standard example in
mind for what follows. Indeed, in this example the moduli space of trajectories connecting
the maximum to the minimum consists of four disjoint open intervals.

Back to the general setting. Elaborating on the compactness argument in the above proof
gives a general statement about the closure of M(p, q) in M : the (topological) boundary
of M(p, q) is made up of broken trajectories, that is, sequences of trajectories in M(pi−1, pi)
where p = p0, . . . , pr = q are critical points and r ≤ µ(p)−µ(q) (c.f. [Jos17, Theorem 8.4.1]).
One can also prove that all such broken trajectories are contained in the closure of M(p, q)
and can be approximated by unbroken trajectories in M(p, q) in a controlled way. This
culminates in the following “compactness theorem” for the moduli spaces which is proved,
for example, in [Weh12]:

Theorem 1.7 (Compactness theorem). Let (f, ξ) be a Morse–Smale pair and p, q ∈ Crit(f).
The moduli spaces M̂(p, q) have compactifications given by

M̄(p, q) = M̂(p, q) ∪
µ(p)−µ(q)⋃

r=2

⋃
p=p0,p1,...,pr=q

M̂(p0, p1)× · · · × M̂(pr−1, pr) (1.1.11)

with a suitable topology. The space M̄(p, q) has the structure of a smooth (µ(p)−µ(q)− 1)–
manifold with corners.

A reasonably down-to-earth reference for the topology on M̄(p, q) is [AD14, Ch. 3.2].
We will only need a special case which is also proved in [Jos17, Theorem 8.5.1] and [AD14,
Theorem 3.2.7].

Corollary 1.8. Let µ(p) − µ(q) = 2. Then M̄(p, q) is a 1–dimensional manifold with
boundary

∂M̄(p, q) =
⋃

r∈Crit(f)

M̂(p, r)× M̂(r, q). (1.1.12)

The Morse–Floer complex. Continuing with a Morse–Smale pair (f, ξ) on a closed
n–manifold M , the (mod 2) Morse–Floer complex is generated by the critical points

CFk(M ; f, ξ) = CFk(M ; f, ξ;Z2) =
⊕

µ(p)=k

Z2 =
⊕

p∈Critk(f)

Z2 ⟨p⟩ (1.1.13)

with the Floer differential given by counting points in 0–dimensional moduli spaces M̂(p, q):

d : CFk+1(f, ξ)→ CFk(f), d ⟨p⟩ =
∑

µ(q)=k

#2M̂(p, q) ⟨q⟩ . (1.1.14)

Here #2 is number of points modulo 2.

Proposition 1.9. Let (f, ξ) be a Morse–Smale pair on a closed n–manifold M . Then the
Floer differential on CF•(M ; f, ξ) satisfies d2 = 0.
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Proof. Let p ∈ Crit(f) with µ(p) = k + 2. A direct calculation gives

d2 ⟨p⟩ = · · · =
∑

µ(q)=k

∑
µ(r)=k+1

#2M̂(p, r)#2M̂(r, q) ⟨q⟩ (1.1.15)

and we have to show that ∑
µ(r)=k+1

#2M̂(p, r)#2M̂(r, q) = 0 (1.1.16)

for all q ∈ Crit(f) with µ(q) = k. But this follows from Corollary 1.8: the left hand
side of (1.1.16) is just #2∂M̄(p, q) which is zero, because every compact 1–manifold with
boundary has an even number of boundary points.

Remark 1.10. We restrict to mod 2 coefficients to avoid discussions of orientations. Setting
up the theory with integer coefficients is not overly complicated once one has grasped the
essence of the constructions (see [Jos17, Ch. 8.6]). But it adds a layer of bookkeeping which
can obscure the central ideas.

We define the Morse–Floer homology groups

HF∗(M ; f, ξ) = H∗(CF•(M ; f, ξ)) = ker d/ im d. (1.1.17)

The following theorem is proved in [Mil65, §7]:

Theorem 1.11. Let (f, ξ) be a Morse–Smale pair on a closed manifoldM . Then CF•(M ; f, ξ)
is isomorphic to the cellular chain complex of a CW replacement1 of M . In particular,

HF∗(M ; f, ξ) ∼= H∗(M ;Z2). (1.1.18)

Proof (sketch). Those familiar with the machinery of [Mil65] already know how this works.

(1) Replace (f, ξ) by a Morse pair (g, ξ) with Crit(g) = Crit(f) and g(p) = µ(p) for
all p ∈ Crit(g) (c.f. [Mil65, Theorem 4.1]).

(2) According to [Mil65, Theorem 3.15] the spaceMk = g−1(−∞, k+ 1
2 ] is homotopy equiv-

alent to Mk−1 with one k–cells attached for each critical point of index k.

(3) It follows that the chain groups of CF•(M ; g, ξ) are isomorphic to those of ther cellular
complex of a CW replacement for M . The Morse–Floer differential is identified with
the cellular differential in [Mil65, Corollary 7.3]. In particular, we have d2 = 0 for the
Morse–Floer differential.

(4) Lastly, CF•(M ; g, ξ) = CF•(M ; f, ξ), since the complex really only depends on ξ.

As a result of Floer [Flo89], one can make sense of Floer complexes CF•(S; f, ξ) and
Floer homology groups HF∗(S; f, ξ) for compact isolated -ξ–invariant subsets S ⊂ M . The
complex is generated by Crit(f) ∩ S and the differential counts points in 0–dimensional
moduli spaces of −ξ–trajectories. We will discuss this further in the next section.

Before we move on, we record a few trivial but important observations:

(1) For a Morse pair (f, ξ) the critical points of f are the same as the zeros of ξ.

(2) The Morse index µ(p) can also be recovered from ξ alone. Indeed, there is a well-defined
linearization

Dpξ : TpM → TpM, Dqξ(v)(f) = v(ξ(f)) (1.1.19)

and µ(p) agrees with the number of negative eigenvalues of ξ

1A CW replacement of a space X is a CW complex that is homotopy equivalent to X.
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(3) In order to define an ungraded Morse–Floer complex, it would be enough to know

µ(p, q) = µ(p)− µ(q) = dimM(p, q). (1.1.20)

The only contribution of the Morse index µ(p) itself is an absolute Z–grading on CF•(M,f, ξ).

The upshot is that that the Morse–Floer complex really only depends on ξ. The func-
tion f only plays a secondary role.

1.2 Floer homology of isolated invariant sets

As indicated earlier, the central idea of Floer theory is that mimicking the construction of
the Morse–Floer complexes can be fruitful beyond the setting of closed, finite dimensional
manifolds. As a first example, we drop the compactness assumption on M . This adds two
major complications for Morse pairs (f, ξ):

� Crit(f) no longer needs to be finite.

� −ξ might have integral curves which escape to infinity (both in finite and infinite time)

To begin with, a minor change of perspective will be more convenient in the long run.
Instead of focusing on single integral curves of −ξ, we henceforth consider the (local) flow
generated by −ξ. Recall that this is the smooth map ϕ : U →M uniquely determined by

∂tϕt(x) + ξ(ϕt(x)) = 0, ϕ0(x) = x (1.2.1)

where U ⊂M ×R is the open neighborhood of M × {0} whose intersection with {x×R} is
the domain of the maximal integral curve γx of −ξ. Note that ϕt(x) = γx(t).

Definition 1.12. Let (f, ξ) be a Morse pair on M and ϕ the flow generated by −ξ.

(a) S ⊂M is called ϕ–invariant if x ∈ S implies γx(t) ∈ S for all t.

(b) N ⊂M is called ϕ–isolating if if ϕ–invariant part

Inv(N) = {x ∈ N |ϕt(x) ∈ N for all t} (1.2.2)

is contained in the interior of N .

(c) S ⊂M is called isolated ϕ–invariant if S = Inv(N) for some ϕ–isolating set N ⊂M .

For the remainder of this section let S ⊂ M be a compact isolated ϕ–invariant set
and N ⊂ M a ϕ–isolating neighborhood. Our goal is to adapt the construction for closed
manifolds to define Floer complexes and Floer homology groups

HF∗(S, ϕ) = H∗(CF•(S, ϕ)). (1.2.3)

To that end, we make a series of observations:

(1) The stable and unstable manifoldsW s/u(p) can be defined for all p ∈ Crit(f) essentially
as before, but without control at the other ends. They are still immersed submanifolds
of M of dimensions µ(p) and n − µ(p), respectively, which is enough to make sense of
the Smale condition Wu(p) ⋔W s(p).

(2) Assuming the Smale condition, the statement and proof of Lemma 1.5 go through with-
out changes, making M(p, q) =Wu(p) ∩W s(q) and M̂(p, q) =M(p, q)/R smooth man-
ifolds of dimensions µ(p, q) and µ(p, q) − 1, respectively. However, the compactness
argument in Proposition 1.6 for µ(p, q) = 1 no longer applies to M̂(p, q) for µ(x, y) = 1.
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(3) Since S ϕ-invariant and compact, for each x ∈ S the integral curve t 7→ ϕt(x) is contained
in S, defined for all times and has limits

lim
t→±

ϕt(x) ∈ Crit(f) ∩ S. (1.2.4)

So even without mentioning stable and unstable manifolds, we can define

MS(p, q) =

{
x ∈ S

∣∣∣∣ lim
t→−∞

= p and lim
t→+∞

ϕt(x) = q

}
, p, q ∈ Crit(f) ∩ S (1.2.5)

and M̂S(p, q) =MS(p, q)/R. We can also think of M̂S(p, q) as a subspace of M̂(p, q).

(4) For p, q ∈ Crit(f)∩S with µ(p, q) = 1, one can show as in Proposition 1.6 that MS(p, q)
is compact using the compactness of f−1(a)∩S for a regular value a ∈ (f(q), f(p)). The
argument is carried out in [Flo89, Lemma 2.1].

With this is mind, we define the Floer complex of (S, ϕ) as

CFk(S, ϕ) =
⊕

p∈Crit(f)∩S, µ(p)=k

Z2 ⟨p⟩ (1.2.6)

and equip it with the Floer differential

d : CFk+1(S, ϕ)→ CFk(S, ϕ), d ⟨p⟩ =
∑

q∈Crit(f)∩S, µ(q)=k

#2M̂S(p, q). (1.2.7)

Note that so far we have neither proved that d2 = 0 nor used the fact that S is isolated ϕ–
invariant. Before we address these related issues, let us look at a few simple examples.

Example 1.13. (1) Let (f, ξ) be a Morse pair and p ∈ Crit(f). Then {p} is a compact
isolated ϕ-invariant. The Floer complex CF•({p}, ϕ) is concentrated in degree µ(p) and
has trivial differential. In particular, we have d2 = 0 and thus

HF∗({p}, ϕ) =

{
Z2 if ∗ = µ(p)

0 else
(1.2.8)

Note that this is not the same as H∗({p};Z2) for µ(p) > 0. So Floer complex of (S, ϕ)
does not necessarily compute the homology of S.

(2) Let γ : R → M be an integral curve of −ξ in M(p, q) with p, q ∈ Crit(f). Then
Tγ = γ(R) ∪ {p, q} is compact and ϕ–invariant. The Floer complex CF•(Tγ , ϕ) is gen-
erated by ⟨p⟩ , ⟨q⟩ in degrees µ(p) > µ(q). If µ(p) ≥ µ(q) + 2, then the Floer differential
vanishes. If µ(p) = µ(q) = 1, then d ⟨p⟩ = ⟨q⟩. In both cases, we have d2 = 0 and

HF∗(Tγ , ϕ) =

{
Z2 if µ(p+) ≥ µ(p−) + 2 and ∗ = µ(p±)

0 else.
(1.2.9)

However, Tγ is always homeomorphic to [0, 1].

(3) Now consider the “heart shaped 2–sphere” in R3, that is, a deformed 2–sphere on which
the height function has a unique minimum q, two maxima p, p′, and a saddle point s. We
can arrange that the negative gradient of the height function is a Morse gradient. Let γ
be the unique trajectory of the downward gradient flow in M(p, s) and let δ be one of
the trajectories inM(s, q). Then Tγ∪Tγ′ is compact and ϕ-invariant, but not ϕ-isolated.
Indeed, every neighborhood of Tγ ∪ Tγ′ contains complete trajectories in M(p, q). The
Floer complex of (Tγ ∪ Tγ′ , ϕ) is generated by p, s, q and with differential

d ⟨p⟩ = ⟨r⟩ , d ⟨r⟩ = ⟨q⟩ , and d ⟨q⟩ = 0. (1.2.10)

In particular, we have d2 ⟨p⟩ = ⟨q⟩ ≠ 0.
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These examples beg the following questions: Lecture 3, 18.4.23

Q1: When is the Floer complex CF•(S, ϕ) actually a chain complex?

Q2: In that case, what is HF∗(S, ϕ)? Is it the mod 2 homology of some space?

The following result is due to Floer [Flo89, Theorem 1] and builds on the work of Con-
ley [Con78] which we will say more about in the next section.

Theorem 1.14 (Conley [Con78], Floer [Flo89]). Let (f, ξ) be a Morse–Smale pair on a
smooth n–manifold M and ϕ the flow generated by −ξ. Moreover, let S ⊂ M a compact
isolated ϕ–invariant set and U ⊂M a ϕ-isolating neighborhood of S.

(i) There exists a compact ϕ-isolating neighborhood N ⊂ U for S and a compact sub-
set E ⊂ N \ S such that

(1) If x ∈ N and ϕt(x) /∈ N , then ϕs(x) ∈ E for some s ∈ [0, t].

(2) If x ∈ A and ϕt(x) /∈ A for t > 0, then ϕt(x) /∈ N .

(ii) The Floer differential on CF•(S, ϕ) satisfies d
2 = 0 and there is an isomorphism

HF∗(S, ϕ) = H∗(N,E;Z2). (1.2.11)

The first statement is due to Conley and builds the foundation of his index theory –
which, by the way, has nothing to do with index theory of elliptic operators. The second
statement is due to Floer and the proof uses several features of Conley’s theory. We discuss
Floer’s proof in Section 1.3.2.

1.3 Flows and Conley index theory

1.3.1 Conley index theory for isolated invariant sets

In order to prepare for the proof of Floer’s theorem, it is helpful to work in a more general
setting. The standard reference for this material is Salamon’s article [Sal85].

Flows. We first abstract from the notion of flows of vector fields.

Definition 1.15 (Flows). A (global) flow on a topological space X is a continuous right
R–action, that is, a continuous map

ϕ : X × R→ X, ϕ(x, t) = ϕt(x) = xϕ(t) = x(0), (1.3.1)

satisfying the flow properties

ϕ0(x) = x equivalenty x(0) = x (1.3.2)

ϕs+t(x) = ϕtϕs(x) equivalenty x(s+ t) = x(s)(t) (1.3.3)

The curves t 7→ x(t) = ϕt(x) are called integral curves and their images x(R) trajectories
or orbits. More generally, a local flow is a map ϕ : U → M defined on a connected open
neighborhood U ⊂ X × R of X × {0} such that (1.3.2) and (1.3.3) are satisfied whenever
both sides are defined.

Remark 1.16 (Smooth flows). Recall that if ξ is a vector field on a smooth manifold M ,
then the initial value problem

∂tϕ
ξ(x, t) = ξ(ϕξ(x, t)), ϕξ(x, 0) = x (1.3.4)

11



determines a local flow ϕξ : Uξ → M in the above sense and the map ϕξ is smooth. Con-
versely, every smooth local flow ϕ on M determines a vector field on M by

ξϕ(x) = ∂tϕ(x, 0) = ϕ∗
∂
∂t

∣∣
x,0
∈ TxM. (1.3.5)

The constructions are essentially inverse, except that ϕξ
ϕ

might have a larger domain than ϕ.

The notion of invariant, isolating, and isolated invariant sets in Definition 1.12 carry over
verbatim to flows on arbitrary spaces.

Index pairs and the Conley index. The next definition is motivated by Theorem 1.14(i).
Throughout, let X be a locally compact metrizable space to conform with [Sal85].

Definition 1.17 (Index pairs). Let (X,ϕ) by a local flow and S ⊂ X a compact isolated
invariant set. An index pair for S is a pair (N,E) of compact subset E ⊂ N ⊂ X such that

(i) N \ E is an isolating neighborhood for S and E ∩ S = ∅.

(ii) If x ∈ E and ϕt(x) ∈ N for all s ∈ [0, T ], then ϕt(x) ∈ E for all t ∈ [0, T ].

(iii) If x ∈ N and ϕT (x) /∈ N for some T > 0, then there exists a t ∈ [0, T ) such
that ϕs(x) ∈ N for all s ∈ [0, t] and ϕt(x) ∈ E.

The set E is called an exit set for N , because every orbit which leaves N forward in time
must go through E by (iii) and necessarily leaves N when it leaves E by (ii).

We leave it to the reader to check that the pair (N,E) in the statement of Theo-
rem 1.14(ii) is an index pair. What follows is the foundational theorem of Conley index
theory.

Theorem 1.18 (Existence and uniqueness of index pairs, c.f. [Sal85, Ch. 4]). Let S be a
compact isolated invariant set for a local flow (X,ϕ).

(i) If U ⊂ X is any neighborhood of S, then there exists an index pair (N,E) for S
with cl(N \ E) ⊂ U .

(ii) If (N ′, E′) is another index pair for S, then the flow map ϕ singles out a natural

homotopy class of based homotopy equivalences N/E
≃−→ N ′/E′.

This justifies the following defintion:

Definition 1.19 (The Conley index). Let S be a compact isolated invariant set for a local
flow (X,ϕ). The Conley index of S is the based homotopy type

C(S, ϕ) = [N/E] (1.3.6)

where (N,E) is any index pair for S. We allow ourselves the slight abuse of notation to
write C(S, ϕ) = N/E.

The statement of Theorem 1.14(ii) can be recast as

HF∗(S, ϕ) ∼= H∗(C(S, ϕ);Z2). (1.3.7)

The proof of Theorem 1.18 is somewhat technical and we postpone the discussion. For now,
it is more beneficial to illustrate the definitions above with some examples.

Example 1.20. (1) Let ξ0(x, y) = (−x, y) be the vector field on Rn = Rk×Rn−k, the local
model for Morse gradients. Recall that −ξ generates the global flow

ϕ : Rn × R→ Rn, , ϕt(x, y) = (etx, e−ty). (1.3.8)
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The origin {0} is an isolated invariant set for ϕ. One readily checks that each pair of
the form (

Dk
ε ×Dn−k

ε , ∂Dk
ε ×Dn−k

ε

)
, ε > 0. (1.3.9)

is an index pair for {0}. For the Conley index, we find

C({0}, ϕ−ξ0) = Dk
ε ×Dn−k

ε /Dk
ε ×Dn−k

ε ≃ Dk/∂Dk ≃ Sk. (1.3.10)

More generally, for a Morse pair (f, ξ) on a smooth manifold M and we can transplant
the discussion above via Morse charts to each p ∈ Crit(f) with the result that

C({p}, ϕ−ξ) ≃ Sµ(p). (1.3.11)

It is in this sense that the Conley index refines the Morse index. Recall from Exam-
ple 1.13(1) that

HF∗({p}, ϕ) ∼= H̃∗(S
µ(p);Z2), (1.3.12)

which is in line with Theorem 1.14(ii).

(2) Let (f, ξ) be a Morse–pair on a closed n–manifold M and ϕ = ϕ−ξ. Then M itself is
trivially a compact isolated invariant set and (M, ∅) is an index pair (the only one in
this case). The Conley index is C(M,ϕ) =M/∅ =M+, the based homotopy type of M
with a disjoint base point added. By Theorem 1.11, we have

HF∗(M,ϕ) ∼= H∗(M ;Z2) ∼= H̃(M+;Z2). (1.3.13)

Again, this matches Theorem 1.14(ii).

(3) Let (f, ξ) and ϕ be as above and a < b two regular values of f . Let M b
a = f−1([a, b])

and M b = f−1((−∞, b]). The critical points in M b
a = f−1([a, b]) together with all

trajectories between them form a compact isolated invariant set S ⊂ M . Two obvious
index pairs are given by

(M b
a, f

−1(a)) and (M b,Ma). (1.3.14)

Clearly, M b
a/f

−1(a) and M b/Ma are homeomorphic.

(4) As a special case of the last example, consider the tilted torus in R2 with the downward
gradient flow of the height function. Take S to be the set of index 1 critical points. Var-
ious choices of index pairs (see blackboard) are possible, and all give C(S, ϕ) ≃ S1 ∨S1.

Lemma 1.21. Let S1 and S2 be disjoint compact isolated invariant sets for a local flow (X,ϕ).
Then S ⨿ T is compact isolated invariant with

C(S1 ⨿ S2, ϕ) = C(S1, ϕ) ∨ C(S2, ϕ). (1.3.15)

Proof. ▶ Let Ui be an isolating neighborhood of Si.

▶ We may assume that U1 and U2 are disjoint by shrinking them.

▶ In that case, U1 ⨿ U1 is an isolating neighborhood for S1 ⨿ S2.

▶ Use Theorem 1.18(i) to find index pairs (Ni, Ei) for Si with cl(Ni \ Ei) ⊂ Ui.

▶ If the Ui were chosen sufficiently small, then the Ni will be disjoint.

▶ In that case (N1 ⨿N2, E1 ⨿ E2) is an index pair for S1 ⨿ S2 with

(N1 ⨿N2)/(E1 ⨿ E2) ≈ N1/E1 ∨N2/E2. (1.3.16)

▶ The claim now follows from Theorem 1.18(ii).
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Lecture 4, 25.4.23
Construction of index pairs. We sketch a proof of Theorem 1.18(i) based [Sal85, Ch. 4.1]
and [Con78, Ch. 4.1]. We refer to these sources for any omitted details.

Let (X,ϕ) be a local flow on a locally compact metrizable space. Local compactness
yields that every compact isolated invariant set has a compact isolating neighborhood.2

Suppose that we are given the following data:

� a compact isolated invariant set S ⊂ X,

� a compact isolating neighborhood N0 ⊂ X for S, and

� an arbitrary neighborhood U ⊂ X of S.

Our goal is to construct an index pair (N,E) such that cl(N \E) ⊂ U . For brevity, we use
the notation x · t = ϕt(x). The main characters of this story are the sets

S± =
{
x ∈ N0

∣∣x · R± ⊂ N0

}
(1.3.17)

and the construction that assigns to arbitrary subset Z ⊂ Y ⊂ X the set

P (Z, Y ) = {y ∈ Y | ∃z ∈ Z, t ≥ 0 with z · [0, t] ⊂ Y and y = z · t} . (1.3.18)

We make two observations. First, we have

S = Inv(N0) = S+ ∩ S−. (1.3.19)

Second, the set P (Y,Z) is positively invariant in Y in the sense that y ∈ P (Z, Y ) and
y · [0, t] ⊂ Y imply y · [0, t] ⊂ P (Z, Y ). In fact, it is the smallest subset of Y with this
property that contains Z. The construction of index pairs has three main steps, each of
which establishes some form of compactness:

(1) The simplest task is to show that the sets S± are compact (c.f. [Sal85, Lemma 3.7]).
Assuming this, we can choose open neighborhoods U± of S± such that

cl(U+ ∩ U−) ⊂ U ∩ int(N0). (1.3.20)

(2) The first difficulty is to prove that the set P (N0\U+, N0) is closed and therefore compact
(c.f. [Sal85, Lemma 4.2(i)]).

(3) The second difficulty is to locate a compact neighborhood N− of S− inside U− that is
positively invariant in N0 (c.f. [Sal85, Lemma 4.2(ii)]).

From here onward, it is rather straight forward to prove that

N = N− ∪ P (N0 \ U+, N0), E = P (N0 \ U+, N0) (1.3.21)

constitutes an index pair for S with cl(N \ E) ⊂ U+ ∩ U− ⊂ U ∩ int(N0). This proves
Theorem 1.18(i).

It is instructive to go through the construction for the flow ϕt(x, y) = (etx, e−ty) on R2

and S = {0} with different choices of N0 and U±. (An example will be discussed in class
on the blackboard.) One should come to the conclusion that the exit set E in the above
construction tends to be rather large.

2Caution! In [Sal85] and [Con78], compactness is included in the definition of isolating neighbordhoods.
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Index pairs with special properties. There are other, more refined constructions which
produce index pairs with additional properties. For example, one can always find index
pairs (N,E) such that the inclusion E ⊂ N is a cofibration (c.f. [Sal85, Ch. 5.1 & Prop. 2.4]).
This is desirable from the perspective of homotopy theory. Among other things, it gives
isomorphisms

h(N,E) ∼= h̃(N/E) := h(N/E, ∗) (1.3.22)

where h is any functor defined on pairs of spaces satisfying the usual homotopy invariance
and excision axioms (c.f. [tD08, Prop. 10.4.5]).

It should be no surprise that one can do much better for smooth flows. The following
result was proved by Conley and Easton [CE71].

Theorem 1.22 (Isolating blocks). Let M be a smooth manifold, ϕ a smooth local flow
on M , and S ⊂ M a compact isolated invariant set. For any neighborhood U of S there
exist a compact submanifold with boundary B ⊂ U with the following properties:

(i) B is an isolating neighborhood for S.

(ii) The sets ∂±B = {x ∈ ∂B | ∃ϵ > 0 : x · (±(0, ε)) = ∅} are compact submanifolds of ∂B
with common boundary ∂+B = ∂−B (possibly empty) tangent to the ϕ-trajectories.

In particular, B has the same dimension as M and (B, ∂−B) is an index pair for S.

The sets B produced in the above theorem are usually called isolating blocks B. The
index pairs (B, ∂−B) are prototypical for the general definition. Going back to Exam-
ple 1.20(3), we can now recognize the set M b

a = f−1([a, b]) as an isolating block with bound-
ary decomposition ∂−M b

a = f−1(a) and ∂+M b
a = f−1(b).

In a way, the general definition of index pairs crystallizes certain key properties of the
pairs (B, ∂−B). In practice, many applications of Conley index theory boils down to finding
and organizing appropriate index pairs to gain insight into a given situation. The general
setup provides a very flexible theory.

Flow induces maps between index pairs. We now address the uniqueness part of
Theorem 1.18. Recall that the goal is to show that the Conley index C(S, ϕ) = [N/E] is
independent of the choice of index pair. We sketch the elegant argument in [Sal85, Ch. 4.2].
The idea is to exploit the following observation.

Lemma 1.23 (c.f. [Sal85, Lemma 4.6]). Let K be a compact isolating neighborhood for S
and U any neighborhood. Then there exists a t > 0 such that x · [−t, t] ⊂ N implies x ∈ U .

Put differently, the longer a trajectory x · [−t, t] is defined in a given compact isolating
neighborhood, the closer the point x must be to S.

Now let us consider not two, but three index pairs

(N,E), (N ′, E′), (N ′′, E′′) (1.3.23)

for the same compact isolated invariant set S. Using Lemma 1.23 we can find T ≥ 0 such
that the following implications hold for t ≥ T :

x · [−t, t] ⊂ N \ E =⇒ x ∈ N ′ \ E′ (1.3.24)

x · [−t, t] ⊂ N ′ \ E′ =⇒ x ∈ N \ E (1.3.25)

We can then define a flow induced map ft : N/E → N ′/E′ as

ft([x]) =

{
[x · 3t] if x · [0, 2t] ⊂ N \ E and x · [t, 3t] ⊂ N ′ \ E′

[E′] else.
(1.3.26)
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Now it takes some work to prove that (t, [x]) 7→ ft([x]) is continuous (see [Sal85, Lemma 4.7]).
Clearly, the homotopy class of ft is independent of t ≥ T and each ft is homotopic to fT .

Similarly, we get flow induced maps

f ′t : N
′/E′ → N ′′/E′′ and f ′′t : N/E → N ′′/E′′ (1.3.27)

for t ≥ T ′ ≥ 0, respectively t ≥ T ′′ ≥ 0. The reason that these maps are defined as they
they are closed under composition in the sense that for t ≥ max{T, T ′, T ′′} we have

f ′t ◦ ft = f ′′2t. (1.3.28)

Now, for (N ′′, E′′) = (N,E) we can take T ′ = T and T ′′ = 0. In that case, f ′′2t is homo-
topic to f ′′0 = id: N/E → N/E. Repeating the same argument with (N,E) and (N ′, E′)
switched, we conclude that ft and f ′t are inverse homotopy equivalences. This establishes
Theorem 1.18(ii).

1.3.2 The Conley index and Floer homology
Lecture 5, 2.5.23

We now return to Theorem 1.14(ii) which we restate for convenience.

Theorem 1.24 (Floer [Flo89]). Let (f, ξ) be a Morse–Smale pair on a smooth n–manifoldM
and S ⊂ M a compact isolated invariant set for the local flow ϕ = ϕ−ξ. Then the Floer
differential in CF•(S, ϕ) satisfies d

2 = 0 and there is an isomorphism

HF∗(S, ϕ) = H∗(CF•(S, ϕ)) ∼= H∗(C(S, ϕ);Z2). (1.3.29)

In other words, the (mod 2) Floer complex of CF•(S, ϕ) computes (mod 2) homology of the
Conley index C(S, ϕ).

We are still not quite ready for the proof yet. We need two more definitions and one
more theorem.

Definition 1.25 (Limit sets). Let (X,ϕ) be a local flow. The α- and ω-limit sets of a
point x ∈ X are defined as

α(x) = {a ∈ X | a = lim(x · tn) for some tn → −∞} (1.3.30)

ω(x) = {w ∈ X |w = lim(x · tn) for some tn →∞} . (1.3.31)

The limit sets consist of those points to which the flow trajectory through x gets arbi-
trarily close forward or backward in time. For a Morse pair (f, ξ) on a manifold M and ϕ
generated by −ξ we the limit sets are just the limit points of trajectories. In particular,
for p ∈ Crit(f) we can write

Wu(p) = {x ∈M |α(x) = {p}} and W s(p) = {x ∈M |ω(x) = {p}} . (1.3.32)

However, in general the limit sets may be empty or contain more that than one point, in
extreme cases they might even be the entire space. (I discussed examples on the blackboard.)

Definition 1.26 (Morse decompositions). Let (X,ϕ) be a local flow and S ⊂ X compact
isolated invariant. A Morse decomposition of S is a collection of disjoint isolated invariant
subsets S1, . . . , Sn ⊂ S such that for all x ∈ S \ ∪iSi we have

α(x) ⊂ Si and ω(x) ⊂ Sj for some i < j. (1.3.33)

It should be apparent that the sets Si play the role of critical points in Morse the-
ory. However, the new definition is much more flexible. The following lemma is proved
in [Sal85, Corollary 4.4] and relates the Conley indices of the isolated invariant sets in a
Morse decomposition.
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Lemma 1.27 (Morse filtrations). Let S be a compact isolated invariant set for a local
flow (X,ϕ) with X locally compact Hausdorff and S1, . . . , Sr ⊂ S a Morse descomposition
of S. If (N,E) is an index pair for S, then there exists a filtration by compact subsets

E = N0 ⊂ N1 ⊂ · · · ⊂ Nr = N (1.3.34)

such that (Nk, Nk−1) is an index pair for Sk.

The sets {Ni} are called a Morse filtration of (N,E) compatible with the Morse decom-
position {Si}. As we will now see, Morse filtrations can be used for inductive arguments
much like CW decompositions.

Proof of Theorem 1.24 (sketch). There are two main steps.

Step 1: Exploiting a Morse filtration.

▶ For k = 0, . . . , n consider Sk = {p ∈ Crit(f) ∩ S |µ(p) = k}. This is a Morse decomposi-
tion of S.

▶ The Conley index of Sk can be identified as

C(Sk, ϕ) ≃
∨
p∈Sk

Sk (1.3.35)

where have used C({p}, ϕ) ≃ Sµ(p) and C(A ⨿ B,ϕ) = C(A, ϕ) ∨ C(B,ϕ) for disjoint
compact isolated invariant sets A,B.

▶ Let (N,E) be an index pair for S and E = N−1 ⊂ · · · ⊂ Nn ⊂ N a compatible Morse
filtration as in Lemma 1.27.

▶ Then (Nk, Nk−1) is an index pair for Sk and we have canonical isomorphisms

H∗(Nk, Nk−1;Z2) ∼= H̃∗(C(Sk, ϕ);Z2) ∼=

{
CFk(S, ϕ), ∗ = k

0, ∗ ≠ k.
(1.3.36)

Note the similarity with CW filtrations and cellular homology.

▶ As for CW filtrations, we obtain a chain complex D• with chain groups

Dk = Hk(Nk, Nk−1;Z2) ∼= CFk(S, ϕ) (1.3.37)

and differentials ∂ : Dk+1 → Dk given by the connecting maps of the triples (Nk+1, Nk, Nk−1).

▶ Now the same argument used in the identification of cellular homology (see [tD08,
Ch. 12.2], for example) shows that

H∗(D•) ∼= H∗(N,E;Z2) ∼= H∗(C(S, ϕ);Z2). (1.3.38)

Step 2: It remains to identify ∂ : Dk+1 → Dk with the Floer differential.

▶ Let Sk+1&Sk be the union of Sk+1, Sk and all trajectories between them. This is a
compact isolated invariant set with Morse decomposition {Sk, Sk+1} and Morse filtra-
tion Nk−1 ⊂ Nk ⊂ Nk.

▶ It clearly suffices to prove the claim for Sk+1&Sk for each k, since the differentials dk+1

and ∂k+1 in CF•(S, ϕ) and D• are determine in Sk+1&Sk and Nk−1 ⊂ Nk ⊂ Nk, respec-
tively.

▶ For p ∈ Sk+1 and q ∈ Sk we obtain another Morse decomposition {Sk\{q}, {q}, {p}, Sk+1\{p}}
of Sk+1&Sk.
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▶ A double induction using a refined Morse filtration reduced the general problem further
to the case Sk+1 = {p} and Sk = {q}.

▶ In that case, we have Nk+1/Nk ≃ Sk+1 and Nk/Nk−1 ≃ Sk.

▶ It remains to show that ∂ : Dk+1
∼= H̃k+1(S

k+1;Z2)→ H̃k(S
k;Z2) ∼= Dk is multiplication

by #2M̂(p, q) using the canonical identification of both groups with Z2.

▶ The argument is essentially the same as the identification of the Floer differential in The-
orem 1.11. Instead of a self-indexing Morse function, one has to choose a suitable index
pair. See [Flo89, p. 214 f.] for more and [BH04, p. 213 ff.] for even more details.

1.4 Equivariant generalizations

One major advantage of Conley index theory is that is very easy to take symmetries into
account. The study of spaces with symmetry is the subject of equivariant topology. We begin
by reviewing some basic definitions. Standard references with an emphasis on equivariant
algebraic topology are [tD87] and [May96]. The current state of the art in equivariant stable
homotopy theory is laid out in [Sch18].

1.4.1 Equivariant topology: basis definitions.

Symmetries are modeled by continuous group actions. To avoid point set topological patholo-
gies, we assume that all spaces are Hausdorff.

Definition 1.28 (G–spaces and maps). Let G be a Hausdorff topological group.

(a) AG–space is a Hausdorff spaceX with a continuous leftG–action denoted by (g, x) 7→ gx.

(b) AG–map f : X → Y between twoG–spaces is a continuous map such that f(gx) = gf(x)
for all g ∈ G.

Many notions from ordinary, non-equivariant topology carry over to the equivariant
setting by simply “putting a G everywhere”. However, others do not and it does take some
time to develop an intuition for where the problems lurk. This can become very subtle, as
demonstrated by Frank Adams’ famous rant in [Ada84, §6], which everyone should read if
only for entertainment.

For example, G–manifolds, G–homeomorphisms, G–diffeomorphisms, G–homotopies, and
G–homotopy equivalences are defined in the obvious way and behave as expected. The first
small surprise is the realization that base points should not be arbitrary.

Definition 1.29 (Fixed points). Let X be a G–space.

(a) If X is a G–space, then the set of G–fixed points is XG = {x ∈ X | gx = x for all g ∈ G}.

(b) A G–space X together with a G–fixed base point x0 ∈ XG is called a based G–space.

Restricting to G–fixed base points ensures that the constant map to the base point is always
a G–map, as it should be. From here on, one can define based versions of G–maps, G–
homotopies, etc as expected.

The outcome is that there are reasonably behaved categories of G–spaces and based
G–spaces. Let us now take a closer look at the objects.

Definition 1.30. Let X be a G–space and x ∈ X.

(a) The subspace Gx = {gx ∈ X | g ∈ G} ⊂ X is called the G–orbit of x. The quotient X/G
is called the orbit space.3

3Strictly speaking, one should arguably write G\X for left actions and X/G for right actions. However,
this slight abuse of notation rarely causes confusion.
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(b) The subgroup Gx = {g ∈ G | gx = x} is called the stabilizer or isotropy subgroup of x.

The G–orbits are the smallest G–invariant subsets of X. They should be thought of as
the analogues of points in ordinary topology. It is clear from the definition that Gx is a
closed subgroup of G, that is, simultaneously a subgroup and a closed subspace. The orbits
and stabilizers are related by the canonical G–map

G→ X, g 7→ gx, x ∈ X. (1.4.1)

with G acting on itself from the left. By construction of Gx, this descends to a G–map

ox : G/Gx → Gx, ox(gGx) = gx (1.4.2)

where Gx acts on G from the right to form the orbit space, while the left action of G on
itself descends to G/Gx. This is always a continuous injection. An example where ox fails to
be an embedding is any R–action on the torus whose orbits have irrational slope. However,
there are obvious conditions that ensure that ox is an embedding, for example if G/Gx is
compact and X is Hausdorff. We record the following outcome of this discussion for the
important special case that G is a compact Lie group.

Lemma 1.31. Let G be a compact Lie group, X a Hausdorff G–space, and x ∈ X. Then
the canonical map G→ X, g 7→ gx, is a G–map and factors through a G–homeomorphism

ox : G/Gx
≈−→ Gx, gGx 7→ gx (1.4.3)

The orbit spaces G/H where H ⊂ G is a closed subgroup are called homogeneous spaces.
They should be thought of models for “points” in equivariant topology. From this perspec-
tive, one of the major differences in equivariant topology is that there are several types of
“points” which can have complicated internal structures and interactions. As an example
of a complicated “point”, consider G = O(n) and H = O(k)×O(n− k). The corresponding
homogeneous space is

Gk(Rn) ∼= O(n)/O(k)×O(n− k), (1.4.4)

the Grassmannian of k–planes in Rn with its obvious O(n)–action.

1.4.2 G–flows and equivariant Conley index theory.

The good news is that most of Conley index theory generalizes to the equivariant setting
by “putting a G everywhere” – at least when G is a compact Lie group, which we implicitly
assume from now on.

Definition 1.32 (G–flows). Let X be a G–space. A (local) flow ϕ on X is called a (local)
G–flow if

(gx) · t = g(x · t) for all g ∈ G and t ∈ Jx. (1.4.5)

All the basic definitions and theorems in Conley index theory go through for (local) G–
flows by requiring all sets involved in the definitions or constructions to be G–invariant. In
particular, this applies to invariant sets, isolating neighborhoods, index pairs, and all the sets
involved in the construction of index pairs. The flow induced maps are then automatically
G homotopy equivalences. In summary, we arrive at the following:

Theorem 1.33 (The G–Conley index). Let (X,ϕ) be a G–flow with G a compact Lie group
and X locally compact and metrizable.

(i) Every G–invariant compact isolated invariant set S ⊂ X admits a G–index pair (N,E).

(ii) For any other G–index pair (N ′, E′) there is a flow induced based G–homotopy equiv-
alence N/E → N ′/E′.
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In particular, there is a well-defined G–Conley index

CG(S, ϕ) = [N/E] (1.4.6)

which comes in the form of a based G–homotopy type.

The compactness of G is certainly needed for the current approach to work. There are
other approaches (see [Ryb87] of [Ben87], for example), but is not clear whether or not they
can be applied to Seiberg–Witten theory on 3–manifolds, which is where we are ultimately
headed.

1.4.3 Equivariant Floer homology?
Lecture 6, 9.5.23

In contrast, it is not at all obvious how one should generalize the construction of Floer
complexes and Floer homology. Here is a list of problems:

(1) On a G–manifoldM one should study smooth functions f : M → R that are G–invariant.
The problems start with the simple observation that if p is a critical point such an f ,
then so is gp for every g ∈ G. In other words, Crit(f) is G–invariant and therefore a
union of G–orbits which are generally submanifolds of positive dimensions.

(2) As a consequence, in G–equivariant Morse theory one has to allow Crit(f) to be a
disjoint union of critical G–orbits on which the Hessian is non-degenerate in normal
directions. The analogue of the Morse lemma involves tubular neighborhoods modeled
on vector bundles of the form G×H V → G/H where H ⊂ G is a closed subgroup and V
is an orthogonal H–representation4. The latter splits as V = V − ⊕ V + and the local
Morse model is the function [g; v, w] 7→ −|v|2 + |w|2 on G ×H V . More details can be
found in [Was69].

(3) Similarly, Morse gradients are G–invariant in the sense that g∗ξ(x) = ξ(gx). The stable
and unstable manifoldsW s/u(C) of a critical orbit C of type (H;V −, V +) are immersed
copies of the bundles G ×H V ±. They are also G–invariant and so are the moduli
spaces M(C,D) =Wu(C)∩W s(D) of flow trajectories of −ξ from C to another critical
orbit D.

(4) The next subtlety is an equivariant version of the Smale condition. In contrast to
the non-equivariant setting, where the Smale condition can always be achieved by a
simple transversality argument based on Sard’s theorem, there are generally obstructions
to achieving equivariant transversality (see [Pet74]). In particular, one cannot take
for granted that the intersections Wu(C) ∩ W s(D) = M(C,D) can always be made
transverse by modifying ξ through G–invariant Morse gradients. However, there are
lucky accidents where the Smale condition is miraculously satisfied and the moduli
spaces M(C,D) are smooth G–submanifolds. However, they have no reason to be 0–
dimensional, in general.

(5) All of the above indicates that it is far from obvious how one could define G–analogues of
Floer complexes. However, we would probably expect that any reasonable Floer complex
would compute some reasonable invariant of a G–Conley index CG(S, ϕ), most likely
some form of “equivariant homology”. This begs the question: What does “equivariant
homology” even mean?

While there is no clear cut way out of these problems, there are some special situa-
tion where certain equivariant homology or cohomology theories are computable by Floer
theoretic methods. We briefly discuss these in the next section.

4An orthogonal G–representation is a real inner product space on which G acts by orthogonal transfor-
mations.
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1.4.4 Borel homology and cohomology theories

We briefly review the definition and some properties of Borel homology and cohomology
theories. We refer to [tD87, Ch. III] and [Hsi75, Ch. III] for more details. Ordinary, non-
equivariant homology and cohomology theories are particular well-behaved on CW com-
plexes. Here is an equivariant analogue:

Definition 1.34 (G–CW–complexes). Let G be a compact Lie group.

(a) The product G/H ×Dk with H ⊂ G a closed subgroup, k ≥ 0, and G acting trivially
on Dk is called a k–dimensional G–cell of type G/H.

(b) A pair of G–spaces (X,A) is called a relative G–CW–complex if there is a filtration
A = X−1 ⊂ X0 ⊂ · · · ⊂ X = ∪Xi such that Xk is obtained from Xk−1 by attaching a
collection of G–cells ⨿i(G/Hi ×Dk) along a G–map ⨿i(G/Hi × Sk−1)→ Xk−1.

We want to discuss a tool that allows to translate equivariant problems into non-equivariant
ones in order to make use of non-equivariant algebraic topology.

Universal G–spaces. Let G be a compact Lie group. Recall that a G–action on a space P
is called free if Gx = {1} for all x ∈ X (or, equivalently, Xg = ∅ for all 1 ̸= g ∈ G). The
orbit map P → P/G is then a principal G–bundle (modulo converting left to right actions).

The notion of a universal G–space, usually denoted by EG, has two different technical
implementations. Both versions require the following properties:

(a) G acts freely on EG (i.e. Gx = {1} for all x ∈ EG).

(b) EG is non-equivariantly contractible.

In addition, one of the two technical conditions is included:

(c) EG is a G–CW–complex.

(c’) EG is a numerable G–space.

Here numerable means that the orbit map EG → EG/G is a principal G–bundle which is
locally trivial over on open cover of EG/G which supports a partition of unity. One can
show that (c) implies (c’), but we shall not worry about these details. In either case, the
orbit space and map

BG = EG/G and EG→ BG (1.4.7)

are called a classifying space and a universal fibration for G.

Proposition 1.35 (Universal G–sapces). Let G be a compact Lie group.

(i) There exists a universal G–space EG.

(ii) For every free G–space X which is either a G–CW–complex or numerable there is a
G–map X → EG and any two such G–maps are G–homotopic.

In particular, EG is unique up to G–homotopy equivalence, BG is unique up to homotopy
equivalence, and EG→ BG is unique up to isomorphism of principal G–bundles.

Example 1.36 (The circle group). In the case of the unit circle group T ⊂ C there is a stan-
dard construction of a universal T–space.5 Note that T acts freely by scalar multiplication
on the unit sphere S(Cn) ⊂ Cn for n ≥ 1. It is a standard fact that the colimit

ET = S(C∞) = colim
n→∞

S(Cn) (1.4.8)

5The notation T is commonly used in equivariant algebraic topology. Other common names are S1 or U1.
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along the inclusions Cn ↪→ Cn+1, x 7→ (x, 0), is non-equivariantly a contractible CW com-
plex. Clearly, the T–actions on S(Cn) extend to a free T–action on ET, making it a universal
T–space. The corresponding classifying space is

BT = S(C∞)/T ∼= colim
n→∞

S(Cn)/T ∼= colim
n→∞

CPn−1 = CP∞ (1.4.9)

and the orbit map ET→ BT corresponds to the unit sphere bundle of the tautological line
bundle over CP∞.

The Borel construction. Fix a compact Lie group G and a universal G–space EG.
Given an arbitrary G–space X, we define its Borel construction as the orbit space

XhG = EG×G X = (EG×X)/G (1.4.10)

with respect to the diagonal action. Thinking of EG as a principal G–bundle, it is clear
that the map

pX : XhG → BG, [e;x] 7→ [e] (1.4.11)

makes XhG the total space of an associated fiber bundle with typical fiber X (considered as
a space without G–action). The Borel construction is functorial in the sense that a G–map
f : X → Y induces a bundle map

fhG = id×Gf : XhG → YgH , [e;x] 7→ [e; f(x)]. (1.4.12)

The idea is that the bundles structure of XhG reflects properties of the G–action. Here’s a
first illustration:

Lemma 1.37. If G acts trivially on X, then there is a canonical homeomorphism

XhG ≈ BG×X, [e;x] 7→ ([e], x) (1.4.13)

which trivializes the bundle map pX .

Proof. The maps [e;x] 7→ ([e], x) and ([e], x)→ [e;x] are both well-defined, because gx = x
for all g ∈ G and x ∈ X. They are clearly mutually inverse and easily proved to be
continuous (using local sections of pX for the second map).

On the other extreme, we can also say something for free actions.

Lemma 1.38. Let X be a free G–CW–complex. Then the map

qX : XhG → X/G, [e;x] 7→ [x] (1.4.14)

is a homotopy equivalence.

Proof. Thinking ofX 7→ X/G as a principal G–bundle, we can view qX as an associated fiber
bundle with contractible fiber EG. In particular, qX induces isomorphisms on all homotopy
groups and the assumptions guarantee that XhG and X/G are CW complexes. The claim
now follows from Whitehead’s theorem.

Borel homology and cohomology. Passing through the Borel construction, we can
obtain G–homotopy invariants of a G–space X from non-equivariant homotopy invariants
of XhG. As an example, we have the Borel homology and cohomology groups

HG
∗ (X) = H∗(XhG) and H∗

G(X) = H∗(XhG) (1.4.15)

where H∗ and H∗ denotes singular homology and cohomology with coefficients in a com-
mutative ring with unit. Given a G–subspace A ⊂ X we can consider AhG as a subspace
of XhG and define

HG
∗ (X,A) = H∗(XhG, AhG) and H∗

G(X,A) = H∗(XhG, AhG). (1.4.16)
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By the functoriality of the Borel construction, a G–map f : (X,A)→ (Y,B) induces maps

f∗ : H
G
∗ (X)→ HG

∗ (Y ) and f∗ : H∗
G(Y )→ H∗

G(Y ).

The functors HG
∗ and HG

∗ are easily seen to satisfy G–equivariant versions of homotopy
invariance, excision, and exactness, all of which follow from the corresponding properties
of H∗ and H∗. In view of the philosophy that G–orbits are analogues of points ordinary
topology, we should be interested in the values on homogeneous spaces G/H.

Lemma 1.39. For every closed subgroup H ⊂ G there is a canonical isomorphism

H∗
G(G/H) ∼= H∗(BH).

Proof. We have a sequence of homeomorphisms

(G/H)hG = EG×G (G/H) ≈ (EG×G G)/H ≈ EG/H.

Since EG also serves as a universal H–space, we get a homotopy equivalence EG/H ≃ BH
which is well-defined up to homotopy.

In particular, for H = G we get

H∗
G(pt)

∼= H∗
G(G/G)

∼= H∗(BG).

Specializing further to G = T we find

H∗
T(pt)

∼= H∗(BT) ∼= H∗(CP∞) ∼= R[u]

where R is the coefficient ring and u ∈ H2(CP∞) is the usual generator. In particularly,
H∗

T(pt) is non-zero in infinitely many degrees and this is typically also the case for H∗
G(pt).

Another core feature of the Borel theories is that H∗
G(X) and H∗(X) are naturally mod-

ules over the R algebra H∗
G(pt)

∼= H∗(BG). The module structures originate from the cup
and cap products in ordinary homology combined with the bundle projection pX : XhG → ∗hG ∼= BG:

H∗(BG)⊗H∗
G(XhG)→ H∗

G(XhG), ξ ⊗ x 7→ (p∗Xξ) ∪ x (1.4.17)

H∗(BG)⊗HG
∗ (XhG)→ HG

∗ (XhG), ξ ⊗ x 7→ (p∗Xξ) ∩ x (1.4.18)

Lecture 7, 16.5.23

Relation to Floer homology. It turns out that Borel homology and cohomology are
accessible to Floer theory, at least in some special situations. We only mention two instances,
one of which will be picked up later in the discussion of monopole Floer homology.

(1) One result in this direction is proved in [AB95]. Assuming the Smale condition holds
for a G–Morse pair (f, ξ) on a G–manifold M , there is a version of Morse cohomology
that computes H∗

G(M ;R). The construction involves moduli spaces of trajectories and
differential forms, and hence only apply to real coefficients.

(2) The story simplifies for the circle group G = T. A Floer theoretic approach to this
setting, tailor-made for applications to Seiberg–Witten theory, was developed by Kro-
nheimer and Mrowka [KM07, Ch. 2.4–2.6]. As we will see, Seiberg–Witten theory on
3–manifolds will eventually bring us into this setting. Moreover, we will not have to
worry about arbitrary T–actions, but only those that are free on X \XT. We will get
back to this in due time.
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1.5 A survey of Floer theory in infinite dimensions

As mentioned before, ideas inspired by Morse theory and Floer homology are often useful,
even in circumstances where they do not make literal sense. These applications often in-
volve functions on or equations in function spaces, which can often be viewed as infinite
dimensional manifolds. We will mention a few examples momentarily, but it is important
to realize beforehand that there are serious obstacles that have to be overcome

Problems in infinite dimensions:

(1) Infinite dimensional manifolds, modeled on infinite dimensional vector spaces (e.g. Ba-
nach, Hilbert, Fréchet,. . . ) are never locally compact. This amplifies the compactness
problems that were already present in the finite dimensional theory. This affects both
the moduli spaces in Floer theory and the very foundation of Conley index theory.

(2) While there is a reasonable generalization of Morse theory to Hilbert manifolds, the Hes-
sian of a random Morse function will usually have infinitely many positive and negative
eigenvalues. In these situations there is no (absolute) Morse index.

(3) The existence and uniqueness theorems for ordinary differential equations are usually not
applicable. The “flow equations” often become non-linear partial differential equations.

Instances of infinite dimensional Morse and Floer homology: Nevertheless, using
Morse and Floer theory as a guiding principles has led to many insights. We mention a few
examples.

(1) The theory of geodesics on a Riemannian manifolds can be based on the energy func-
tional

E(γ) =

∫
[

0, 1]|γ̇(t)|2dt (1.5.1)

defined on a suitable space of paths γ : [0, 1] → R. Pretending that E is a Morse
function led Bott to his proof of his famous periodicity theorem. This is treated in
detail in Milnor’s book “Morse theory” [Mil63].

(2) Another examples is the symplectic action functional

a(u) =

∫ 2

D

u∗ω (1.5.2)

where (M,ω) is a symplectic manifold, L,L′ ⊂M are Lagrangian subspaces, and u : D2 →M
is a map with u(0) ∈ L ∩ L′, thought of as a point in the universal cover of the space
of paths in M from L to L′ based at a point in L ∩ L′. Floer managed to define Floer
chain complexes generated by the intersection points, enabling him to solve the Arnold
conjecture. See [Flo89, Ch. 4] and the references therein.

(3) After his success with the Arnold conjecture, Floer applied has methods successfully to
the Chern–Simons functional

cs(A) =
1

8π2

∫
Y

tr(A ∧ dA+
2

3
A ∧A ∧A)

where A is a connection on a trivial SU2 bundle over a closed 4–manifold Y . Details
can be found in [Don02]
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(4) Finally, we mention the Chern–Simons–Dirac functional

L(a, ϕ) = 1

2
⟨a, ∗da⟩L2 +

1

2
⟨ϕ,DA⟩L2 +

1

2

〈
∗FAt

0
, a
〉
L2

for a pair of a spinor ϕ and a spinc connection A = A0 + a on a 3–manifold Y equipped
with a spinc structure. This is the basis of monopole Floer homology that we will discuss
in the remaining course.
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Chapter 2

The Seiberg–Witten Equations

Wemomentarily leave Floer homology behind and embark on a digression on Seiberg–Witten
theory. The Seiberg–Witten equations are a system of non-linear partial differential equations
defined on 4–dimensional manifolds that are equipped with a spinc structure. They take the
form

1

2
F+
At = ρ−1(ϕϕ∗)0 DAϕ = 0 (2.0.1)

where ϕ is a spinor and A is a spinc connection. These equations originally arose in physics
and were introduced to mathematics by Witten [Wit94]. However, they did have a mathe-
matical precursor in the Yang–Mills equations

F+
A =

1

2
(FA + ∗FA) = 0 (2.0.2)

for a connection A on a principal SU2 bundle over a 4-manifold which also originate from
physics. These equations were studied with spectacular success by Donaldson [Don83,DK90].
The ultimate goal of this course is to prove a generalization of the following result:

Theorem 2.1 (Donaldson [Don83]). Let X be a closed, oriented, topological 4–manifold with
definite intersection form QX . If X admits a smooth structure, then QX is diagonalizable
over the integers.

The power of this result becomes apparent in the light of another major theorem of
Freedman.

Theorem 2.2 (Freedman [Fre82]). Every unimodular symmetric bilinear form over Z arises
as the intersection form QX of a simply connected, oriented, topological 4–manifold X.
Moreover, all such X are classified up to orientation preserving homeomorphism by the
isometry class of QX and the Kirby–Siebenmann invariant ks(X) ∈ Z2.

A surprising offshoot of these results is the existence of an “exotic R4”, that is, a smooth
4–manifold that is homeomorphic but not diffeomorphic to R4. In other words, R4 supports
smooth structures that are not diffeomorphic to the standard one. In contrast, it was known
that the smooth structure on Rn for n ̸= 4 is unique up to diffeomorphism.

Theorem 2.3 (Taubes [Tau84]). There are uncountably many smooth 4–manifolds that are
homeomorphic but not diffeomorphic to R4.

The Seiberg–Witten equations are not particularly self-explanatory and it is our first
to learn how to read them correctly. We assume some previous exposure to Riemannian
geometry, the theory Clifford algebras, spin(c) structures, Dirac operators, etc. Our main
references are [LM89] and the first chapter of [KM07]. The eternally unpublished book
draft [Sal99] is also recommended.

26



2.1 Spinc structures and spinor bundles.

The first ingredient needed to write down the Seiberg–Witten equations is a spinc structure.
These can be described in many different ways and we choose the one that is most convenient
for our present purposes (c.f [KM07,Sal99]). We fix the following notation and conventions:

▶ All manifolds are assumed to be smooth, oriented, and carry Riemannian metrics.

▶ All vector bundles implicitly carry bundle metrics.

▶ M will denote an arbitrary manifold of dimension n.

▶ Y will always be 3–manifold, in later sections closed.

▶ X will always be a 4–manifold, later either closed or compact with ∂X = Y .

Without further ado, here is our working definition:

Definition 2.4 (Spinor bundles and spinc structures).
Let M be an oriented Riemannian n–manifold with n = 2k or 2k + 1.

(a) A (complex) spinor bundle on M is a pair (S, ρ) where S is a Hermitian vector bundle
of rank 2k together with a bundle map ρ : T ∗M → EndC(S) such that

ρ(a)2 = −|a|2 idE and ρ(a)∗ = −ρ(a) (2.1.1)

for all a ∈ T ∗M . In addition, if n = 2k + 1 is odd, we require that

ρ(e1) · · · ρ(en) = −ik+1 idS (2.1.2)

for every oriented orthonormal basis e1, . . . , en ∈ T ∗
xM , x ∈ M . The map ρ is called

Clifford multiplication and is usually dropped from the notation.

(b) An isomorphism of spinor bundle (S, ρ) and (S′, ρ′) is a unitary vector bundle isomor-

phism U : S
∼=−→ S′ which is Clifford linear in the sense that U ◦ ρ(a) = ρ′(a) ◦ U for

all a ∈ T ∗M .

(c) A spinc structure on M is an isomorphism class of spinor bundles. We write Spinc(M)
for the set of spinc structures.

We note that if e1, . . . , en ∈ T ∗
M is an orthonormal basis, then

ρ(ei)
2 = − idS and ρ(ei)ρ(ej) = −ρ(ej)ρ(ei) (i ̸= j). (2.1.3)

This follows from inserting ei and ei + ej into the first equation in (2.1.1).

Remark 2.5 (Relation to Clifford algebras). Those familiar with the theory of Clifford al-
gebras will realize that the first condition in (2.1.1) implies that ρ extends to a fiberwise
action of the complex Clifford algebra bundle Cl(M) on E. The dimension assumption
make the fibers Ex, x ∈ M , irreducible as a Cl(M)x–modules, and (2.1.2) fixes one of
the two isomorphism classes of irreducible Cl(M)x–modules. The relevant details are dis-
cussed in [LM89, Ch. I.1–5]. For those unfamiliar with Clifford algebras, it suffices to know
that Cl(M) is isomorphic as vector bundle to the complex exterior algebra

Λ∗
CM = Λ∗T ∗M ⊗ C. (2.1.4)

We can extend Clifford multiplication to a map

ρ : Λ∗
CM → EndC(E) (2.1.5)
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by requiring for α, β ∈ Λ∗
CM that

ρ(α ∧ β) = 1

2

(
ρ(α)ρ(β) + (−1)|α||β|ρ(β)ρ(α)

)
. (2.1.6)

The condition (2.1.2) for odd n = 2k + 1 then becomes ρ(volM ) = −ik+1 idS . In particular,
for n = 3 we get ρ(volM ) = idS which agrees with the conventions in [KM07, .] In even
dimensions n = 2k, a direct computation shows that ρ(volM )2 = (−1)k idS . We will get
back to this shortly. The following will frequently be useful. Lecture 8, 23.5.23

Lemma 2.6. Let (S, ρ) be a spinor bundle over M . If T ∈ Γ(EndC(S)) is Clifford linear,
then Tϕ = fϕ for some f ∈ C∞(M,C).

Proof. As noted, the fiber Sx over x ∈M is an irreducible module over the C–algebra Cl(T ∗
xM).

A version of Schur’s lemma states that every Cl(T ∗
xM)–linear endomorphism of Sx is given

by multiplication with a complex number.

Existence and classification of spinc strucutures. Assuming that one spinc structure
on M exists, the classification of all others is fairly easy.

Proposition 2.7 (Classification of spinc strucutres). Let (S, ρ) be a spinor bundle onM and
L a Hermitian line bundle. Then (S ⊗ L, ρ⊗ id) is also a spinor bundle. The construction
descends to free and transitive action of H2(M ;Z) on the Spinc(M)

Spinc(M)×H2(M ;Z)→ Spinc(M),
(
[S, ρ], c

)
7→ [S ⊗ L, ρ⊗ id]

where L is a Hermitian line bundle with c1(L) = c.

Proof. We sketch the proof and refer to [KM07, Prop. 1.1.1] for further details.

▶ The verification that (S ⊗ L, ρ⊗ id) is a spinor bundle is trivial.

▶ Conversely, if (S, ρ) and (S′, ρ′) are spinor bundles, one can show that

L = {T ∈ HomC(S, S
′) |Tρ(a) = ρ′(a)T for all a ∈ T ∗M}

is a rank 1 sub-bundle of HomC(S, S
′), henceforth referred to as the difference line bundle.

▶ It is easy to see that (S, ρ) and (S′, ρ′) are isomorphic iff the difference line bundle L is
trivial.

▶ Moreover, the difference line bundle of (S′, ρ′) and (S⊗L, ρ⊗ id) turns out to be L⊗L∗

which is canonically trivialized by the section corresponding to idL under the canonical
isomorphism EndC(L) ∼= L⊗ L∗.

▶ Lastly, it is well known that Hermitian line bundles form a group under the tensor product
which is isomorphic to H2(M ;Z) via c1.

The existence of spinc structures is more subtle. Here is the general result.

Proposition 2.8 (Existence of spinc structures, c.f. [LM89, Corollary D.5]). An oriented
Riemannian manifold M admits a spinc structure if and only if w2(M) ∈ H2(M ;Z2) is the
mod 2 reduction of a class in H2(X;Z).

Theorem 2.9 (Spinc structures in dimensions ≤ 4). All oriented Riemannian manifolds of
dimension ≤ 4 admit spinc structures.

Proof. ▶ If n ≤ 1 or n = 2 and M is non-compact or ∂M ̸= ∅, we have H2(M ;Z2) = 0 and
the condition on w2(M) in Proposition 2.8 is trivially satisfied.
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▶ For n = 2 and M closed, the reduction map H2(X;Z)→ H2(X;Z2) is surjective by the
Bockstein sequence (see [Hat02, Ch. 3E]).

▶ For n = 3 it is known that every oriented 3–manifold is parallelizable, that is, TM is
trivial so that w2(M) = 0. This interesting fact can be proved using obstruction theory
and the fact that M has the homotopy type of a CW complex of dimension ≤ 3.

▶ For n = 4 the condition on w2(M) can be verified using the Bockstein sequence, the
universal coefficient theorem, the Wu formula, and some general facts about Abelian
groups (see [GS99, Proposition 5.7.4 and Remark 5.7.5]).

The chiral splitting in even dimensions. Now suppose that M has even dimen-
sion n = 2k. We have already noted that ρ(volM )2 = (−1)k idS . In order to deal with
the sign on the right hand side, it is convenient to introduce the chirality operator

αM = ρ(ik volM ) = ikρ(e1) · · · ρ(en). (2.1.7)

Again by direct computations one can easily verify the following properties:

Lemma 2.10. For n = 2k even, the chirality operator αM satisfies

α2
M = idS and α∗

M = αM . (2.1.8)

Moreover, for all a ∈ T ∗M we have

αMρ(a) = −ρ(a)αM . (2.1.9)

As a consequence of (2.1.8), we get a decomposition of S into ±1 eigenbundles of αM

S = S+ ⊕ S−, S± = ker(αM ∓ idS) = (idS ±αM )S (2.1.10)

and (2.1.9) shows that Clifford multiplication with 0 ̸= a ∈ T ∗
xM gives an isomorphism

ρ(a) : S±
x

∼=−→ S∓
x . (2.1.11)

In particular, S+ and S− have the same rank 2k−1. Note that the isomorphisms in (2.1.11)
are only defined in a single fiber. In fact, the bundles S+ and S− are generally not iso-
morphic. Generally, if ω ∈ Λev

C M is a form of even degree, then ρ(ω)S± ⊂ S± while
for ω ∈ Λodd

C M we have ρ(ω)S± ⊂ S∓.

Spinc strucutues via principal bundles. Another common description of spinc struc-
ture uses principal Spinc bundles. As indicated in Remark 2.5, the Clifford algebra Cln
of Rn has a unique irreducible complex representation (up to isomorphism) for which the
obvious analogue of (2.1.2) is satisfied. The dimension of any such representation ∆n can be
computed as 2k where n = 2k or 2k+1. Inside Cln we find the multiplicative subgroup Spincn
which is generated by products z(v · w) with v, w ∈ Rn and z ∈ C with |v| = |w| = |z| = 1.
The group Spincn has an obvious representation on ∆n and a more subtle one on Rn. We
denote these representations by

σ : Spincn → EndC(∆n) and α : Spincn → SOn. (2.1.12)

Definition 2.11. A principal spinc structure on M as a pair (P, τ) consisting of

� a principal Spincn–bundle P , and

� an isomorphism τ : P ×α Rn ∼= T ∗M that preserves metrics and orientations.
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An isomorphism of principal spinc structures (P, τ) and (P ′, τ ′) is a Spincn–equivariant dif-

feomorphism φ : P
∼=−→ P ′ such that τ ′ ◦ (φ×α idRn) = τ .

From a principal spinc structure (P, τ) we obtain a spinor bundle in the sense of Defi-
nition 2.4 by S = P ×σ ∆n with Clifford multiplication induced by the Cln–action on ∆n.
Isomorphic choices of (P, τ) and ∆n give isomorphic results for (S, ρ).

Conversely, given a spinor bundle (S, ρ) we can construct a principal Spincn–bundle P

as the set of pairs (u, v) consisting of isomorphisms u : Rn
∼=−→ T ∗

xM and v : ∆n

∼=−→ Sx
with x ∈ X, preserving all orientations and inner products, such that the following diagram
commutes:

Rn ⊗∆n ∆n

T ∗
xM ⊗ Sx Sx.

u⊗v ∼=

ρn

v∼=
ρ

A right action of Spincn on P is given by (u, v)a =
(
u◦α(a), v◦σ(a)

)
and there is a canonical

topology that makes P a principal Spincn bundle over M . Moreover, we have canonical
isomorphisms

τ : P ×α Rn
∼=−→ T ∗M, [u, v; a] 7→ u(a), (2.1.13)

φ : P ×σ ∆n

∼=−→ S, [u, v;ϕ] 7→ v(ϕ). (2.1.14)

Again, changing (S, ρ) up to isomorphism gives isomorphic (P, τ). Everything is set up
such that the two constructions are mutually inverse up to isomorphism. We can thus
equivalently think of spinc structures as isomorphism classes of spinor bundles or principal
spinc structures.

Models in dimensions 3 and 4. First, suppose that (S, ρ) is a spinor bundle over
a 3–manifold Y . In this case, S has complex rank 2. Given an oriented orthonormal
basis e1, e2, e3 ∈ T ∗

y Y at a point y ∈ Y one can find an orthonormal basis of the corresponding
fiber Sy such that Clifford multiplication is represented by the matrices ρ(ej) = σj where

σ1 =

(
i 0
0 −i

)
, σ2 =

(
0 −1
1 0

)
, σ2 =

(
0 i
i 0

)
. (2.1.15)

Note that these form of basis for the real vector space su2 of trace-free, skew-adjoint complex
2-by-2 matrices; this is the Lie algebra of the special unitary group SU2.

Now let (S, ρ) be a spinor bundle over a 4–manifold X. Then S has rank 4 while S±

each have rank 2. If e0, e1, e2, e3 ∈ T ∗
xX is an oriented orthonormal basis, we can find an

orthonormal basis for S such that

ρ(e0) =

(
0 −I2
I2 0

)
and ρ(ej) =

(
0 σi
σi 0

)
(j = 1, 2, 3). (2.1.16)

where I2 is the 2-by-2 identity matrix. Again, these matrices are trace-free.

The determinant line bundle. Let s be a spinc structure on M represented by a spinor
bundle (S, ρ). There is a canonical line bundle associated to this data which is known as the
determinant line bundle and denoted by det(S). Since we are only interested in dimensions 3
and 4, we can get away with the following ad hoc definition:

det(S) =

{
Λ2
CS, n = 3

Λ2
CS

+, n = 4
(2.1.17)
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In general, the most common construction of det(S) involves the principal spinc structure
derived from (S, ρ) and the group homomorphism

δ : Spincn → U1, δ(z · v1 · · · vk) = z2. (2.1.18)

If Pρ is the principal Spincn–bundle derived from (S,E), we can define

det(S) = Pρ ×δ C. (2.1.19)

The reason for the name is that there is another group homomorphism λ : Un → Spinc2n such

that the composition Un
λ−→ Spinc2n

δ−→ U1 is the complex determinant map.

Proposition 2.12. (i) Every almost complex manifold (M,J) has a canonical spinc struc-
ture sJ and det(sJ) ∼= Λtop

C TM .

(ii) The first Chern class c1(s) = c1(det(s)) ∈ H2(M ;Z) reduced mod 2 to the Stiefel–
Whitney class w2(M) ∈ H2(M ;Z2).

(iii) For n = 3 or 4 we have c1(s) = c1(S) and c1(s) = c1(S
+), respectively.

2.2 The quadratic term
Lecture 9, 6.6.23

We are still in the process of learning to read the Seiberg–Witten equations on a 4–manifoldX:

1

2
F+
At = ρ−1(ϕϕ∗)0 D+

Aϕ = 0.

At this point, we can understand two symbols ρ and ϕ:

▶ ρ is the Clifford multiplication on some spinor bundle (S, ρ), and

▶ ϕ ∈ Γ(S+) is a section of the positive spinor bundle.

We next tackle the combined expression ρ−1(ϕϕ∗)0 which is called the quadratic term in the
Seiberg–Witten equations. It helps to put this into a broader context.

Splitting complex endomorphism bundles. Let E be a complex vector bundle overM
of rank r. We can decompose the endomorphism bundle as

EndC(E) = C idE ⊕su(E)⊕ isu(E) (2.2.1)

where su(E) (resp. isu(E)) denotes the fiberwise trace-free and skew-adjoint (resp. self-
adjoint) endomorphisms. The projections onto the summands can be described explicitly as
follows. We first introduce the trace-less part of A ∈ EndC(E)

A0 = A− 1

r
trC(A) idE (2.2.2)

whose name is justified by trC(A0) = 0 which follows from trC idE = r. We can then write

A =
1

r
trC(A) idE︸ ︷︷ ︸
∈C idE

+
1

2
(A0 −A∗

0)︸ ︷︷ ︸
∈su(E)

+
1

2
(A0 +A∗

0)︸ ︷︷ ︸
∈isu(E)

. (2.2.3)
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From spinors to endomorphisms. Now let (S, ρ) be a spinor bundle over M . Given
spinors ϕ, ψ ∈ Γ(S) we can form an endomorphism

ψϕ∗ ∈ Γ(EndC(S)), ψϕ∗(κ) = ⟨ϕ, κ⟩ϕ.

Our convention is that Hermitian scalar products are complex linear in the second entry
and conjugate linear in the first.

Lemma 2.13. Let (S, ρ) be a spinor bundle over M . The map

Γ(S)× Γ(S)→ Γ(EndC(S)), (ψ, ϕ)→ ψϕ∗

is complex linear in ϕ and complex anti-linear in ψ. Moreover, we have

(ψϕ∗)∗ = ϕψ∗ and trC(ψϕ
∗) = ⟨ϕ, ψ⟩ .

In particular, ϕϕ∗ is self-adjoint for every ϕ ∈ Γ(S).

Proof. The linearity properties are obvious. The trace can be computed as

trC(ϕψ
∗) =

∑
i

⟨si, ϕψ∗(si)⟩ =
∑
i

⟨⟨si, ψ⟩ si, ϕ⟩ = ⟨ψ, ϕ⟩ .

where si is a local frame of S. The adjoint is identified as follows:

⟨si, ϕψ∗(sj)⟩ = ⟨si, ⟨ψ, sj⟩ϕ⟩ = ⟨⟨ϕsi⟩ψ, sj⟩ = ⟨ψϕ∗(si), sj⟩ .

From endomorphisms to forms. We can now parse the expression (ϕϕ∗)0 ∈ su(S) and
it remains to understand how to apply ρ−1 to (ϕϕ∗)0. To that end, we have the following
general statement:

Proposition 2.14. Let (S, ρ) be a spinor bundle over a manifold M .

(i) The map ρ : Λ∗
CM → EndC(S) is surjective and gives isomorphisms

ρ : Λ∗
CM → EndC(S) for n even, and

ρ : Λ≤k
C M → EndC(S) for n = 2k + 1 odd.

(ii) For ω ∈ ΛkCM we have ρ(ω)∗ = (−1)
k(k+1)

2 ρ(ω̄).

Proof. The surjectivity of ρ as well as the injectivity for n even follow from the isomor-
phism Λ∗

CM
∼= Cl(M) and the classification of Clifford algebras and their irreducible modules

(c.f. [LM89, Chs. I.4&5]).
The formula in (ii) can be proved pointwise using an orthonormal basis e1, . . . , en ∈ T ∗

xM .
For eI = ei1 ∧ · · · ∧ eik we find

ρ(eI)
∗ = ρ(ei1 ∧ · · · ∧ eik)∗

=
(
ρ(ei1) · · · ρ(eik)

)∗
= (−1)kρ(eik) · · · ρ(ei1)
= (−1)k(−1)k(k−1)/2ρ(ei1) · · · ρ(eik)
= (−1)k(k+1)/2ρ(eI)

Lastly, for n = 2k+1 we know that ρ(eI)ρ(∗eI) = ρ(vol) = ik+1 and ρ(eI)
2 = (−1)k(k−1)/2.

It follows that for ω ∈ ΛpCM

ρ(∗ω) = im(p)ρ(ω) (2.2.4)

for some integer m(k, p) determined by k and p. This together with the classification theo-
rems for Clifford algebras give the remaining isomorphism in (i).
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For n = 3 we can draw the following conclusion:

Corollary 2.15. If (S, ρ) is a spinor bundle over a 3–manifold Y , then Clifford multiplica-
tion gives rise to isomorphisms

ρ : T ∗Y
∼=−→ su(S) and ρ : iT ∗Y

∼=−→ isu(S). (2.2.5)

In particular, for every ϕ ∈ Γ(S) we obtain an imaginary valued 1–form

ρ−1(ϕϕ∗)0 ∈ iΩ1(Y ). (2.2.6)

Proof. Exercise.

If n = 2k is even, the chiral splitting S = S+ ⊕ S− gives another decomposition

EndC(S) ∼= EndC(S
+)⊕ EndC(S

−)⊕HomC(S
+, S−)⊕HomC(S

−, S+). (2.2.7)

For ϕ ∈ Γ(S+) we can consider ϕϕ∗ as an element of EndC(S
+) and by Lemma 2.13 we find

(ϕϕ∗)0 = ϕϕ∗ − |ϕ|2

rk(S+)
idS+ = ϕϕ∗ − |ϕ|

2

2k−1
idS+ ∈ isu(S+)

Lastly, for n = 4 the Hodge operator gives a self-adjoint map ∗ : Λ2M → Λ2M with ∗2 = 1.
This gives a splitting

Λ2M = Λ2
+M ⊕ Λ2

−M, Λ2
±M = ker(∗ ∓ id)

into self-dual and anti-self-dual 2–forms.

Corollary 2.16. If (S, ρ) is a spinor bundle over a 4–manifold X, then Clifford multipli-
cation gives rise to isomorphisms

ρ : Λ2
±X

∼=−→ su(S±) and ρ : iΛ2
±X

∼=−→ isu(S±). (2.2.8)

In particular, for ϕ ∈ Γ(S+) we obtain a self-dual imaginary valued 2–form

ρ−1(ϕϕ∗)0 ∈ iΩ2
+(M).

Proof. Exercise.

2.3 Spinc connections and Dirac operators

Here are the Seiberg–Witten equations once more:

1

2
F+
At = ρ−1(ϕϕ∗)0 D+

Aϕ = 0.

Having completely understood the quadratic term ρ−1(ϕϕ∗)0, we now tackle the symbols
involving A. Most of these make sense in a more general context:

▶ A, At, FA, and DA are defined for arbitrary spinc manifolds.

▶ D+
A makes sense in all even dimensions.

▶ F+
At is special to 4–manifolds (essentially, because n− 2 = 2 implies n = 4).
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2.3.1 Spinc connections

Let (S, ρ) be a spinor bundle on M . We denote connections on S by A and think of them
in terms of the covariant derivative ∇A : Γ(S) → Γ(T ∗M ⊗ S). We implicitly require all
connections to be Hermitian, that is, we have

d ⟨ϕ, ψ⟩ =
〈
∇Aϕ, ψ

〉
+

〈
ϕ,∇Aψ

〉
(ϕ, ψ ∈ Γ(S)). (2.3.1)

Recall that the difference of two Hermitian connections is a 1–form with values in the vector
bundle u(S) of skew-adjoint endomorphisms of S.

Definition 2.17. A connection A on S is called a spinc connection (or Clifford connection)
if it is compatible with the Clifford multiplication in the sense that

∇A(ρ(a)ϕ) = ρ(a)∇Aϕ+ ρ(∇LCa)ϕ (2.3.2)

for all ϕ ∈ Γ(S) and a ∈ Ω1(X). The superscript in ∇LC indicates the Levi–Civita connec-
tion on T ∗M . We write A(S) for the set of spinc connections of S.

Lemma 2.18. A(S) is an affine space modeled on the real vector space iΩ1(M). More
precisely:

(i) For A ∈ A(S) and a ∈ iΩ1(M) we obtain A+ a ∈ A(S) defined by

∇A+aϕ = ∇Aϕ+ a⊗ ϕ. (2.3.3)

(ii) If we fix one spinc connection A0 ∈ A(S), then we have A = A0 + a for a uniquely
determined a ∈ iΩ1(M).

Proof. In order to prove (i) we have to verify (2.3.2) for ∇A+a. Let v ∈ TX.

∇A+a
v (ρ(α)ϕ) = ∇Av (ρ(α)ϕ) + a(v)ρ(α)ϕ

= ρ(α)∇Av ϕ+ ρ(∇LCv α)ϕ+ a(v)ρ(α)ϕ

= ρ(α)∇Av ϕ+ ρ(∇LCv α)ϕ+ ρ(α)a(v)ϕ

= ρ(α)(∇Av ϕ+ a(v)ϕ) + ρ(∇LCv α)ϕ

= ρ(α)∇A+a
v ϕ+ ρ(∇LCv α)ϕ

Now, given arbitrary A0, A ∈ A(S), we from the general theory of Hermitian connections
that A = A0 + ã for a unique 1–form ã ∈ Ω1(M ; u(S)). The condition (2.3.2) implies
that ã is pointwise Clifford linear and thus given by multiplication with a complex number
by Lemma 2.6. Since a is pointwise skew-adjoint, that complex number must be purely
imaginary. It follows that ã = a⊗ idS with a ∈ iΩ1(M).

Remark 2.19. We have allowed ourselves a small abuse of notation. Strictly speaking, one
should write A = A0+a⊗ idS to emphasize the u(S)–valued nature of the 1–form measuring
the difference between A and A0.

The following is an easy consequence of (2.3.2).

Lemma 2.20. If n = dim(M) = 2k is even, then ∇A preserves the splitting S = S+ ⊕ S−

and thus induces connections on S±.

Recall from (2.1.19) and (2.1.17) that (S, ρ) has an associated determinant line bun-
dle det(S) which takes the following form in dimensions 3 and 4:

det(S) =

{
Λ2
CS, n = 3

Λ2
CS

+, n = 4

This explains the symbol At in the Seiberg–Witten equations.

Definition 2.21. Given A ∈ A(S) we write At for the induced connection on det(S).
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2.3.2 Curvature

Let us momentarily think of Γ(S) and Γ(T ∗M ⊗ S) as the spaces of 0– and 1–forms on M
with values in S. Combining A ∈ A(S) with the Levi–Civita connection on T ∗M we can
extent ∇A to maps

dA : Ωk(M ;S)→ Ωk+1(M ;S) (2.3.4)

where Ωk(M ;S) = Γ(ΛkT ∗M ⊗ S). This gives a sequence

Ω0(M ;S)
dA−−→ Ω1(M ;S)

dA−−→ Ω2(M ;S)
dA−−→ · · · (2.3.5)

which resembles the de Rham complex. However, we will typically have (dA)2 ̸= 0. The
failure of (2.3.5) to be a complex is measured by the curvature of A which is a 2–form

FA ∈ Ω2(M ; u(S)) (2.3.6)

which is determined by the equation

((dA)2ϕ)(v, w) = FA(v, w)ϕ ∈ Γ(S) (2.3.7)

where ϕ ∈ Γ(S) and v, w ∈ Γ(TM).
The interaction of curvature and the affine structure of A(S) is easily understood.

If A = A0 + a with A0 ∈ A(S) fixed and a ∈ iΩ1(M), standard arguments with connections
show that

FA = FA0 + da⊗ idS ∈ Ω2(M ; u(S)). (2.3.8)

One can also compare the induced connections on det(S). Since the endomorphisms bun-
dles of line bundles are canonically trivialized by the identity map, we have a canonical
isomorphism

u(det(S)) ∼=M × u1 ∼=M × iR. (2.3.9)

In particular, we can consider the curvature forms of At and At0 as imaginary valued 2–forms
via the resulting isomorphisms

FAt , FAt
0
∈ Ω2(M ; u(det(S))) ∼= Ω2(M ; iR) ∼= iΩ2(M). (2.3.10)

Combining (2.3.8) with the explicit description of det(S) for n = 3 or 4, we arrive at the
following conclusion.

Lemma 2.22. Let n = dim(M) = 3 or 4. Using the identifications in (2.3.10) we have

FAt = FAt
0
+ 2da ∈ iΩ2(M) (2.3.11)

The factor of 2 is caused by the second exterior powers in (2.1.17) which, in turn, appear
because S for n = 3 and S+ for n = 4 have rank 2. There is a more general formula which
takes the form FAt = FAt

0
+ cn da where cn is a constant depending on n, but the precise

value of cn shall not concern outside dimensions 3 and 4.
Lastly, if dim(X) = 4, we can form the self-dual part of FAt and note that

F+
At =

1

2

(
FAt + ∗FAt

)
= F+

At
0
+ 2d+a ∈ iΩ2

+(X) (2.3.12)

where d+ = 1
2 (d+ ∗d) : Ω

1(X)→ Ω2
+(X).

Remembering Corollary 2.16, we find that ρ(F+
At) is a self-adjoint endomorphism of S+.

At this point, we have finally managed to decode the equation FAt = ρ−1(ϕϕ)0 which couples
a spinc connection A(S) to a positive spinor ϕ ∈ Γ(S+).
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2.3.3 Dirac operators

It remains to decipher the equation D+
Aϕ = 0. The last missing piece of the puzzle are the

Dirac operators associated to spinc connections. Again, these are defined for arbitrary spinc

manifolds.

Definition 2.23. Let (S, ρ) be a spinor bundle over M . Every spinc connection A ∈ A(S)
has an associated (full) Dirac operator which is defined as the composition

DA : Γ(S)
∇A

−−→ Γ(T ∗M ⊗ S) ρ−→ Γ(S). (2.3.13)

If n = dim(M) = 2k is even, DA restricts to the chiral Dirac operators

D±
A : Γ(S±)→ Γ(S∓). (2.3.14)

We can also express DA in terms of a local frame e1, . . . , en for TM by the formula

DA(ϕ)(x) =

n∑
i=1

ρ(e♭i)∇Aeiϕ(x) (2.3.15)

where e♭i = ⟨ei, · · ·⟩ is the dual frame for T ∗M ; the same formula holds forD±
Aϕ with ϕ ∈ Γ(S±).

We can now read the Seiberg–Witten equations. In order to study them further, we will
need to know some properties of DA.

Lemma 2.24. Let A ∈ A(S) be a spinc connection.

(i) For ϕ ∈ Γ(S) and f ∈ C∞(M ;C) we have DA(fϕ) = fDAϕ+ ρ(df)ϕ.

(ii) If A = A0 + a with a ∈ iΩ1(M), then DAϕ = DA0
+ ρ(a)ϕ.

(iii) For ϕ, ψ ∈ Γ(S) we have ⟨ϕ,DAψ⟩ − ⟨DAϕ, ψ⟩ = d∗
〈
ρ(·)♭ϕ, ψ

〉
C where d∗ is the codif-

ferential.

Proof. The proofs of (i) and (ii) are straight forward from the definitions. For (iii) we use
(2.3.15) and compute

⟨ϕ,DAψ⟩ − ⟨DAϕ, ψ⟩ =
∑
i

(〈
ϕ, ρ(e♭i)∇Aeiψ

〉
−

〈
ρ(e♭i)∇Aeiϕ, ψ

〉)
= · · ·

· · · = −
∑
i

ei⌞∇Aei
〈
ρ(·)♭ϕ, ψ

〉
= d∗

〈
ρ(·)♭ϕ, ψ

〉
.

Corollary 2.25. The Dirac operator DA is a first order elliptic differential operator.

Proof. It is clear that DA is a first order differential operator. Its principal symbol σDA
can

thus be computed using Lemma 2.24(i) as

σDA
(df)ϕ = i(D(fϕ)− fD(ϕ)) = iρ(df)ϕ. (2.3.16)

where f ∈ C∞(M ;C) and ϕ ∈ Γ(S). We conclude that σDA
= iρ : T ∗M → EndC(S). The

ellipticity of DA follows, since µ(a) is invertible for 0 ̸= a ∈ T ∗M .

Corollary 2.26. If M is closed, then DA is (formally) self-adjoint with respect to the
L2 inner product on Γ(S). If n = dim(M) = 2k is even, then (D+

A)
∗ = D−

A .

Proof. According to Lemma 2.24(iii) we have∫
D

⟨DAϕ, ψ⟩C − ⟨ϕ,DAψ⟩ volM = · · · =
∫
M

d∗
〈
ρ(·)♭ϕ, ψ

〉
C
volM . (2.3.17)

The integral on the right hand side vanishes. More generally, for all a ∈ Ω1(M ;C) we
have

∫
M
d∗a volM = 0. This proves the self-adjointness of DA which immediately im-

plies (D+
A)

∗ = D−
A .
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It is a general fact that elliptic differential operators on closed manifolds are Fredholm
operators, which means that they have finite dimensional kernels and cokernels. The dif-
ference of dimensions is called the index. In the case of the full Dirac operators DA, the
self-adjointness implies

ind(DA) = dimker(DA)− dim coker(DA)︸ ︷︷ ︸
∼=ker(D∗

A)

= 0

However, for n = 2k even the chiral Dirac operator D+
A typically has non-zero index. Spe-

cializing to n = 4, the Atiyah–Singer index theorem gives the following topological formula
(c.f. [LM89, Theorems III.13.8 and D.15]).

Theorem 2.27 (Atiyah–Singer). Let (S, ρ) be a spinor bundle over a closed, oriented 4–
manifold X. Then D+

A : Γ(S+)→ Γ(S−) is a Fredholm operator with index

ind(D+
A) =

1

8

(
c21(S

+)[X]− σ(X)
)
. (2.3.18)

2.4 The Seiberg–Witten equations on 4–manifolds
Lecture 10, 13.6.23

Let us now focus our attention to a 4–manifold X. In addition to the standing assumptions,
we take X to be closed and connected and fix a spinc structure s = [S, ρ] on X, whose
existence is guaranteed by Proposition 2.8. In our framework, the spinc structure is realized
by a spinor bundle (S, ρ). For brevity, we henceforth write

q(ϕ) = ρ−1(ϕϕ∗)0 and q(ϕ, ψ) = ρ−1(ψϕ∗)0. (2.4.1)

We set out to study the Seiberg–Witten equations1 for pairs (A, ϕ) consisting of a spinc

connection A ∈ A(S) and a positive spinor ϕ ∈ Γ(S+)

1
2F

+
At = q(ϕ) D+

Aϕ = 0. (2.4.2)

We refer to 1
2F

+
At = ρ−1(ϕϕ∗)0 as the monopole equation, and to D+

Aϕ = 0 as the Dirac
equation. The pair (A, ϕ) is called a (Seiberg–Witten) configuration. Solutions (A, ϕ) of
(2.4.2) are called monopoles.

2.4.1 The monopole maps

As topologists, we like to think of spaces of solutions to an equations as zero sets of maps.
This leads us to consider the Seiberg–Witten map (or monopole map)

F : A(S)× Γ(S+)→ iΩ2
+(X)⊕ Γ(S−)

F(A, ϕ) =
(
1
2F

+
At − q(ϕ), D+

Aϕ
)
.

(2.4.3)

By fixing a spinc connection A0 ∈ A(S) for reference, we can use the affine structure of A(S)
to convert F into a map of vector spaces

F0 : iΩ
1(X)⊕ Γ(S+)→ iΩ2

+(X)⊕ Γ(S−)

F0(a, ϕ) =
(
d+a− q(ϕ) + 1

2F
+
0 , D

+ϕ+ ρ(a)ϕ
)
= F(A0 + a, ϕ).

(2.4.4)

where we have used the abbreviations F0 = FAt
0
and D = DA0 and Lemmas 2.22 and 2.24(ii)

to rewrite F(A0+a)t and DA0+a. We call F0 as the based monopole map at A0 ∈ A(S).
1The factor 1

2
in the monopole equation was originally missing in the previous lectures. It has been added

to stay compatible with the conventions in [KM07].
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Whether one works with F or F0 is largely a matter of taste. The benefit of working
with F0 is the linear structure of the source, which comes at the price of having to make
a non-canonical choice of A0. We usually prefer to work with F0, since it makes analytical
features more transparent.

For brevity, we denote the sources and targets of F and F0 by

C(X, s) := A(S)× Γ(S+)

iΩ2
+(X)⊕ Γ(S−) =: D(X, s)

C0(X, s) := iΩ1(X)⊕ Γ(S+)

F

F0

(2.4.5)

The description of F0(a, ϕ) makes it clear that F0 can be written as a sum F0 = L+Q of a
linear operator L and a quadratic map Q. More precisely,

F0(a, ϕ) =
(
d+a,D+ϕ

)︸ ︷︷ ︸
=:L(a,ϕ)

+
(
1
2F

+
0 − q(ϕ), ρ(a)ϕ

)︸ ︷︷ ︸
=:Q(a,ϕ)

. (2.4.6)

Some important structural features of F0 are apparent:

(1) The source and target of F0 are the sections of mixed vector bundles iT ∗X ⊕ S+

and iΛ2
+X ⊕ S− which each have a real and a complex summand.

(2) L is an R–linear first order differential operator.

(3) The second component D+ of L(a, ϕ) is C–linear and elliptic.

(4) The first component d+ of L(a, ϕ) is not elliptic! We’ll get back to this point.

(5) The second component of Q(a, ϕ) is bilinear in (a, ϕ).

(6) The first component of Q(a, ϕ) is affine quadratic in ϕ, that is, it is the sum of a constant
term 1

2F
+
0 and a quadratic term satisfying −q(λϕ) = −|λ|2q(ϕ).

Since F0 is clearly non-linear, the zero set F−1
0 (0) is has no reason to be a linear space.

However, F0 is clearly a smooth map in a suitable sense and we might hope to exhibit F−1
0 (q)

as a type of manifold, at least if q ∈ D is a regular value of sorts. If we were really lucky,
we could derive some non-trivial information from F0(q) which does not depend on the
particular choice of q – much like the (mod 2) degree of a smooth map f : Sn → Sn can be
computed by counting points in f−1(q) for any regular value q ∈ Sn.

Unfortunately, the infinite dimensional nature of the situation makes this a bit cumber-
some. The problem is that spaces of smooth sections with their C∞ topology are Fréchet
spaces, a class of topological vector spaces that is strictly larger than Banach spaces, for
which most of the analysis known from the finite dimensional context breaks down. For
instance, the inverse function theorem (invertible derivative implies local diffeomorphism)
is no longer available in its usual form, neither is the regular value theorem, nor are the
existence and uniqueness theorem for ordinary differential equations.

However, this does not make analysis Fréchet spaces entirely impossible. There are
weaker versions of the inverse function theorem in Fréchet spaces which can be used to prove
interesting things such as the Nash–Moser embedding theorem. Hamilton’s article [Ham82]
is a good reference for these things. But it turns out that there is another way out for us.

2.4.2 A glimpse at the functional analytic setup

A common way out of the problems is to work with L2 Sobolev spaces, a class of Hilbert
spaces which Interacts particularly well with elliptic operators.
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Sobolev spaces. To keep things simple, we take M to be closed and oriented. If E →M
is any real or complex vector bundle equipped with a bundle metric, then we have a real
L2–inner product

(ϕ, ψ) =

∫
M

Re ⟨ϕ, ϕ⟩ volM (ϕ, ψ ∈ Γ(E))

where the real part is obvious irrelevant in the real case. In the complex case, we write
(ϕ, ψ)C =

∫
M
⟨ϕ, ϕ⟩ volM for the Hermitian inner product. The L2 norm is defined by

∥ϕ∥20 = (ϕ, ϕ) =

∫
M

|ϕ|2 volM

Note the use of different brackets to distinguish L2 and point-wise inner products and norms.
If ∇ is any connection on E, we define the Sobolev norms

∥ϕ∥2k =

k∑
i=0

∥∥∇kϕ∥∥2
0

(2.4.7)

The completion of Γ(E) with respect to ∥ ∥k is the Sobolev space L2
k(E). The Sobolev

spaces are Banach spaces, in fact, they are Hilbert spaces. It is well known from the
theory of partial differential equations, that they are particularly well-suited to study elliptic
differential operators.

Sobolev completion. Now let (S, ρ) be a spinor bundle over a closed, oriented 4–manifoldX
representing s ∈ Spinc(X). We fix a (smooth) spinc connection A0 ∈ A(S) and an inte-
ger k ≥ 3. Recall that C0(X, s) and D(X, s) are spaces of sections of vector bundles. We
consider their Sobolev completions

C(k)0 (X, s) = L2
k(iT

∗X ⊕ S+)

D(k)(X, s) = L2
k(iΛ

2
+X ⊕ S−)

(2.4.8)

Proposition 2.28. For k ≥ 3, the based monopole map extends to a continuous map

F0 : C(k+1)
0 (X, s)→ D(k)(X, s). (2.4.9)

This is a smooth map of Hilbert spaces. The derivative at (a, ϕ) ∈ C(k+1)
0 (X, s) is given by

dF0(a, ϕ) : C(k+1)
0 (X, s)→ D(k)(X, s)

dF0(a, ϕ)(b, ψ) =
(
d+b,D+ψ

)
+

(
− q(ϕ, ψ)− q(ψ, ϕ), ρ(a)ψ + ρ(b)ϕ

) (2.4.10)

Proof. The continuous extension is provided by the mapping properties of differential oper-
ators on Sobolev spaces and the Sobolev multiplication theorem. By continuity, it suffices
to compute dF(a, ϕ)(b, ψ) for smooth configurations. Recall that F0 = L + Q. The linear
part L does not cause any trouble and we get

dF0(a, ϕ)(b, ψ) =
d
dt

∣∣
t=0

F0(a+ tb, ϕ+ tψ) = L(b, ψ) + dQ(a, ϕ)(b, ψ) (2.4.11)

For the quadratic part, we find

dQ(a, ϕ)(b, ψ) = d
dt

∣∣
t=0

(
1
2F

+
0 − q(ϕ+ tψ, ϕ+ tψ), ρ(a+ tb)(ϕ+ tψ)

)
=

(
q(ϕ, ψ)− q(ψ, ϕ), ρ(a)ψ + ρ(b)ϕ

)
.

Note that dF0(a, ϕ) = L + dQ(a, ϕ) is a linear first order differential operator with the
same principal symbol as L (since dQ(a, ϕ) has order zero).
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Hilbert manifolds and Fredholm maps. Passing to L2 Sobolev completions makes
puts us into an analytic setting that is a close to the finite dimensional situation as possible.
We briefly review the definitions and theorems that are most relevant to Seiberg–Witten
theory.

Definition 2.29 (Hilbert manifolds). A Hilbert manifoldM is a second countable Hausdorff
space which is locally homeomorphic to open subsets of a separable Hilbert space.

Since all separable Hilbert spaces of infinite dimensions are isomorphic, the definition
is unambigious. Moreover, the basic theorem of calculus work in Hilbert spaces and we
can define smooth structures and smooth maps as in the finite dimensional setting. As in
finite dimensions, we assume that all Hilbert manifolds implicitly carry a smooth structure.
Tangent spaces and tangent bundles can be defined either in terms of charts or using (germs
of) smooth curves. Each tangent spaces is isomorphic to the model Hilbert space, but not
canonically so.

Definition 2.30 (Fredholm maps). A smooth map F :M→N between Hilbert manifolds
is called a Fredholm map if its derivative

dF(p) : TpM→ TF(p)N (2.4.12)

is a Fredholm operator for each p ∈M, that is, dF(p) has closed range and finite dimensional
kernel and cokernel.

Critical points and regular values are defined just as in finite dimensions. We have the
following version of the regular value theorem.

Theorem 2.31 (Regular value theorem). Let F :M → N be a smooth map between con-
nected Hilbert manifolds. If q ∈ N is a regular value, then F−1(q) is a smooth Hilbert
submanifold ofM. Its tangent spaces are canonically identified as

TpF−1(q) ∼= ker dF(p), p ∈ F−1(q).

If F is a Fredholm map, then F−1(q) has finite dimension

dimF−1(q) = indR dF(p). (2.4.13)

For Fredholm maps, there is also a version of Sard’s theorem. Recall that a Baire set is
a set that can be written as the countable intersection of dense open subsets. It is known
that every Hilbert manifold has the Baire property that every Baire set is dense.

Theorem 2.32 (Sard–Smale theorem). Let F :M→N be a Fredholm map between Hilbert
manifolds. Then the set of regular values is a Baire set and, in particular, dense in N .

2.4.3 The gauge group action

The Seiberg–Witten equations have a large symmetry group. This is feature, not a bug, and
will eventually lead us back to a T–equivariant topology.

The gauge group. For the moment, we consider a spinor bundle (S, ρ) over a general
n–manifold M again. The natural symmetry group of (S, ρ) is the multiplicative sub-group

Uρ(S) = {U : S → S |U is unitary and Clifford linear} ⊂ Γ(EndC(S)). (2.4.14)

As it turns out, Uρ(S) is independent of (S, ρ). Indeed, we know from Lemma 2.6 that
every Clifford linear U ∈ EndC(S) is given by multiplication with a complex valued func-
tion u : M → C, and if U is also unitary, we must have u : M → T. We can therefore
identify Uρ(S) with the group

G(M) = C∞(M,T). (2.4.15)

40



We refer to G(M) as the gauge group of M . The point-wise multiplication and inversion are
continuous in the C∞ topology which makes G(X) a Fréchet Lie group with Lie algebra

LieG(X) ∼= Ω0(M ; iR). (2.4.16)

The gauge group G(M) has canonical actions on Γ(S) (and Γ(S±) for n even) by fiberwise
scalar multiplication, and also on A(S) by conjugating covariant derivatives with the action
on Γ(S) (see Exercise 8.1). The action of u ∈ G(M) on A ∈ A(S) can be understood rather
explicitly in terms of the affine structure of A(S) as

uA = A− u−1du ∈ A(S). (2.4.17)

Here we think of G(M) as a subset of Ω0(M ;C) to form du ∈ Ω1(M ;C) and u−1 indicates
point-wise inversion in T. To justify (2.4.17), we have to argue that u−1du ∈ iΩ1(M) which
follows from the computation

u−1du = u−1dū = ud(u−1) = −uu−2du = −u−1du. (2.4.18)

For later reference, we note that a similar calculation shows that u−1du is always closed:

d(u−1du) = d(u−1) ∧ du = −u−2du ∧ du = 0. (2.4.19)

Lastly, we let G(M) act on forms ω ∈ Ω∗(M ;C) of mixed degree via

u · ω = ω − u−1du. (2.4.20)

Note that the action is trivial on Ωk(M ;C) for k ̸= 1. Lecture 11, 20.6.23
We will need to understand the action of G(M) on A(S)× Γ(S) in some more detail.

Lemma 2.33. Let (S, ρ) be a spinor bundle over M .

(i) The G(M)–action on Γ(S) is free away from 0 ∈ Γ(S) which is a fixed point. The
action is C–linear and unitary with respect to the Hermitian L2 inner product.

(ii) The G(M)–action on A(S) has constant stabilizers

G(M)(A,ϕ) = Gc(M)

where Gc(M) ⊂ G(M) is the subgroup of locally constant maps M → T. In particular,
if M is connected, then G(M)(A,ϕ) ∼= T.

Proof. For (ii) note that u : M → T is locally constant iff du = 0 iff u−1du = 0. If M is
connected, then any such u is constant. (i) is obvious.

The following terminology is commonly used in the literature on Seiberg–Witten theory
(and, more generally, gauge theory).

Definition 2.34 (Reducible/irreducible). A configuration (A, ϕ) ∈ A(S) × Γ(S) is called
irreducible if ϕ ̸= 0. Configurations of the form (A, 0) are called reducible.

As an immediate consequence of Lemma 2.33, we get:

Corollary 2.35. The diagonal G(M) action on A(S)×Γ(S) is free away from the reducible
configurations (A, 0) each of which has stabilizer Gc(M).

Remark 2.36. For technical reasons, it is also necessary to introduce Sobolev completions
of the gauge group G(M). By the Sobolev embedding and multiplication theorems, for
2(k+1) > n the Sobolev space L2

k+1(M,C) consists of continuous functions and is a Banach
algebra with respect to pointwise multiplication. We define

G(k+1)(M) =
{
u ∈ L2

k+1(M,C)
∣∣ |u(x)| = 1∀x ∈M

}
and note that this is a Hilbert Lie group which acts smoothly on L2

k(Λ
∗
CM) and L2

k(S).
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The monopole maps and the gauge group action. In the 4-dimensional setting, the
gauge groups acts on the sources and targets of the monopole maps.

Lemma 2.37. Let (S, ρ) be a spinor bundle over a 4–manifold X.

(i) The monopole maps F : C(X, s)→ D(X, s) is G(X)–equivariant.

(ii) The preimages F−1(η, 0) with η ∈ iΩ2
+(X) are G(X)–invariant.

The same statements hold for F0 : C0(X, s) → D(X, s) and F−1
0 (η, 0) and its Sobolev com-

pletions C(k+1)
0 (X, s)→ D(k)(X, s) with the action of G(k+2)(X).

Proof. We focus on F, since the arguments for F0 are analogous. We first note that (ii)
follows from (i) and the observation that (η, 0) ∈ D(X, s) is G(X)–fixed. For (i) we have to
show that

F(uA, uϕ) = uF(A, ϕ) =
(
1
2FAt − q(ϕ), uDAϕ

)
(2.4.21)

We first note that
(uϕ)(uϕ)∗ = uū(ϕϕ∗) = ϕϕ∗ (2.4.22)

which implies q(uϕ) = q(ϕ). Next, recall that d+ = P+d where P+ = 1
2 (id+∗). Now (2.4.18)

gives

d+(u−1du) =
1

2
(∗+ id)d(u−1du) = 0. (2.4.23)

From (2.4.17) and (2.3.12) we get

F+
uAt = FAt − 2d+(u−1du) = F+

At (2.4.24)

and thus
F(uA, uϕ) =

(
1
2FAt − q(ϕ), DuA(uϕ)

)
. (2.4.25)

Finally, using Lemma 2.24 we get

DuA(uϕ) = uDuAϕ+ ρ(du)ϕ = u(DAϕ− ρ(u−1du)ϕ) + ρ(du)ϕ = uDAϕ.

Loosely following [KM07, Def. 1.3.1], we define

Nη(X, s) := F−1(2η, 0)/G(X) ⊂ C(X, s)/G(X) =: B(X, s) (2.4.26)

and refer to Nη(X, s) as the monopole moduli space with perturbation η ∈ iΩ2
+(X). The

following theorem summarizes the most important properties of these spaces.

Theorem 2.38 (c.f. [KM07, Theorem 1.4.4]). Let X be a closed 4–manifold with b+2 (X) ≥ 1.
There is a dense set of forms η ∈ iΩ2

+(X) for which Nη(X, s) is a compact, orientable
manifold without boundary of dimension

dimNη(X, s) = (b1(X)− b+2 (X)− 1) + 2 indC(D
+
A)

=
1

4

(
c21(S

+)[X]− 2χ(X)− 3σ(X)
) (2.4.27)

We will not prove the entire result, but only indicate how it comes together.

Coulomb gauge fixing. As mentioned earlier, the linear part of the Seiberg–Witten
equations is not elliptic. This can be remedied with the help of the gauge group. Since
the arguments are not specific to dimension 4, we consider a general manifold M which we
assume to be closed.

Definition 2.39. Let (S, ρ) be a spinor bundle over M and A0 ∈ A(S). We say that
A = A0 + a ∈ A(S) is in Coulomb gauge with respect to A0 if it satisfies the Coulomb
condition d∗a = 0.
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Lemma 2.40. Let (S, ρ) be a spinor bundle over a closed manifold M and A0 ∈ A(S) a
fixed spinc connection. For every A = A0 + a ∈ A(S) we can find u ∈ G(M) such that

d∗(a− u−1du) = 0. (2.4.28)

In other words, every spinc connection can be put into Coulomb gauge with respect to A0.

Proof. We try to find u of the form u = ef for some f ∈ iΩ0(M). We compute

u−1du = e−fdef = e−fefdf = df (2.4.29)

and note that the equation (2.4.28) becomes

∆f = d∗df = d∗a. (2.4.30)

This is a special case of the Poisson equation which can be solved using the Hodge decom-
position.

Clearly, if A is already in Coulomb gauge with respect to A0, then uA = A − u−1du is
in Coulomb gauge if and only if u ∈ G(M) satisfies d∗(u−1du) = 0. In this case, we call u
harmonic and define the harmonic gauge group as

Gh(M) =
{
u ∈ G(M)

∣∣ d∗(u−1du) = 0
}
. (2.4.31)

2.4.4 The Seiberg–Witten–Coulomb system

Now let (S, ρ) be a spinor bundle over a closed 4–manifold X again. We say that a con-
figuration (A, ϕ) ∈ C(X, s) is in Coulomb gauge with respect to A0 ∈ A(S) if A = A0 + a
with d∗a = 0, that is, if A is in Coulomb gauge. According to Lemma 2.40, we can find
a gauge transformation of the form u = ef such that (uA, uϕ) is in Coulomb gauge. Since
the Seiberg–Witten equations are gauge invariant by Lemma 2.37, every gauge equivalence
class of monopoles has representatives which solve the Seiberg–Witten–Coulomb system

d+a− q(ϕ) + 1
2F

+
0 = 0 DAϕ = 0 d∗a = 0. (2.4.32)

where the first equation is just the monopole equation 1
2F

+
At = q(ϕ) rewritten in terms of a.

Adding the Coulomb condition d∗a = 0 effectively reduces the symmetry of the equations
from the infinite dimensional gauge group G(X) to the finite dimensional harmonic gauge
group Gh(X). In addition, it also takes care of the failure of d+ to be elliptic.

Lemma 2.41. The operator d∗ + d+ : Ω1(X)→ Ω0(X)⊕Ω2
+(X) is elliptic. If X is closed,

then d∗ + d+ is Fredholm with index

indR(d
∗ + d+) = b1(X)− b+2 (X)− b0(X). (2.4.33)

Proof. (1) The symbol of d∗ + d+ is readily computed as

σd∗+d+(ξ)a = −ξ♯⌞a+ P+(ξ ∧ a) = P+(ξ ∧ a)− ⟨a, ξ⟩ (2.4.34)

Since Λ1X = T ∗X and Λ0X ⊕ Λ2
+X both have rank 4, it suffices that σd∗+d+(ξ) is

injective for ξ ̸= 0.

Suppose that a, ξ ∈ T ∗
xX are both non-zero with ⟨a, ξ⟩ = 0. We may assume that |a| = |ξ| = 1

and extend a, ξ to an orthonormal basis of T ∗
xX. Then P+(ξ∧a) is part of an orthonor-

mal basis of Λ2
+T

∗
xX and, in particular, non-zero. In particular, we σd∗+d+(ξ)a ̸= 0.
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(2) The kernel of d∗ + d+ can be determined explicitly. We have

(d∗ + d+)a = 0 ⇔ d+a = 0, d∗a = 0 ⇔ da = 0, d∗a = 0 (2.4.35)

The first equivalence is obvious. For the second, note that d+a = 0 trivially implies

0 = 2d∗d+a = d∗(da+ ∗da) = d∗da+ ∗d ∗2 da = d∗da. (2.4.36)

Since M is closed, d∗ is the L2 adjoint of d and we get

0 = (a, d∗da)0 = ∥da∥0 . (2.4.37)

Now the Hodge and de Rham theorems give

ker(d∗ + d+) = H1(X) ∼= H1(X;R).

where Hk(X) is the space of harmonic k–forms.

(3) The cokernel of d∗+d+ is isomorphic to the kernel of the adjoint (d∗+d+)∗ = (d+)∗+d.
We claim that

(d∗ + d+)∗ = d∗ + d : Ω2
+(X)⊕ Ω0(X)→ Ω1(X). (2.4.38)

Obviously, we have d∗∗ = d and (d+)∗ = d∗ follows from the identity Now, for η ∈ Ω2
+(X)

and a ∈ Ω1(X) we have

(d+a, η) = (da, η) = (a, d∗η), a ∈ Ω1(X), η ∈ Ω2
+(X). (2.4.39)

If we add f ∈ Ω0(X) to the mix, we get (d∗ + d+)(η, f) = d∗η + df and, since d2, the
summands are orthogonal and we get

d∗η + df = 0 ⇔ d∗η = 0, df = 0. (2.4.40)

Lastly, for η ∈ Ω2
+(X) we have d∗η = 0 iff dη = 0. Altogether, we find

coker(d∗ + d+) ∼= H2
+(X)⊕H0(X) (2.4.41)

Where H2
+(X) is space of self-dual harmonic 2-forms. Again, Hodge-de Rham theory

shows that H2
+(X) has dimension b+2 (X).

Lecture 12, 27.6.23
The L2 orthogonal complement of the constant functions in Ω0(X) consists of those

functions that integrate to zero on each component of X. Denote this space by Ω0
0(X). The

Hodge decomposition gives another description:

Ω0
0(X) = d∗Ω1(X). (2.4.42)

Now d∗ + d+ naturally maps into Ω0
0(X) ⊕ Ω2

+(X). Replacing Ω0(X) with Ω0
0(X) in the

codomain of d∗+d+ removes H0(X) from the kernel of the adjoint. The result is a Fredholm
operator

d∗0 + d+ : Ω1(X)→ Ω0
0(X)⊕ Ω2

+(X), a 7→ (d∗a, d+a). (2.4.43)

whose index is given by
indR(d

∗
0 + d+) = b1(X)− b+2 (X). (2.4.44)

We now proceed as with the standard Seiberg–Witten equations and consider the map

F̃0 : iΩ
1(X)⊕ Γ(S+)︸ ︷︷ ︸

C0(X,s)

→ iΩ0
0(X)⊕ Ω2

+(X)⊕ Γ(S−)︸ ︷︷ ︸
=:D̃(X,s)

F̃0(a, ϕ) =
(
d∗a, d+a− q(ϕ) + 1

2F
t
0 , Dϕ+ ρ(a)ϕ

)
.

(2.4.45)
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Here we choose iΩ0
0(X) over iΩ0(X) in order to give F̃0 a chance to have regular values.

Indeed, the derivative is given by

dF̃0(a, ϕ)(b, ψ) =
(
d∗b, dF0(s, ϕ)(b, c)

)
. (2.4.46)

If we worked with iΩ0(X), the first component could never be surjective.

Proposition 2.42. For every integer k ≥ 3 the map F̃0 extends continuously to a smooth
Fredholm map

F̃0 : C(k+1)
0 (X, s)→ D̃(k)(X, s). (2.4.47)

If q = (f, η, ψ) ∈ D̃(X, s) is a regular value, then F̃−1
0 (q) is a smooth manifold of finite

dimension

dim F̃−1
0 (q) = indR(d

∗
0 + d+) + 2 indC(D

+)

= b1(X)− b+2 (X) +
1

4

(
c1(S

+)2[X]− σ(X)
)

=
1

4

(
c1(S

+)2[X]− 2χ(X)− 3σ(X)
)
+ b0(X)

(2.4.48)

Proof. The continuous extension is obvious. Note that dF̃0(a, ϕ) has the same principal

symbol as L̃(a, ϕ) = (d∗a0, d
+a,Dϕ) which is elliptic and therefore Fredholm. According to

Theorem 2.31, F̃−1
0 (q) is a smooth manifold of dimension

dim F̃−1
0 (q) = indR(L̃) = indR(d

∗
0 + d+) + 2 indC(D

+)

= b1(X)− b+2 (X) +
1

4

(
c1(S

+)2[X]− σ(X)
)
.

(2.4.49)

The last equality follows from Theorem 2.27 and Lemma 2.41. Rearranging the terms using

χ(X) = b+2 (X) + b−2 (X)− 2b1(X) + 2b0(X)

σ(X) = b+2 (X)− b−2 (X)
(2.4.50)

gives the desired formula.

Given η ∈ L2
k(iΛ

2
+), we obtain a Gh(X)–invariant subspace

Ñ (k)
η (X, s) = F̃−1

0 (0, 2η, 0) =
{
(a, ϕ) ∈ C̃(k+1)

0 (X, s)
∣∣∣ F̃0(a, ϕ) = (0, η, 0)

}
. (2.4.51)

We want to compare these spaces with the moduli spaces Nη(X, s) defined in (5.4.1) for
smooth η. The first thing to note is that the apparent dependence on k is not really there.

Theorem 2.43 (Regularity). If η ∈ iΩ2
+(X) is a smooth form, then Ñ

(k)
η (X, s) is indepen-

dent of k ≥ 3 and consists of smooth configurations. In that case we simply write Ñη(X, s).

Proof (sketch). This essentially follows from the ellipticity of the operators d∗+ d+ and D+

by a technique known as “elliptic bootstrapping”. The basic idea is to write the defining
equations for Ñη(X, s) as

(d∗ + d+)a =
(
0,− 1

2F
t
0 + 2η + q(ϕ)

)
(2.4.52)

D+ϕ = −ρ(a)ϕ. (2.4.53)

The ellitptic regularity theorem says if u is a weak (distributional) solution of Pu = v
where P is a linear elliptic differential operator of order ℓ over a closed manifold and v ∈ L2

k,
then u is an L2

k+ℓ section.
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We can use this to argue inductively that

(a, ϕ) ∈ L2
k+1 =⇒ (a, ϕ) ∈ L2

k+2 ∀k ≥ 3. (2.4.54)

Indeed, the Sobolev multiplication theorem gives ρ(a)ϕ ∈ L2
k+1 and elliptic regularity

for D+ implies ϕ ∈ L2
k+2. Another application of the Sobolev multipliation theorem

gives q(ϕ) ∈ L2
k+2 and elliptic regularity for d∗ + d+ shows a ∈ L2

k+2. Repeating this
argument indefinitely we can conclude (a, ϕ) ∈ C∞ using the Sobolev embedding theorem.

This shows that the inclusion Ñ
(k+1)
η (X, s) ↪→ Ñ

(k)
η (X, s) is a continuous bijection

for k ≥ 3. The continuity of the inverse follows from the Rellich lemma which states
that that the inclusion L2

k+2 ↪→ L2
k+1 is a compact map.

While Theorem 2.43 is concerned with the regularity of elements of Ñη(X, s), we next

address the regularity of Ñη(X, s) as a space. This issue is often referred to as transversality
in this context.

Definition 2.44 (Regular perturbations). We say that η ∈ iΩ2
+(X) is regular if (0, 2η, 0) is

a regular value of F̃0 : C(k+1)
0 (X, s)→ D̃(k)(X, s) for all k ≥ 3.

Recall that a Baire set is a set that can be written as the countable intersection of dense
open subsets and that every Fréchet space, such as iΩ+

2 (X), has the Baire property that
every Baire set is dense.

Theorem 2.45 (Transversality). The set of regular η ∈ iΩ2
+(X) is a Baire set and, in

particular, dense in iΩ2
+(X). If η is regular, then Ñη(X, s) is a finite dimensional smooth

manifold on which Gh(X) acts smoothly. The dimension is given by (2.4.49).

Proof (sketch). The manifold properties of Ñη(X, s) and smoothness of the Gh(X)–action are
immediate from the definitions and Proposition 2.42. The abundance of regular η ∈ iΩ2

+(X)
essentially follows from the Sard–Smale theorem (Theorem 2.32), with the caveat that we
are looking for regular values that live in a subspace of infinite codimension. We outline the
proof given in [Sal99, Chs. 7.2 & 8.4].

(1) The first step is to show that zero is a regular value of the map

C(k+1)
0 (X, s)→ iL2

kΩ
0
0(X)⊕ L2

k(S
−), (a, ϕ) 7→ (d∗a,D+ϕ+ ρ(a)ϕ) (2.4.55)

for k ≥ 3 where L2
kΩ

0
0(X) is the L2

k completion of Ω0
0(X).

(2) The zero set Z of (2.4.55) is then a smooth Hilbert submanifold of C(k+1)
0 (X, s) and

Z → L2
k(iΛ

2
+X), (a, ϕ) 7→ d+a− q(ϕ) + 1

2F
+
0 (2.4.56)

is easily shown to be a Fredholm map. The preimage of 2η ∈ iL2
k(Λ

2
+X) coincides

with N
(k)
η (X, s) and 2η is a regular value of (2.4.56) if and only if (0, 2η, 0) is a regular

value of the relevant completion of F̃0.

(3) The Sard–Smale Theorem 2.32 gives a Baire set of regular values in iL2
k(Λ

2
+X) for

each k ≥ 3. The intersection in iL2(Λ2
+X) is contained in iΩ2

+(X) by the Sobolev em-
bedding theorem and consists of regular elements (that is, regular values for all Sobolev
completions). One can further show that it is dense in the C∞ topology and also
in iL2

k(Λ
2
+X) for all k ≥ 3.

Lastly, we address the regularity of the orbit space Ñη(X, s)/Gh(X) and its relation
to Nη(X, s). The latter is rather straight forward.
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Lemma 2.46. For regular η ∈ iΩ2
+(X) there is a canonical homeomorphism

Ñη(X, s)/Gh(X)
≈−→ Nη(X, s) (2.4.57)

induced by the embedding F̃−1
0 (0, 2η, 0) ↪→ F−1

0 (2η, 0) that sends (a, ϕ) to (A+ a0, ϕ).

The lemma exhibits Nη(X, s) as the quotient of a finite dimensional smooth manifold
by a smooth Gh(X)–action. If the action was free and proper, this would give Nη(X, s)
a natural smooth manifold structure for which (2.4.57) is a diffeomorphism. Properness
follows from more general compactness theorems (c.f. [KM07, Theorem 5.2.1]).

Theorem 2.47 (Properness). The Gh(X)–action on Ñη(X, s) is proper.

However, we know from Lemma 2.33 that the action is only free away from the reducible
configurations (a, 0) which have stabilizer Gc(X). As it turns out, it is possible to avoid
reducible configurations in reasonably many situations.

Lemma 2.48 (Avoiding reducibles). If b+2 (X) ≥ 1, then the set of regular η ∈ iΩ2
+(X) for

which Ñη(X, s) does not contain reducible configurations is dense in iΩ2
+(X). In that case,

Nη(X, s) is an orientable smooth manifold of dimension

dimNη(X, s) = dim Ñη(X, s)− dimGh(X)

=
1

4

(
c1(S

+)2[X]− 2χ(X)− 3σ(X)
)
.

(2.4.58)

Proof. (1) The reducible elements (a, 0) ∈ Ñη(X, s) are the solutions of the equation

d∗a = 0,
1

2
F+
0 + d+a = 2η. (2.4.59)

Put differently, Nη(X, s) contains reducible elements iff η = 1
4F

+
0 + 1

2d
+a.

(2) Hodge theory shows that the set of η for which Nη(X, s) contains reducibles is an affine
subspace of codimension b+2 (X).

(3) If b+2 (X) ≥ 1, then the complement is open and dense and its intersection with the set
of regular perturbations is a Baire set.

Remark 2.49 (Orientability). One can also show that Ñη(X, s) is orientable for regular η.
One can show that orientations correspond to orientations of the vector spaceH1(X)⊕H2

+(X)
(c.f. [Sal99, Propisition 7.20]). Moreover, Gh(X) acts by orientation preserving diffeomor-
phisms so that Nη(X, s) is also orientable in case it is free of reducibles.

At this point, we should remind ourselves that we were hoping to find topological infor-
mation in the about the pair (X, s) in the spaces Nη(X, s). A priori, these spaces depend
explicitly on the choice of η and implicitly on the Riemannian metric g on X and the ref-
erence connection A0. Let γ = (gt, ηt, At)t∈[0,1] be a smooth path of Riemannian metrics gt
together with perturbations ηt ∈ iΩ2

+(X, gt) and spinc connections on At ∈ A(S, ρt). Note
that the notion of self-duality changes along the path of metric, and so does the Clifford
multiplication on S and thus the entire Seiberg–Witten map. We consider the parameterized
moduli space

W̃γ(X, s) =
{
(a, ϕ, t) ∈ C0(X, s)× [0, 1]

∣∣∣ F̃0(a, ϕ) = (0, 2ηt, 0)
}

=
⋃

t∈[0,1]

Ñt(X, s)× {t} ⊂ C0(X, s)× [0, 1]
(2.4.60)

where Ñt(X, s) is the extended moduli space for the triple (gt, ηt, At). Similarly, letNt(X, s) ⊂ B(X, s)
be the moduli space for the pair (gt, ηt)

47



Theorem 2.50 (Cobordism). There is a Baire set of paths γ such that W̃γ(X, s) is a
smooth Gh(X)–manifold with boundary

∂W̃γ(X, s) ∼= Ñ1(X, s)⨿ Ñ0(X, s). (2.4.61)

The orbit space Wγ(X, s) = W̃γ(X, s)/Gh(X) is compact and for b+2 (X) ≥ 2 there is a

dense set of pairs γ for which W̃γ(X, s) is free of reducibles. In that case, the Wγ(X, s) is a
cobordism from N0(X, s) to N1(X, s). Furthermore, once an orientation on H1(X)⊕H2

+(X)

is fixed, the cobordisms W̃γ(X, s) and Wγ(X, s) have natural orientations.

2.4.5 Seiberg–Witten invariants of closed 4–manifolds
Lecture 13, 4.7.23

As before, let (X, s) be a closed spinc 4–manifold. In addition to the implicit orien-
tation and Riemannian metric on X, we also fix an orientation µX of the real vector
space H1(X) ⊕ H2

+(X); this datum is usually called a homology orientation of X. We
also assume that b+2 (X) ≥ 2. Recall that

C∗(X, s) = {(A, ϕ) ∈ C(X, s) |Φ ̸= 0} and B∗(X, s) = C∗(X, s)/G(X) (2.4.62)

denote the spaces of irreducible Seiberg–Witten configurations and gauge equivalence classes
thereof. It follows from Theorems 2.45 and 2.50 that there is a well-defined homology class

[Nη(X, s)] ∈ H∗
(
B∗(X, s);Z

)
(2.4.63)

where η ∈ iΩ2
+(X) is any regular perturbation. In essence, this is the Seiberg–Witten

invariant of (X, s). However, the following definition is more common:

Definition 2.51 (Seiberg–Witten invariants). Let (X, s) be a closed spinc 4–manifold
with b+2 (X) equipped with homology orientation. The Seiberg–Witten invariant of (X, s) is
the map

m(·|X, s) : H∗(B∗(X, s);Z)→ Z, m(ξ|X, s) = ⟨ξ, [Nη(X, s)]⟩ (2.4.64)

where ⟨ , ⟩ denotes the Kronecker pairing and η ∈ iΩ2
+(X) is any regular perturbation.

We know at least one element in B∗(X, s), namely 1 ∈ H∗(B∗(X, s);Z). However,
for m(1|X, s) to be non-zero, we need the dimension

dimNη(X, s) =
1

2

(
c1(S

+)2[X]− 2χ(X)− 3σ(X)
)

(2.4.65)

to be zero. This is known to be the case precisely when the spinc structure comes from an
almost complex structure on X. In that case, m(1|X, s) is just the signed counts of points
in the compact, oriented 0–manifold Nη(X, s). The higher cohomology of B∗(X, s) can be
understood as follows.

Proposition 2.52. Let (X, s) be a closed, connected spinc 4–manifold. Then there is a
homotopy equivalence

B∗(X, s) ≃ CP∞ × Pic(X) (2.4.66)

where Pic(X) = H1(X;R)/H1(X;Z). In particular, there is an isomorphism

H∗(B∗(X, s);Z) ∼= Z[u]⊗Z Λ∗H1(X,Z) (2.4.67)

where u ∈ H2(CP∞;Z) is the first Chern class of the tautological line bundle.
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Proof. Fix A0 ∈ A(S) and consider the subspace

S∗(X, s) = {(A0 + a, ϕ) ∈ C(X, s) | d∗a = 0ϕ ̸= 0} ⊂ C∗(X, s). (2.4.68)

Recall that S∗(X, s) is preserved by the actions of Gh(X) and that the action is free
by Lemma 2.33. According toLemma 2.40, the inclusion induces a homeomorphism

S∗(X, s)/Gh(X) ∼= C∗(X, s)/G(X) = B∗(X, s). (2.4.69)

Next we fix a base point x0 ∈ X to split Gh(X) into a product

Gh(X) = T× Gh∗ (X), Gh∗ (X) =
{
u ∈ Gh(X)

∣∣u(x0) = 1
}
. (2.4.70)

One can show that every connected component of G(X) contains a unique element of Gh∗ (X).
Since T = S1 is an Eilenberg–Mac Lane space of type K(Z, 1), we have

Gh∗ (X) ∼= π0G(X) ∼= H1(X;Z). (2.4.71)

In particular, we have a an isomorphism of Lie groups

Gh(X) ∼= T ∼= H1(X;Z). (2.4.72)

From this we can identify the classifying space of Gh(X) as

BGh(X) ∼= BT×BH1(X;Z) ∼= CP∞ × Pic(X) (2.4.73)

by noting that Pic(X) is a classifying space for H1(X;Z).
Now, it is a curious fact of infinite dimensional topology that the inclusion Γ(S+)\0 ↪→ Γ(S+)

is a homotopy equivalence with respect to to the C∞–topology; in fact, this hold for ev-
ery separable infinite dimensional Fréchet space (see [And69], for example). In particular,
S∗(X, s) is contractible. We would like to argue that S∗(X, s) → B∗(X, s) is a univer-
sal Gh(X) –bundle, making B∗(X, s) a classifying space for Gh(X) which is unique up
to homotopy equivalence. While S∗(X, s) is provably not a CW complex, the bundle
S∗(X, s) → B∗(X, s) is provably numerable and we can appeal to an analogous unique-
ness statement for numerable bundles.

The class in H2(B∗(X, s);Z) that corresponds to u ∈ H2(CP∞;Z) can be described more
explicitly as the first Chern class of the principal T = U1–bundle

S∗(X, s)/Gh∗ (X) 7→ S∗(X, s)/Gh(X) ∼= B∗(X, s). (2.4.74)

(1) The entirety of the invariants m(·|X, s) as s ranges over all the spinc structures on X is
a diffeomorphism invariant of triples (X, s, µX).

(2) The Seiberg–Witten invariants can be computed fairly explicitly for Kähler manifolds.
In particular, they are not always trivial. The computation goes back to Witten’s
original article [Wit94], see also [Mor96, Ch. 7] for a textbook account.

(3) The Seiberg–Witten invariants are quite fragile. IfX = X1#X2 with b
+
2 (X1), b

+
2 (X2) ≥ 1,

then the Seiberg–Witten invariants of X are known to vanish. In particular, taking the
connected sum with S2×S2 always kills the Seiberg–Witten invariants. In contrast, the
connected sums with CP2 retains non-triviality of Seiberg–Witten invariants.

(4) It is a long standing question whether the invariantsm(ud|X, s) can be non-zero for d > 0.
The simple type conjecture states that these invariants should vanish for all closed 4–
manifold with b+2 (X) ≥ 2.

In general, the invariants are notoriously hard to compute.
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2.4.6 Stretching the neck

Let X be a closed oriented 4–manifold and suppose that we are given a decomposition

X = X+ ∪X− (2.4.75)

into compact codimension zero submanifolds X± with common boundary

Y = ∂X± = X+ ∩X−. (2.4.76)

Is it possible to recover the Seiberg–Witten invariants ofX from similar invariants associated
to X± and Y ? Recall that the Seiberg–Witten invariants of X are independent of the
Riemannian metric used to define them. This suggests an idea to separate the information
contained in the moduli spaces Nη(X, s) into information solely related to X± and Y . The
idea is to make X cylindrical near Y , to stretch the cylinder to infinite length, and to try
and keep track of the SW moduli spaces. Here the word cylinder needs to be interpreted in
the following geometric sense.

Definition 2.53. Let (Y, gY ) be a Riemannian manifold and J ⊂ R an interval. The
product J×Y equipped with the cylindrical metric dt2+gY is called a metric cylinder on Y
of length L = sup J − inf J .

The neck stretching procedure. We orient Y as the boundary of X+ and choose a
metric g0 onX which is cylindrical near Y in the sense that there is an orientation preserving,
isometric embedding

τ : ([−3, 3]× Y, dt2 + gY ) ↪→ (X, g0) (2.4.77)

where gY is a fixed metric on Y . We write νY for the image of τ and think of it as a
neck for Y . For the stretching procedure let κ : [−3, 3]→ [0, 1] be smooth function which is
identically one in a neighborhood of [−1, 1] and zero outside of [−2, 2]. We obtain a cutoff
function on X with support in τ([−2, 2]× Y ) by

ρ : X → [0, 1], ρ(x) =

{
κ(t), if x = τ(t, y)

0, else.
(2.4.78)

Using this, we construct a family of Riemannian metrics

gs = (1− ρ) g + ρ τ∗((1 + s)2dt2 + gs), s ≥ 0. (2.4.79)

Geometrically, as the parameter s increases, the neck νY gets longer and longer. Indeed, the
central part τ([−1, 1] × Y ) of the neck with the metric gs is isometric to the to the metric
cylinder [−1−s, 1+s]×Y of length 2(s+1). However, note that the underlying manifold X
never changes.

The effect on Seiberg–Witten moduli spaces. We continue with the family of met-
rics (gs)s≥0 on X. As in the proof of the cobordism theorem, we choose families of spinc

connections As and perturbations ηs ∈ iΩ2
+(X, gs) and consider the parameterized moduli

space

Wγ(X, s) =
⋃
s≥0

{s} ×Ns(X, s) ⊂ [0,∞)× B(X, s) (2.4.80)

where γ = (gs, As, ηs)s≥0 and Ns(X, s) is the moduli space for the triple γs. As before, one
can show that suitable of choices of (As, ηs) this is a finite dimensional smooth manifold
with boundary on which Gh(X) acts smoothly. But this time there is only one boundary
component N0(X, s) corresponding to the single boundary of [0,∞). It turns out that the
limiting behavior of elements xs ∈ Ns(X, s) as s → ∞ can be understood sufficiently well
to draw interesting conclusions.
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To get an idea of how this works, we think of X as a disjoint union of X̊± = X± \ Y
and Y . Note that we can rescale the left part of the central neck as(

[−1, 0)× Y, (1 + s)2dt2 + γ
) ∼= (

[−1, T )× Y, dt2 + γ
)
. (2.4.81)

In other words, Xs
− = (X̊−, gs) has a cylindrical end of the form [0, s) × Y . Similarly,

Xs
+ = (X̊+, gs) has a cylindrical end of the form (−s, 0]× Y .
At this point we lose the ambition to be precise and content ourselves with an heuristic

outline of what can eventually be made rigorous:

(1) First of all, it is conceivable that the families of Riemannian manifolds Xs
± have lim-

itsX∞
± = (X̊±, g∞) with infinite cylindrical ends of the form R±×Y where R± = ±[0,∞).

(2) Assuming that As and ηs were chosen in a certain way, there are canonical limits A±
∞

and η±∞ defined on X∞
± . That certain way means that As and ηs should derived from a

pair (A0, η0) which is which is translation invariant on τ((−2, 2) × Y ) in the hopefully
obvious sense (that is also explained below).

(3) One can show then that every sequence xn ∈ Nsn(X, s) with sn → ∞ as n → ∞ has
limits x±∞ ∈ N∞(X∞

± , s).

(4) Moreover, there is a gauge invariant notion of energy for Seiberg–Witten configurations
on X∞

± and every finite energy monopole has a configuration on Y as asymptotic limit
along the neck.

(5) Lastly, the limiting configurations x±∞ turn out to have finite energy and the same
asymptotic limit.

This suggests a strategy to define Seiberg–Witten invariants of X± using moduli spaces
of finite energy monopoles on X∞

± . In doing so, one has to keep track of asymptotic limits.
This road eventually led to the idea of Floer homology groups. Motivated by the above, we
now focus on cylinders J × Y .

2.4.7 The Seiberg–Witten equations on cylinders
Lecture 14, 11.7.23

Let Y be an oriented Riemannian 3–manifold. We want to study the Seiberg–Witten equa-
tions on the cylinder Z = R× Y . We write t for the R–coordinate and p : Z = R× Y → Y
for the projection onto Y . The tangent and cotangent bundles of Z is canonically split as

TZ = R ∂t ⊕ ker(dp) ∼= R ∂t ⊕ p∗TY and

T ∗Z = R dt⊕ ker(i∂t)
∼= R dt⊕ p∗T ∗Y.

(2.4.82)

The splittings are orthogonal with respect to the cylindrical metric gZ = dt2 + p∗gY and we
orient orient Z using the volume form

volZ = dt ∧ p∗ volY . (2.4.83)

To make sense of Seiberg–Witten equations on Z, we need a suitable spinc structure that
relates to the given one on Y . We start with a general remark about vector bundles over Z.

Bundles over the cylinder. Given any real or complex vector bundle E
π−→ Y , we let

Ê = R× E π̂−→ R× Y = Z, π̂(t, e) =
(
t, π(e)

)
. (2.4.84)

Note that Ê canonically isomorphic to the pullback p∗E in the category of real or complex
vector bundles. Since R is contractible, all vector bundles of Z are isomorphic to a bundle
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of this form. Concretely, if we write it : Y → Z, it(y) = (t, y) with fixed t ∈ R, then for any

vector bundle F → Z we have F ∼= p∗i∗tF
∼= î∗tF .

We can conveniently think of section of Ê is smooth paths of sections of E which,
in turn, we can think of as “time-dependent” sections of E. More precisely, given a
map ϕ : R→ Γ(S), we can form a section ϕ̂ ∈ Γ(Ê) by

ϕ̂ : Z → Ê, ϕ̂(t, y) =
(
t, ϕ(t)(y)

)
. (2.4.85)

Conversely, every section Φ: Z → Ê can be written as Φ(t, y) =
(
t, pΦ(t, y)

)
and thus

determines a path
Φ̌ : R→ Γ(S), Φ̌(t)(y) = pΦ(t, y). (2.4.86)

Ignoring smoothness of sections and paths thereof, the assignments ϕ 7→ ϕ̂ and Φ 7→ Φ̌ are
easily seen to be mutually inverse isomorphisms of vector spaces. The maps send continuous
sections of Ê to continuous path of continuous sections of E in the compact open topology
by the adjunction C(R, C(Y,E)) ∼= C(R × Y,E). Since that latter is a homeomorphism,
we even get an isomorphism of tological vector spaces. With a little more work, the same
statements hold for smooth sections with the obvious notion of smooth paths in Fréchet
spaces.

Proposition 2.54 (Exponential adjunction for smooth sections, c.f. [KM97]). Let E → Y
be a real or complex vector bundles over a closed smooth manifold Y . Then the maps

Γ(Ê) C∞(
R,Γ(E)

)Φ7→Φ̌

ϕ7→ϕ̂

are mutually inverse isomorphisms of Fréchet spaces.

We henceforth identify sections of E with constant paths in Γ(E). Note that the latter
can also be characterized as those sections Φ ∈ Γ(Ê) that are translation invariant in the
sense that pΦ(t, y) is independent of t. This can also be expressed as

τsΦ = Φ ∈ Γ(E) where τsΦ(t, y) =
(
t, pΦ(t+ s, y)

)
. (2.4.87)

Every connection∇ on E determines a connection ∇̂ on Ê ∼= p∗E by pull-back. This relation
between ∇ and ∇̂ is often written informally as

∇̂ =
d

dt
+∇. (2.4.88)

Concretely, this means that with respect to the splitting TZ = R∂t ⊕ T̂Z in (2.4.82) the
covariant derivative of ∇̂ acts on a section of Ê given by a path ϕ ∈ C∞(R,Γ(E)) as

∇̂∂t ϕ̂ = d̂ϕ
dt and ∇̂v̂ϕ̂ = ∇̂vϕ for v ∈ Γ(TY ). (2.4.89)

where ϕ̇ = dϕ
dt is the path derivative. The pullback connection ∇̂ is also translation invariant

in the sense that
τ−s∇τsΦ = ∇Φ, s ∈ R, (2.4.90)

and this condition characterizes pullback connections on Ê.

Differential forms on the cylinder. Every differential form on Z = R × Y can be
uniquely written as a sum α = β + dt∧ γ with ∂t⌞β = 0 and ∂t⌞γ = 0. The latter condition
characterizes those forms on Z that can be written as a path of forms on Y . Indeed, the
splitting for T ∗Z in (2.4.82) gives one for the exterior powers of its complexification

ΛpCZ
∼= p∗(ΛpCY ⊕ Λp−1

C Y ) ∼= Λ̂pCY ⊕ Λ̂p−1
C Y (2.4.91)

This gives a path interpretation of differential forms on Z.
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Corollary 2.55. Every ω ∈ Ωp(Z;C) can be uniquely written as

ω = η̂ + dt ∧ χ̂. (2.4.92)

where η ∈ C∞(R,Ωp(Y ;C)) and χ ∈ C∞(R,Ωp−1(Y ;C)). For λ ∈ Ωp(Y ;C) the pulled back
form p∗λ ∈ Ωp(Z;C) corresponds to the constant paths η ≡ λ and χ ≡ 0.

The de Rahm differential, the codifferential, and the Hodge operator on Z are related to
their analogues on Y by the following formulas whose proofs we leave as an exercise.

Lemma 2.56. Let ω = η̂+dt∧χ̂ ∈ Ωp(Z) with η ∈ C∞(R,Ωp(Y ;C)) and χ ∈ C∞(R,Ωp−1(Y ;C)).

∗Zω = ∗̂Y χ+ (−1)pdt ∧ ∗̂Y η (2.4.93)

dZω = d̂Y η + dt ∧ ̂(η̇ − dY χ) (2.4.94)

d∗Zω = ̂(d∗Y η − χ̇) + dt ∧ d̂∗Y χ (2.4.95)

From (2.4.93) applied to ω ∈ Ω2(X) we immediately see that

∗Zω = ω ⇔ η = ∗Y χ. (2.4.96)

This means that self-dual 2–forms on Z correspond to paths of 1–forms on Y . Concretely,
we have a bijection

C∞(R,Ω1(Y ))
∼=−→ Ω2

+(Z), b 7→ ∗̂Y b+ dt ∧ b̂. (2.4.97)

Combining (2.4.93) and (2.4.94) for a = b̂+ ĉ dt ∈ iΩ1(Z) we find

d+Za =
1

2
(∗Y (∗Y dY b+ ḃ− dY c))̂ +

1

2
dt ∧ (∗Y dY b+ ḃ− dY c)̂ ∈ iΩ2

+(M). (2.4.98)

So d+Za ∈ iΩ2
+(Z) corresponds to the path 1

2 (ḃ+ ∗Y dY b− dY c) in iΩ
1(Y ).

Spinc structures on cylinders. There is a one-to-one correspondence between spinc

structure on Y and Z = R × Y . Recall that p : Z → Y is the projection onto Y . We also
consider the embeddings it : Y ↪→ Z, y 7→ (t, y) for t ∈ R.

(1) If (SZ , ρZ) is a spinor bundle over Z, then we obtain a spinor bundle for Y via

SY = i∗0S
+
Z , ρY (a)ϕ = −ρZ(dt)ρZ(p∗a)ϕ. (2.4.99)

The sign ensures the orientation condition (2.1.2) in Definition 2.4.

(2) Conversely, if (SY , ρY ) is a spinor bundle for Y , we obtain one for Z by taking

S±
Z = ŜY and SZ = S+

Z ⊕ S
−
Z = ŜY ⊕ ŜY (2.4.100)

with Clifford multiplication given by the block matrices

ρZ(dt) =

(
0 − id
id 0

)
and ρZ(p

∗a) =

(
0 ρY (a)

ρY (a) 0

)
for a ∈ T ∗Y . (2.4.101)

One can check that the first summand S+
Z is also the positive eigenspace of the chirality

operator αZ = ρZ(i
2 volZ).

The verifications that both constructions define spinor bundles and are mutually inverse up
to isomorphism are straight forward. As an aside, we point out that our conventions are the
same as those in [KM07, §4.3 & §4.5], but one should be aware that different authors might
set up the correspondence differently.
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The quadratic terms on Y and Z. From now on we will assume that Z and Y carry
spinor bundles that are related as in (2) above. Applying Proposition 2.54 to S±

Z = ŜY we
get a path description of spinors:

Γ(S±
Z )
∼= C∞(R,Γ(SY )) (2.4.102)

In particular, given a path C∞(R,Γ(SY )) we can construct an endomorphism of S+
Z in two

ways. On the one hand, we have the path of endomorphisms ϕϕ∗ of SY which can be viewed
as a single endomorphism

ϕ̂ϕ̂∗ = ϕ̂ϕ∗ ∈ EndC(S
+
Z ). (2.4.103)

On the other hand, Corollary 2.15 gives a path ρ−1
Y (ϕϕ∗)0 in iΩ1(Y ) which, in turn, deter-

mines an element of iΩ2
+(Z) via the isomorphism in (3.2.2). The latter is taken by ρZ to

a self-adjoint, trace-free endomorphism of S+
Z (see Corollary 2.16). It should not be a big

surprise that both constructions are related.

Lemma 2.57. Let (SZ , ρZ) be a spinor bundle on Z = R × Y derived from a spinor bun-

dle (SY , ρY ) on Y , and ϕ ∈ R→ Γ(S) a path corresponding to ϕ̂ ∈ Γ(S+
Z ). Then

ρ−1
Z (ϕ̂ϕ̂∗)0 = −1

2

(
(∗Y ρ−1

Y (ϕϕ∗)0)̂ + dt ∧ (ρ−1
Y (ϕϕ∗)0)̂

)
. (2.4.104)

Proof. By construction, we have

ρZ
(
dt ∧ (ρ−1

Y (ϕϕ∗)0)̂
)
= ρZ(dt)ρ̂Y ((ρ

−1
Y (ϕϕ∗)0)̂) = −(ϕ̂ϕ̂∗)0 (2.4.105)

where the minus sign is the action of ρZ(dt) on S
−
Z . Similarly, we find

ρZ
(
(∗Y ρ−1

Y (ϕϕ∗)0)̂
)
= −(ϕ̂ϕ̂∗)0 (2.4.106)

where the minus sign comes from our orientation conventions for Clifford multiplication in
odd dimensions, which yields ρY (∗Y α) = −ρY (α) for all α ∈ Ω1(Y ).

Spinc connections and Dirac operators on cylinders. Next, let us fix a spinc con-
nection B0 ∈ A(SY ) for reference and write B̂0 for the induced connection on ŜY ∼= p∗SY .
The sum with itself gives a translation invariant spinc connection

A0 = B̂0 ⊕ B̂0 ∈ A(SZ). (2.4.107)

We take this A0 as a base point for A(SZ) and write any other spinc connection on SZ in
the form

A = A0 + a = A0 + b̂+ ĉdt. (2.4.108)

where a ∈ iΩ1(Z) corresponds to paths b ∈ C∞(R, iΩ(Y )) and c ∈ C∞(R, iΩ0(Y )) ∼= iC∞(Z).
Following [KM07, Def. 4.4.1], we note that the connection

Ǎ = A0 + b̂ ∈ A(SZ) (2.4.109)

given by the first two summands can be interpreted as a path of connections

B = B0 + b ∈ C∞(R,A(SY )) (2.4.110)

which is, in fact, independent of the choice of B0. In general, Ǎ does not determine A, since
the information contained in c cannot be recovered from Ǎ. This discrepancy between spinc

connections on SZ and paths thereof on SY can be fixed using the gauge group action.

Definition 2.58 (Temporal gauge). A spinc connection A ∈ A(SZ) is in temporal gauge if

it can be written as A = A0 + b̂ for some B0 ∈ A(S) and b̂ ∈ C∞(R, iΩ1(Y )).
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Lemma 2.59 (Temporal gauge fixing).

(i) For every A ∈ A(SZ) there is a gauge transformation of the form u = eif ∈ G(Z) such
that uA is in temporal gauge.

(ii) Let A ∈ A(SZ) be in temporal gauge and u ∈ G(Z). Then uA = A− u−1du is also in
temporal gauge if and only if ∂tu = 0, that is, u(t, y) = u0(y) for some u0 ∈ G(Y ).

Proof. (i) Write A as in (3.2.4). For u = eif we have

u−1du = i df = i(∂tf dt+ ďf) (2.4.111)

and thus

u∗A = A− (u−1du)⊗ id = A0 + i(b− ďf)⊗ id+i(c− ∂tf) dt⊗ id . (2.4.112)

Define u = eif with f ∈ C∞(Z) given by

f(t, y) =

∫ t

0

c(s, y) ds. (2.4.113)

Then ∂tf = c so that u∗A is in temporal gauge.
(ii) For arbitrary u ∈ G(Z) and A ∈ A(SZ) in temporal gauge, we find

u∗A = A− (u−1ďu)⊗ id−(u−1∂tu)⊗ id . (2.4.114)

Since u−1ďu ∈ iΓ(p∗T ∗Y ), the connection u∗A is in temporal gauge iff ∂tu = 0.

Combining the maps C∞(R,A(SY ))→ A(SZ) and Γ(S+
Z )
∼= C∞(R,Γ(SY )) with Lemma 3.2,

we arrive at the following conclusion:

Corollary 2.60. The map C∞(R, C(Y ))→ C(Z) induces a homeomorphism

C∞(
R, C(Y )/G(Y )

) ∼=−→ C(Z)/G(Z) = B(Z). (2.4.115)

Remark 2.61. While conceptually convenient, the temporal gauge condition is not perfect.
Unlike the Coulomb condition on closed manifolds, it does not reduce the Seiberg–Witten
equations to an ellitpic system. The temporal gauge condition is also generally incompatible
with the Coulomb condition d∗Za = 0 on the cylinder. However, there are tricks around this
that will be discussed next semester.

Back to a general connection A = Ǎ+ ĉ dt. We recall from (2.4.89) that ∇B̂0 = d
dt+∇

B0 .
Using this and the definition of ρZ gives

D+
A ϕ̂ =

(
ϕ̇+DBϕ+ cϕ

)̂
=

(
ϕ̇+Dϕ+ ρ(b)ϕ+ cϕ

)̂
. (2.4.116)

We can also write this as

D+
A =

d

dt
+DB + c. (2.4.117)

Lastly, we note that we have an isomorphism of determinant line bundles

det(sZ) = Λ2
C(S

+
Z ) = Λ2

C(ŜY )
∼= ̂det(sY ) (2.4.118)

and that the curvature of At0 is related to that of B0 by

FAt
0
= p∗FBt

0
= F̂Bt

0
. (2.4.119)

From this we can deduce that

1
2FAt = 1

2FAt
0
+ dZ(b̂+ ĉ dt) =

(
FBt

0
+ dY b

)̂
+ dt ∧ (ḃ− dY c)̂. (2.4.120)
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The Seiberg–Witten equations as a gradient flow equation. Now let (A,Φ) ∈ C(Z)
be a Seiberg–Witten configuration. As in the previous section, we write A = A0 + b̂ + ĉ dt
and Φ = ϕ̂ with smooth paths b, c, and ϕ in iΩ1(Y ), i ∈ The Seiberg–Witten equations

for A = A0 + b̂+ ĉ dt take the form

D+
AΦ = 0 ϕ̇ = −(DBϕ+ cϕ)

1
2F

+
At − ρ−1

Z (ΦΦ∗)0 = 0 ḃ = −
(
∗Y dY b− dc+ ρ−1

Y (ϕϕ) + ∗Y 1
2FBt

0

)
If A happens to be in temporal gauge, then c = 0 and the equations simplify to

D+
AΦ = 0 ϕ̇ = −(Dϕ+ ρ(b)ϕ)

1
2F

+
At − ρ−1

Z (ΦΦ∗)0 = 0 ḃ = −
(
∗Y dY b+ ρ−1

Y (ϕϕ) + ∗Y 1
2FBt

0

)
Note that the equations on the right hand side are formally a negative flow equation in the
based configuration space C0(Y ). Th generator is the Seiberg–Witten vector field

X : C0(Y )→ C0(Y ), X (b, ϕ) =
(
∗Y dY b+ ρ−1

Y (ϕϕ) + ∗Y 1
2FBt

0

Dϕ+ ρ(b)ϕ

)
(2.4.121)

in terms of which the equations can be written as

(ḃ, ϕ̇) + X (b, ϕ) = 0. (2.4.122)

Moreover, it turns out that X (b, ϕ) can be considered as the gradient of a smooth function

L : C0(Y )→ R, (2.4.123)

called the Chern–Simons–Dirac functional (CSD), with respect to the (real) L2 inner prod-
uct on C0(Y ). The CSD functional is defined as

L(b, ϕ) = 1
2 (ϕ,DBϕ)0 +

1
2 (b, ∗Y dY b)0 +

1
2 (b, ∗Y FBt

0
)0

= 1
2 (ϕ,Dϕ)0 +

1
2 (b, ∗Y dY b)0 +

1
2 (ϕ, ρ(b)ϕ)0 +

1
2 (b, ∗Y FBt

0
)0

(2.4.124)
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Part II

Monopole Floer Homology and
Seiberg–Witten–Floer

homotopy types
(WiSe 2023–2024)
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Chapter 3

The Seiberg–Witten equations
on cylinders revisited

3.1 Recollections from last semester
Lecture 1, 10.10.23

Notational conventions. Let’s begin by reviewing with some notational ground rules
from last semester:

▶ All manifolds are implicitly assumed to be smooth, oriented, and equipped with a Rie-
mannian metric.

▶ All vector bundles are implicitly equipped with bundle metrics.

▶ M stands for any n–manifold as above (possibly non-compact and/or with non-empty
boundary)

▶ X is reserved for 4–dimensional manifolds which are compact by default.

▶ Y is reserved for closed 3–manifolds.

▶ T is the unit circle group.

▶ Spinc structures are represented by spinor bundles (S, ρ) (see Section 2.1)

▶ A(S) is the space of spinc connections

Floer homology and Conley index theory in finite dimensions. We first studied
how a Morse–Smale pair (f, ξ) on a closed manifold M gives rise to a chain complex, called
Floer complex, which computes the homology H∗(M) by studying the flow ϕ onM generated
by the equation ẋ+ ξ(x) = 0. A particularly important aspect was a compactness result for
spaces of “broken ξ–trajectories”:

Theorem (c.f. Theorem 1.7). Let (f, ξ) be a Morse–Smale pair and p, q ∈ Crit(f). The
moduli spaces M̂(p, q) have compactifications given by

M̄(p, q) = M̂(p, q) ∪
µ(p)−µ(q)⋃

r=2

⋃
p=p0,p1,...,pr=q

M̂(p0, p1)× · · · × M̂(pr−1, pr) (3.1.1)

with a suitable topology. The space M̄(p, q) has the structure of a smooth (µ(p)−µ(q)− 1)–
manifold with corners.
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We then introduced the concept of isolated invariant sets S ⊂ X for ϕ and noticed that
we can construct a Floer complex CF (S, ϕ) by simply restricting to the critical points in S.
However, we realized that CF (S, ϕ) does not compute the homology of S, but rather of the
Conley index of S with respect to ϕ. The latter was defined in terms of index pairs (N,E)
for S as the based homotopy type C(S, ϕ) = [N/E].

We then added actions by a compact Lie group G to the mix and discussed equivariant
generalizations. We realized that Conley index theory generalizes easily by “putting a G–
everywhere”, but noted that the story for Floer homology was less straight forward. On
the one hand, there are technical problems related to the failure of transversality in the
equivariant context. On the other hand, there is the philosophical question what “equivariant
homology” should be. We opted for the notion of Borel homology which is defined for a G–
space X as

HG
∗ (X) = H∗(EG×G X), (3.1.2)

where EG is a universal G–space. The space XhG = EG ×G X is called the Borel con-
struction and is the total space of a fiber bundle pG : XhG → BG over the classifying
space BG = EG/G. We ended this discussion by indicating possible Morse theoretic descrip-
tionsHT

∗ (M) for smooth G–manifoldsM and emphasized the role of the circle group T ∼= U1.
We will come back to this soon.

The Seiberg–Witten equations on 4–manifolds. We then switched subjects and dis-
cussed the spinc structures and the Seiberg–Witten equations

1

2
F+
At = ρ−1(ϕϕ∗)0 DAϕ = 0 (3.1.3)

on a spinc 4–manifold X with spinor bundle (S, ρ) representing a spinc structure s. Here A
is a spinc connection and ϕ a spinor, that is, a section of S. Once we had learned how to
read the equations properly, we mostly focused the case when X is closed.

We introduced the configuration spaces

C(X, s) = A(S)× Γ(S) and C0(X, s) = iΩ1(X)⊕ Γ(S) (3.1.4)

where A(X) is the space of spinc connections which is an affine space over iΩ1(X) and the
affine structure gives a homeomorphism C0(X, s) ∼= C(X, s) sending (a, ϕ) to (A0 + a, ϕ)
where A0 is any fixed spinc connection. Moreover, there was an action by the gauge group
G(X) = C∞(X,T) where u : X → T acts on (A, ϕ) as u(A, ϕ) = (A−u−1du, ϕ) and on (a, ϕ)
as u(a, ϕ) = (a− u−1du, ϕ).

Solutions to the Seiberg–Witten equations are the zero sets of the Seiberg–Witten map

F : A(S)× Γ(S+)→ iΩ2
+(X)⊕ Γ(S−)

F(A, ϕ) =
(
1
2F

+
At − q(ϕ), D+

Aϕ
)
.

(3.1.5)

which is G(X)–equivariant.
In the case of a closed 4–manifold, the main trick was to enlarge the Seiberg–Witten

equations to the Seiberg–Witten–Coulomb system

d+a− q(ϕ) + 1
2F

+
0 = 0 DAϕ = 0 d∗a = 0 (3.1.6)

whose solutions form the zero set of the map

F̃0 : iΩ
1(X)⊕ Γ(S+)︸ ︷︷ ︸

C0(X,s)

→ iΩ0
0(X)⊕ Ω2

+(X)⊕ Γ(S−)︸ ︷︷ ︸
=:D̃(X,s)

F̃0(a, ϕ) =
(
d∗a, d+a− q(ϕ) + 1

2F
t
0 , Dϕ+ ρ(a)ϕ

)
.

(3.1.7)
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which has is equivariant with respect to the harmonic gauge group

Gh(X) =
{
u ∈ G(X)

∣∣ d∗(u−1du) = 0
} ∼= Tb0(X) ×H1(X;Z). (3.1.8)

In particular, if X is connected with b1(X) = 0, then Gh(X) ∼= T which explains our interest

in circle actions. The main insight was that the regular level sets of F̃0 are smooth, finite
dimensional Gh(X)–manifolds whose orbits spaces are compact and, at least for suitable
regular values, represent homology classes in

H∗(B∗(X, s)), B∗(X, s) = C∗(X, s)/G(X) (3.1.9)

where C∗(X, s) = {(A, ϕ) ∈ C(X, s) |ϕ ̸= 0} is the space of irreducible configurations. Out of
these, we obtained the Seiberg–Witten invariants of X, s as the map

m(·|X, s) : H∗(B∗(X, s);Z)→ Z. (3.1.10)

which evaluates a cohomology class on the homology classes obtained above.
We then went into a brief discussion about cutting the manifoldX into two piecesX = X1∪YX2

along a hypersurface Y ⊂ X. The idea was to assume that the metric on X is cylindrical
near Y , to stretch the length of the cylinder to infinite, and try to keep track of the Seiberg–
Witten moduli spaces. The main problem is that the pieces X1 and X2 are not closed,
which makes the analysis or the Seiberg–Witten equations considerably more complicated.
Nevertheless, there was hope to be able to define relative Seiberg–Witten invariants of X1

and X2 which allow to recover those of X. The relative invariants take values in certain
monopole Floer homology groups associated to the common boundary Y . The latter are
constructed using the Seiberg–Witten equations on the infinite cylinder R× Y .

3.2 The Seiberg–Witten equations on cylinders revis-
ited

We have already started discussing the Seiberg–Witten equations on cylinders in Section 2.4.7.
Here’s a review of what we’ve learned so far. Let Y be a connected Riemannian 3–manifold
with spinor bundle (SY , ρY ) and Z = R×Y the infinite cylinder with metric gZ = dt2+p∗gY
where we write t for the R–coordinate and p : Z = R× Y → Y for the projection onto Y .

(1) If E → Y is any vector bundle on Y , then sections of Ê = R × E ∼= p∗E → Z can be
viewed as paths of sections on Y . Every connection ∇ on E determines a connection
on Ê which can be informally written as ∇̂ = d

dt +∇.

(2) Every ω ∈ Ωp(Z;C) can be uniquely written as

ω = η̂ + dt ∧ χ̂. (3.2.1)

where η ∈ C∞(R,Ωp(Y ;C)) and χ ∈ C∞(R,Ωp−1(Y ;C)).

(3) Self-dual 2–forms on Z correspond to paths of 1–forms on Y via the bijection

C∞(R,Ω1(Y ))
∼=−→ Ω2

+(Z), b 7→ ∗̂Y b+ dt ∧ b̂. (3.2.2)

(4) If (SY , ρY ) is a spinor bundle for Y , then SZ = ŜY ⊕ ŜY is a spinor bundle on Z with
Clifford multiplication

ρZ(dt) =

(
0 − id
id 0

)
and ρZ(p

∗a) =

(
0 ρY (a)

ρY (a) 0

)
for a ∈ T ∗Y . (3.2.3)
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We fix a spinc connection B0 ∈ A(SY ) and let A0 = B̂0 ⊕ B̂0. Then every spinc

connection A ∈ A(SZ) can be uniquely written as

A = A0 + a = A0 + b̂+ ĉdt. (3.2.4)

where a ∈ iΩ1(Z) corresponds to paths b ∈ C∞(R, iΩ(Y )) and c ∈ C∞(R, iΩ0(Y )) ∼= iC∞(Z).
We say that A is in temporal gauge if c = 0.

(5) The Seiberg–Witten equations for (A, ϕ) ∈ C(Z) take the form

D+
AΦ = 0 ϕ̇+ (DBϕ+ cϕ) = 0

1
2F

+
At − ρ−1

Z (ΦΦ∗)0 = 0 ḃ+
(
∗Y dY b− dc+ ρ−1

Y (ϕϕ) + ∗Y 1
2FBt

0

)
= 0

If A happens to be in temporal gauge, the equations simplify to

D+
AΦ = 0 ϕ̇+ (Dϕ+ ρ(b)ϕ) = 0

1
2F

+
At − ρ−1

Z (ΦΦ∗)0 = 0 ḃ+
(
∗Y dY b+ ρ−1

Y (ϕϕ) + ∗Y 1
2FBt

0

)
= 0

Lecture 2, 17.10.23
The Chern–Simons–Dirac functional. Note that the equations on the right hand side
are formally a negative flow equation in the based configuration space C0(Y ). Th generator
is the Seiberg–Witten vector field

X : C0(Y )→ C0(Y ), X (b, ϕ) =
(
∗Y dY b+ ρ−1

Y (ϕϕ)0 + ∗Y 1
2FBt

0

Dϕ+ ρ(b)ϕ

)
(3.2.5)

in terms of which the equations can be written as

(ḃ, ϕ̇) + X (b, ϕ) = 0. (3.2.6)

Moreover, it turns out that X (b, ϕ) can be considered as the gradient of a smooth function

L : C0(Y )→ R, (3.2.7)

called the Chern–Simons–Dirac functional (CSD), with respect to the (real) L2 inner prod-
uct on C0(Y ). The CSD functional is defined as

L(b, ϕ) = 1
2 (ϕ,DBϕ)0 +

1
2 (b, ∗Y dY b)0 +

1
2 (b, ∗Y FBt

0
)0

= 1
2 (ϕ,Dϕ)0 +

1
2 (b, ∗Y dY b)0 +

1
2 (ϕ, ρ(b)ϕ)0 +

1
2 (b, ∗Y FBt

0
)0

(3.2.8)

Lemma 3.1. We have ∇L(b, ϕ) = X (b, ϕ).

Proof. The derivative of 1
2 (ϕ, ρ(b)ϕ)0 in the direction of (c, ψ) can be computed as

d
dt

∣∣
t=0

1
2

(
ϕ+ tψ, ρ(b+ tc)(ϕ+ tψ)

)
0
= 1

2

(
ϕ, ρ(c)ϕ

)
0
+ 1

2

(
ϕ, ρ(b)ψ

)
0
+ 1

2

(
ψ, ρ(b)ϕ

)
0

=
(
ρ−1(ϕϕ∗)0, c

)
0
+

(
ρ(b)ϕ, ψ

)
0

Here we have used that ρ(b)∗ = ρ(b) and the identity 1
2 (ϕ, ρ(c)ϕ)0 = (ρ−1(ϕϕ∗)0, c)0 which

was discussed in the exercises. The computation shows that 1
2 (ϕ, ρ(b)ϕ)0 admits an L2 gra-

dient given by
(
ρ−1(ϕϕ∗)0, ρ(b)ϕ

)
. The other summands of L can be treated similarly. The

computations are straight forward and produce the remaining terms in X .

Temporal gauge fixing. We may or may not have already discussed the following lemma
which allows to restrict our attention to configurations in temporal gauge.

Lemma 3.2 (Temporal gauge fixing).
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(i) For every A ∈ A(SZ) there is a gauge transformation of the form u = eif ∈ G(Z) such
that uA is in temporal gauge.

(ii) Let A ∈ A(SZ) be in temporal gauge and u ∈ G(Z). Then uA = A− u−1du is also in
temporal gauge if and only if ∂tu = 0, that is, u(t, y) = u0(y) for some u0 ∈ G(Y ).

Proof. (i) Write A = A0 + b̂+ ĉ dt as in (3.2.4). For u = eif we have

u−1dZu = i df = i(∂tf dt+ dY f) (3.2.9)

and thus
u∗A = A− u−1du = A0 + i(b− dY f) + i(c− ∂tf) dt. (3.2.10)

Define u = eif with f ∈ C∞(Z) given by

f(t, y) =

∫ t

0

c(s, y) ds. (3.2.11)

Then ∂tf = c so that u∗A is in temporal gauge.
(ii) For arbitrary u ∈ G(Z) and A ∈ A(SZ) in temporal gauge, we find

u∗A = A− u−1dY u− u−1∂tu. (3.2.12)

Since u−1dY u ∈ iΓ(p∗T ∗Y ), the connection u∗A is in temporal gauge iff ∂tu = 0.

Combining the maps C∞(R,A(SY ))→ A(SZ) and Γ(S+
Z )
∼= C∞(R,Γ(SY )) with Lemma 3.2,

we arrive at the following conclusion:

Corollary 3.3. The map C∞(R, C(Y ))→ C(Z) induces a homeomorphism

C∞(
R, C(Y )/G(Y )

) ∼=−→ C(Z)/G(Z) = B(Z). (3.2.13)

Remark 3.4. While conceptually convenient, the temporal gauge condition is not perfect.
Unlike the Coulomb condition on closed manifolds, it does not reduce the Seiberg–Witten
equations to an ellitpic system. The temporal gauge condition is also generally incompatible
with the Coulomb condition d∗Za = 0 on the cylinder. We will have to find tricks to work
around this.

Gauge invariance of the Chern–Simons–Dirac functional. Let us see how the CSD
functional behaves under gauge transformations.

Lemma 3.5. For (b, ϕ) ∈ C0(Y ) and u ∈ G(Y ) we have

L(u(b, ϕ))− L(b, ψ) = 1
2 (u

−1du, ∗FBt
0
)0. (3.2.14)

Proof. A straight forward computation using D(uϕ) = uDϕ + ρ(du)ϕ show that the sum
1
2 (ϕ,Dϕ)0 +

1
2 (b, ∗Y dY b)0 +

1
2 (ϕ, ρ(b)ϕ)0 is fully gauge invariant. The remaining summand

1
2 (b, ∗Y FBt

0
)0 changes as indicated.

Using that FBt
0
and u−1du are de Rham representatives of 2πi c1(SY ) and the class

[u] ∈ H1(Y ;Z) obtained by pulling back the generator of H1(T;Z), we can also write the
change of L as

L(u(b, ϕ))− L(b, ψ) = 2π2 ⟨[u] ∪ c1(SY ), [Y ]⟩ ∈ 2π2Z. (3.2.15)

We can draw the following conclusions:

(a) L is invariant under the full gauge group if and only if c1(SY ) = 0.

(b) L is always invariant under the subgroup of constant gauge transformations Gc(Y ) ∼= T.

(c) L descends to a well-defined map C0(Y )/G(Y )→ R/2π2Z ∼= S1.

In summary, the Seiberg–Witten equations on Z are equivalent to the negative gradient flow
equation

ẋ+∇L(x) = ẋ+ X (x) = 0 (3.2.16)

on the infinite dimensional space C0(Y ) for the T–invariant CSD functional L : C0(Y )→ R.
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Towards monopole Floer homology. Now if X is a compact 4–manifold with bound-
ary Y , we can attach a cylindrical end and study the Seiberg–Witten equations on Y

X∞ = X ∪Y R+ × Y. (3.2.17)

As mentioned before, there is a notion of ‘energy’ for monopoles and – after choosing suitable
perturbations – one can show that finite energy monopoles on X∞ have asymptotic limits
in C0(Y ) on the cylindrical end, well-defined up to gauge, which are critical points of L.
While all of this is admittedly rather sketchy, it hopefully gives a plausible explanation
why it might be fruitful to try and define something like “T–equivariant Floer homology”
based on the equation ẋ + ∇L(x) = 0. This brings us back to the question how to define
“T–equivariant Floer homology” in finite dimensional setting.

63



Chapter 4

Morse theory for circle actions

We review a Morse theoretic description of the T–equivariant Borel homology due to Kro-
nheimer and Mrowka [KM07, Ch. 2] which will serve as a blueprint for the subsequent
construction of monopole Floer homology. Following [KM07, Ch. 2.5, p. 31], we consider
the following situation:

▶ P is a closed T–manifold.

▶ Q = PT is the fixed point set.

▶ B = P/T is the orbit space.

▶ We suppose that the T–action is semi-free in the sense that T acts freely on P \ PT.

The goal is to obtain a Morse theoretic description of the Borel homology HT
∗ (P ) using

a T–invariant Morse–Smale pair (f, ξ). Let us think about the two extreme cases first:

(1) If T acts freely on P , that is, if Q = ∅, then the P/T is a smooth manifold and (f, ξ) de-
scends to a Morse–Smale pair (f̄ , ξ̄). We know from Lemma 1.38 thatHT

∗ (P )
∼= H∗(P/T)

and the right hand side can be computed from the Morse complex of (f̄ , ξ̄) by Theo-
rem 1.11.

(2) If T acts trivially on P , that is, if P = Q, then (f, ξ) is just a Morse–Smale pair in the
ordinary sense. Since T acts trivially on Q = PT, we know from Lemma 1.37 that

HT
∗ (Q) ∼= HT

∗ (Q× CP∞) ∼= H∗(Q)⊗Z H∗(CP∞) (4.0.1)

and we can at least compute H∗(Q) directly using the Morse complex of (f, ξ).

The intuitive idea is to mix Morse theory on the fixed point set Q and on the orbit
space (P \Q)/T, which is always a smooth manifold, but not compact unless Q = ∅. This
is done by passing to an associated manifold with boundary Pσ on which T acts freely and
to set up a notion of Morse homology for manifolds with boundary.

4.1 Morse complexes for manifolds with boundary

Let B be a Riemannian n–manifold with non-empty boundary and ν the outward unit
normal field along ∂B. There is a standard approach to compute H∗(B) and H∗(B, ∂B) by
Morse theoretic means, in when one considers Morse functions f : B → R which are constant
on ∂B and achieve their maximum or minimum on ∂B, respectively. This is not what we
will do! Instead, we will work with certain Morse functions on B which also restrict to Morse
functions on ∂B (c.f. [KM07, Ch. 2.4]).
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We form the double B̃ of B as

B̃ = (B ⨿B)/ ∼ (4.1.1)

where every boundary point in the first copy of B is identified with its other copy in the
second factor. A choice of collar for ∂B determines a (reasonably canonical) smooth structure

on B̃ such that the two embeddings of B are smooth. We consider B as a codimensions 0
submanifold using the first summand. The boundary ∂B then becomes the fixed point set
of the smooth involution

i : B̃ → B̃ (4.1.2)

that interchanges the two factors. Note that B̃ is always a closed smooth manifold.

Definition 4.1. Let B be a compact smooth manifold with boundary and B̃ its double.
We consider pairs (f̃ , g̃) consisting of an i–invariant Morse function f̃ : B̃ → R and an i–

invariant Riemannian metric g̃ on B̃. Let (f, g) be the restriction to B and ξ = ∇gf the
gradient of f with respect to g. We call (f, ξ) a vertical Morse pair.

This definition allows f to have critical points on ∂B and we have to be careful The
possible critical points of f on ∂B are then in one-to-one correspondence with the i–invariant
critical points of f̃ .

Lemma 4.2. The vector field ξ = ∇gf is everywhere tangent to ∂B. Moreover, the restric-
tion f∂ = f |∂B : ∂ → R is a Morse function with Crit(f∂) = Crit(f) ∩ ∂B and ξ∂ = ξ|∂B is
its gradient with respect to g|∂B.

Proof. Let ν be the unit outward normal field along ∂B and ν̃ its canonical lift to B̃. Then
i∗ν̃ = −ν and thus

⟨ξ, ν⟩ = df(ν) = df̃(ν̃) = d(f̃ ◦ i)(ν) = df̃(i∗ν̃) = −df(ν) = 0. (4.1.3)

Thus ξ is tangent to ∂B, which implies ξ∂ considered as a vector field on ∂B is the gradient
of f∂ with respect to to g|∂B so that

Crit(f∂) = Crit(f) ∩ ∂B. (4.1.4)

A similar computation shows that the Hessian Hpf(ν, w) at a critical point p of f on ∂B
vanishes for w ∈ Tp∂B. So in terms of the splitting TpB = Rν ⊕ Tp∂B, we can write

Hpf =

(
Hpf(ν, ν) 0

0 Hp(f
∂)

)
(4.1.5)

which shows that f∂ is a Morse function.
Lecture 3, 24.10.23

Based on the lemma, we can partition the set of critical points as follows:

Definition 4.3. We can decompose Crit(f) into three subsets:

co = {p ∈ Crit(f) | p ∈ B \ ∂B}
cs = {p ∈ Crit(f) | p ∈ ∂B, Hp(ν, ν) > 0}
cu = {p ∈ Crit(f) | p ∈ ∂B, Hp(ν, ν) < 0} .

(4.1.6)

Points in cs and cu are called boundary-stable and boundary-unstable, respectively. For
brevity, we henceforth write

c = Crit(f) = co ∪ cs ∪ cu and c∂ = Crit(f∂) = cs ∪ cu. (4.1.7)
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From here onward, we shift our focus to the gradient vector field ξ = ∇gf . After all,
we learned last semester (see p. 8) that the classical Floer complexes of Morse–Smale pairs
really only depend on the downward gradient flow generated by the equation ẋ+ ξ(x) = 0,
while the function f merely provides some control and guidance. We should expect the same
in the new situation. Recall that we have

c = Crit(f) = Z(ξ) = {p ∈M | ξ(p) = 0} (4.1.8)

and for a stationary point p ∈ Z(ξ) we saw in an exercise that

Hp(v, w) = ⟨v,Dpξ(w)⟩g . (4.1.9)

where Dpξ : TpB → TpB is the linearization of ξ at p defined in (1.1.19). The latter is a
self-adjoint isomorphism and the Morse index µ(p) is the number of negative eigenvalues
of Dpξ counted with multiplicity.

Corollary 4.4. Let (f, ξ) be a vertical Morse pair.

(i) The equation ẋ+ ξ(x) = 0 generates a flow on B, that is, all maximal integral curves
are defined on all of R.

(ii) The flow preserves ∂B and restricts to the flow generated by ẋ+ ξ∂(x) = 0 on ∂B.

(iii) All flow trajectories γ : R→ B have asymptotic limits γ(∞) = limt→±∞ γ(t) ∈ c.

This means that we can define stable and unstable manifolds and moduli spaces of tra-
jectories as before, but we have to pay special attention to the interaction of flow trajectories
with the boundary. The first observation is that we can partition flow trajectories as follows:

▶ Some trajectories γ stay entirely within ∂B and necessarily have limits γ(±∞) ∈ c∂ .

▶ Others stay entirely within the interior B \ ∂B and necessarily have limits

γ(−∞) ∈ co ∪ cu and γ(∞) ∈ co ∪ cs. (4.1.10)

Definition 4.5. Let (f, ξ) be a vertical Morse pair. For p, q ∈ c = Z(ξ) = Crit(f) let

µ(p) = index of p with respect to f (or equivalently ξ)

Up = unstable manifold of p with respect to ξ

Sq = stable manifold of q with respect to ξ

M(p, q) = Up ∩ Sq, moduli space of parameterized trajectories from p to q

M̂(p, q) =M(p, q)/R, moduli space of unparameterized trajectories

For p, q ∈ c∂ = c ∩ ∂B, we have analogues defined using (f∂ , xi∂) instead:

µ∂(p), U∂p , S∂q , M∂(p, q) = U∂p ∩ S∂p , and M̂∂(p, q) =M∂(p, q)/R.

We make some observations about the relation of the two sets of data for p ∈ c∂ , which
follow from Lemma 4.2 and the description of the Hessians in its proof:

Theorem 4.6 (Stable manifold theorem, vertical case). Let (f, ξ) be a vertical Morse pair
on an n–manifold with boundary B.

(i) If p ∈ co, then Up and Sp are smooth submanifolds of B \ ∂B of dimensions µ(p)
and n− µ(q), respectively.

(ii) If p ∈ cs, then µ(p) = µ∂(p) and
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▶ Up = U∂p is a smooth submanifold of ∂B of dimension µ(p).

▶ Sp is a smooth submanifold of B of dimension n−µ(p) with (possibly empty) bound-
ary ∂Sp = S∂p .

(iii) Similarly, if p ∈ cu, then µ(p) = µ∂(p) + 1 and

▶ Up is a smooth submanifold of B of dimension µ(p) with (possibly empty) bound-
ary ∂Up = U∂p .

▶ Sp = S∂p is a smooth submanifold of ∂B of dimension n− µ(p).

Up = U∂p (4.1.11)

This leaves us with a bit of a conundrum, since for p ∈ cs and q ∈ cu we have Up ⊂ ∂B
and Sq ⊂ ∂B, and submanifolds of ∂B can never intersect transversely in B. However, in
that case we have

M(p, q) = Up ∩ Uq = U∂p ∩ U∂q =M∂(p, q) ⊂ ∂B (4.1.12)

can never be transverse in B. Nevertheless, they can be transverse in ∂B, and we have

M(p, q) =M∂(p, q) ⊂ ∂B (4.1.13)

This suggests the following vertical version of the Smale condition in Definition 1.4.

Definition 4.7 (c.f. [KM07, Def. 2.4.2]). A vertical Morse pair (f, ξ) is called regular or a
vertical Morse–Smale pair, if for all p, q ∈ c we have

Sp ⋔ Uq in ∂B if p ∈ cs and q ∈ cu,

Sp ⋔ Uq in B otherwise.
(4.1.14)

Pairs p ∈ cs and q ∈ cu as above are called boundary-obstructed.

The following is clear from the definition:

Lemma 4.8. Let (f, ξ) be a vertical Morse–Smale pair. If p, q ∈ c, then M(p, q) is a smooth
manifold of dimension

dimM(p, q) =

{
µ(p)− µ(q) + 1, p ∈ cs and q ∈ cu (boundary-obstructed)

µ(p)− µ(q), otherwise.
(4.1.15)

If p, q ∈ c∂ , then M∂(p, q) is a smooth manifold of dimension

dimM∂(p, q) =


µ(p)− µ(q) + 1, p ∈ cs and q ∈ cu (boundary-obstructed)

µ(p)− µ(q)− 1, p ∈ cu and q ∈ cs

µ(p)− µ(q), else (i.e. if p, q ∈ cs or p, q ∈ cu).

(4.1.16)

Proof. The vertical Smale condition guarantees that all moduli spaces are manifolds. In
the boundary obstructed case we have M(p, q) = M∂(p, q). In all other cases, the formula
for dimM(p, q) follows, since Up has dimension µ(p) and Sq has codimension µ(q) in B.
For p, q ∈ c∂ we have dimM∂(p, q) = µ∂(p)− µ∂(q). In the boundary obstructed case when
p ∈ cs and q ∈ cu, we have µ∂(p) = µ(p) and µ∂(q) = µ(q)− 1, which implies the dimension
formula in that case. The other cases are similar.

We also have the following finiteness theorem for 0-dimensional moduli spaces:

Proposition 4.9. Let (f, ξ) be a vertical Morse–Smale pair.
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(i) If p, q ∈ c and dimM(p, q) = 1, then M̂(p, q) is a finite set.

(ii) If p, q ∈ c∂ and dimM∂(p, q) = 1, then M̂∂(p, q) is a finite set.

Proof. This follows from Proposition 1.6, the corresponding finiteness result in the horizontal
case, applied to f∂ and f̃ .

We now have all ingredients to build Floer-style chain complexes. At this point, we ask
two questions:

(Q1) What can we define by counting points in 0–dimensional moduli spaces?

(Q2) How does that help us?

Again, we work mod 2 to avoid the discussion of orientations.

Definition 4.10. Let (f, ξ) be a vertical Morse–Smale pair on B. We define

n(p, q) = #2 M̂(p, q) ∈ Z2

n̄(p, q) = #2M̂
∂(p, q) ∈ Z2

(4.1.17)

whenever the moduli spaces are 0–dimensional and n(p, q) = 0 = n̄(p, q) otherwise.
For α ∈ {o, s, u} we let Cα be the Z2–vector space generated by cα and write Cαk for the

subspace generated by the points p ∈ cα with µ(p) = k. The point counts n(p, q) and n̄(p, q)
give rise to linear maps

∂αβ : C
α → Cβ , ∂ ⟨p⟩ =

∑
q∈cβ

n(p, q) ⟨q⟩ (4.1.18)

∂̄αβ : C
α → Cβ , ∂̄ ⟨p⟩ =

∑
q∈cβ

n̄(p, q) ⟨q⟩ (4.1.19)

for all combinations α, β ∈ {o, s, u} that make sense. Taking gradings into account, we have
defined eight maps:

∂oo : C
o
k → Cok−1 ∂ss =∂̄ss : C

s
k → Csk−1

∂os : C
o
k → Csk−1 ∂uu =∂̄uu : C

u
k → Cuk−1

∂uo : C
u
k → Cok−1 ∂su =∂̄su : C

s
k → Cuk

∂us : C
u
k → Csk−1 ∂̄us : C

u
k → Csk−2

Out of these linear maps we will eventually obtain Floer complexes computing the ho-
mology sequence of the pair (B, ∂). A few observations are in order:

▶ There are no maps Cs → Co and Co → Cu, because nothing can flow from cs into the
interior or from the interior into cu.

▶ The coincidences ∂su = ∂̄su, ∂
s
s = ∂̄ss , and ∂uu = ∂̄uu hold, because M(p, q) = M∂(p, q) in

those cases.

▶ There are two maps ∂us , ∂̄
u
s : C

u → Cs, because the moduli spaces M(p, q) and M∂(p, q)
are not the same in that case.

▶ Most of the maps ∂αβ and ∂̄αβ decrease the index by 1, as expected. However, the

maps ∂su = ∂̄su and ∂̄us behave unexpectedly.

▶ The peculiar behavior of ∂su is not surprising, as the map counts precisely those trajec-
tories that violate the ordinary Smale condition.
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As a first step, we recognize the classical Floer complex of the pair (f∂ , ξ∂). Indeed, we find

Ck(f
∂ , ξ∂) = Csk ⊕ Cuk+1 =: C̄k (4.1.20)

and the usual Floer differential is given by

∂̄ : C̄k → C̄k−1, ∂̄ ⟨p⟩ =
∑
q

n̄(p, q) ⟨q⟩ (4.1.21)

which can be rewritten as

∂̄ =

(
∂̄ss ∂̄us
∂̄su ∂̄uu

)
. (4.1.22)

As a consequence of Theorem 1.11, we get:

Lemma 4.11. We have ∂̄∂̄ = 0 and H∗(C̄, ∂̄) ∼= H∗(∂B).

Now that we have managed to compute H∗(∂B) using the data (f, ξ) on B, it remains
to find H∗(B) and H∗(B, ∂B). This turns out to be rather annoying, but possible. Before
moving on, let us recall that how have proved ∂̄∂̄ = 0 in Proposition 1.9:

▶ We studied 2–dimensional moduli spaces M(p, q) and noticed that sequences of trajecto-
ries therein may split into what we called broken trajectories in the limit.

▶ We noticed that the quotients M̂(p, q) have compactifications M̄(p, q) obtained by adding
broken trajectories which are compact 1-dimensional manifolds with boundary (see The-
orem 1.7).

▶ We noticed that the matrix entries of ∂̄∂̄ count points in ∂M̄(p, q).

Alternatively, we could have proved ∂̄∂̄ = 0 by relating (f∂ , ξ∂) to a cell (or handle)
decomposition of ∂B and arguing that the Floer differential agrees with the cellular differ-
ential. The key to this approach is to exhaust ∂B by sub-level sets of {f∂ ≤ a}, a ∈ R,
and studying the effect of passing critical levels. It is instructive, to play this through for f
and B. For simplicity, we assume that f is injective on c so that each critical level contains
exactly one critical point. By drawing 2–dimensional pictures, we can get an idea how the
topology of the sub-level sets changes when crossing critical levels. With some effort the
following table can be made precise:

type and index effect on B effect on ∂B
co0 0–cell —
cs0 0–cell 0–cell

co1 1–cell —
cs1 1–cell 1–cell
cu1 — 0–cell
...
cok k–cell —
csk k–cell k–cell
cuk — (k − 1)–cell
...

con−1 (n− 1)–cell —
csn−1 (n− 1)–cell (n− 1)–cell
cun−1 — (n− 2)–cell

con n–cell —
cun — (n− 1)–cell
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Lecture 4, 31.10.23
This suggests the following:

▶ C̄k = Csk⊕Cuk+1 should support a Floer-style differential ∂̂ such that (C̄, ∂̄) is isomorphic
to a cellular chain complex which computes H∗(∂B) This we already know.

▶ Čk = Cok ⊕ Csk should support a Floer-style differential ∂̌ such that (Č, ∂̌) is isomorphic
to a cellular chain complex which computes H∗(∂B)

▶ There should also be a chain map C̄ → Č inducing the map H∗(∂B)→ H∗(B).

We begin by writing down the chain complexes that will eventually do the job.

Definition 4.12 (c.f. [KM07, 2.4.4 & 22.2.1]). Let (f, ξ) be a vertical Morse–Smale pair
on B. In addition to (C̄, ∂̄) (“C–bar”), we consider the graded Z2–vector spaces Č (“C-to”)
and Ĉ (“C–from”) given by

Čk = Cok ⊕ Csk and Ĉk = Cok ⊕ Cuk (4.1.23)

together with the following diagram of linear maps

Ĉk+1 C̄k Čk Ĉk

Ĉk C̄k−1 Čk−1 Ĉk−1

p

∂̂

i

∂̄

j

∂̌ ∂̂

p i j

(4.1.24)

defined by the matrices

∂̂ =

(
∂oo ∂uo
−∂̄su ∂os − ∂̄su∂us

)
, ∂̌ =

(
∂oo −∂uo ∂̄su
∂os ∂̄ss − ∂us ∂̄su

)
, ∂̄ =

(
∂̄ss ∂̄us
∂̄su ∂̄uu

)
(4.1.25)

i =

(
0 −∂uo
1 −∂us

)
, j =

(
1 0
0 −∂su

)
, p =

(
∂os ∂us
0 1

)
. (4.1.26)

Here’s the punchline:

Theorem 4.13 (c.f. [KM07, 2.4.5 & 22.2.1]). We have ∂̌∂̌ = 0 and ∂̂∂̂ = 0 and the di-
agram (4.1.24) commutes.1 Furthermore, there are isomorphisms that make the following
diagram commute:

Hk+1(Ĉ, ∂̂) Hk(C̄, ∂̄) Hk(Č, ∂̌) Hk(Ĉ, ∂̂)

Hk+1(B, ∂B) Hk(∂B) Hk(B) Hk(B, ∂B).

p∗

∼=

i∗

∼=

j∗

∼= ∼=

Proof (sketch). The proof has three steps:

(1) Proving the identities ∂̌2 = 0, ∂̂2 = 0, etc.

(2) Proving that of H∗(Č) and H∗(Ĉ) and the maps i∗, j∗, p∗ are independent of (f, ξ).

(3) Identifying the homology groups and maps.

As in the standard case in Proposition 1.9, the identities in (1) can be proved by study-
ing compactifications of 1–dimensional unparameterized moduli spaces M̂(p, q). The main
difference is that trajectories can break more than once:

1The left square only commutes, since we are working mod 2. For integer coefficients, we have ∂̄p = −p∂̂
while i and j are honest chain maps.
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Lemma 4.14 (cf. [KM07, 2.4.3]). Let p, q ∈ co be interior stationary points of ξ with µ(p) = k
and µ(q) = k − 2. Then M̂(p, q) has a compactification M̄(p, q) obtained by adding broken
trajectories from p to q. Every strictly broken trajectory in M̄(p, q) has either two or three
components and takes form

(γ1, γ2) ∈ M̂(p, r)× M̂(r, q) (4.1.27)

with r ∈ co with µ(r) = k − 1 or

(γ1, γ2, γ3) ∈ M̂(p, r1)× M̂(r1, r2)× M̂(r2, q) (4.1.28)

with r1 ∈ cs and r2 ∈ cu is a boundary-obstructed pair. Furthermore, the number of strictly
broken trajectories in M̄(p, q) is finite and even.

The independence of (f, ξ) in (2) not a trivial task, but it can be proved by adapting
the arguments for the standard case (see [Jos17, Thm. 7.9.3]). Once (2) is established, one
can make special choices for (f, ξ) such that the complexes Č and Ĉ behave like standard
Morse complexes with ∂B is horizontal and the function takes a maximum or minimum,
respectively.

4.2 The blow-up construction for semi-free T–actions
We now go back to semi-free circle actions. Recall the setup from the beginning of this
chapter:

▶ P is a closed T–manifold with semi-free action (i.e. T acts freely on P \Q)

▶ g̃ is a T–invariant Riemannian metric on P .

▶ Q = PT is the fixed point set; we assume Q ̸= ∅

▶ B = P/T is the orbit space.

▶ q : P → B is the orbit map

▶ Q̄ = q(Q) is the image of the fixed points

The goal is to describe the Borel homology of P using T–equivariant Morse pairs (f, ξ).
The strategy is to pass to a manifold with boundary on which T acts freely so that HT

∗
reduces to the ordinary homology of the quotient.

Disclaimer: This section was written hastily and is therefore a little terse.

We proceed a several step.

(1) Let N ⊂ D(N) ⊂ S(N) be the normal bundle of Q ⊂ P . Since the T action is semi-free,
it induces a complex structure on N . In particular, Q has even codimension in P , say 2k.

(2) The exponential map for g̃ gives a T–equivariant tube embedding

τ : (N,Q) ↪→ (P,Q) (4.2.1)

The complement P \ Q is non-compact with one (topologically) cylindrical end which
we can parameterize by

τ0 : (0, ϵ)× S(N)→ P \Q, τ0(t, v) = τ(tv). (4.2.2)
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(3) The oriented blow-up: We define the oriented blow-up of P along Q as

Pσ =
(
[0, ε)× S(N)

)
∪τ0 (P \Q). (4.2.3)

This is a compact manifold with boundary ∂Pσ ∼= S(N) and the T action on P \ Q
extends canonically to a free T–action on Pσ.

(4) The blow-down maps: The orbit space Bσ = Pσ/T is a smooth manifold with
boundary ∂Bσ ∼= P(N), the projectivization of N . We have a commutative diagram of
T-pairs

(Pσ, ∂P σ) (P,Q)

(Bσ, ∂Bσ) (B, Q̄)

π

qσ q

π̄

where the orbit map qσ : ∂Pσ → ∂Bσ corresponds to S(N)→ P(N), and π̄ : ∂Bσ → Q̄
corresponds to the bundle projection P(N)→ Q.

(5) Blowing up gradients: Let f̃ : P → R be a T–invariant smooth function and ξ̃ = ∇f̃
its gradient with respect to g̃.

▶ According to [KM07, 2.5.2], the restriction of ξ̃ to P \ Q extends to a smooth T–
invariant vector field ξ̃σ on Pσ which is everywhere tangent to ∂Pσ.

▶ ξ̃σ further descends to a smooth vector field ξσ on Bσ which is everywhere tangent
to ∂Bσ

From here on, the idea is to do non-equivariant Floer theory for ξσ on Bσ, assuming
the usual types of regularity conditions, and to related the results back to HT

∗ (P ).

(6) The flow of ξσ: As noted in [KM07, p. 34], ξσ is not a gradient in any natural way.
However, it behaves like one:

▶ The equation ẋ+ ξσ(x) = 0 generates a complete flow on Bσ.

▶ All trajectories have asymptotic limits in the set c = Z(ξσ) ⊂ Bσ of stationary points.

▶ For p ∈ c the linearization Dpξ : TpB
σ → TpB

σ has only real eigenvalues.

▶ The index µ(p) is the number of negative eigenvalues.

▶ We say that p ∈ c is non-degenerate if Dpξ
σ is an isomorphism.

▶ The vertical stable manifold theorem Theorem 4.6 holds for all non-degenerate p ∈ c.

(6 1
2 ) The flow of ξσ: It helps to take a closer look at the blown-up vector field ξσ along the

boundary. Recall from (4) that ∂Bσ ∼= P(N).

▶ A point p ∈ ∂Bσ correspond to (q,Cϕ) ∈ P(N) with q ∈ Q and ϕ ∈ S(Nq) and we
have a splitting

TpB
σ = Tp∂B

σ ⊕ R ∼= TpQ⊕ ⟨ϕ⟩⊥ ⊕ R (4.2.4)

where ⟨ϕ⟩⊥ ⊂ Nq is the complex orthogonal complement with respect to the Hermi-

tian metric on Nq given by h̃(v, w) = g̃(v, w)− ig̃(v, iw)
▶ The metric on P and the T–invariance of ξ̃ give a T–equivariant (∇ξ̃)q : TqP → TqP

which preserves Nq and thus gives a linear operator

Lq := (∇ξ̃)q|Nq
: Nq → Nq. (4.2.5)

▶ Projecting further onto ⟨ϕ⟩⊥ gives an operator

Lq : Nq → ⟨ϕ⟩⊥ , Lq(ψ) = Lqψ − ⟨ϕ,Lqψ⟩h̃ ϕ (4.2.6)
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▶ Using the splitting (4.2.4) the vector field ξσ on ∂Bσ can then be described as

ξσ(p) = (ξ̃(q), Lqϕ, 0) ∈ TpQ⊕ ⟨ϕ⟩⊥ ⊕ R. (4.2.7)

▶ If ξ̃(p) = 0, then Lq = Dq ξ̃ is self-adjoint and Lqϕ = Lqϕ−⟨ϕ,Lqϕ⟩g̃ ϕ. In particular,
we find

ξσ(p) = 0 ⇔

{
ξ̃(q) = 0 and

ϕ ∈ Nq is an eigenvector of Dq ξ̃
(4.2.8)

▶ Lastly, the solutions of ẋ + ξσ(x) = 0 are the images of solutions of ˙̃x + ξ̃σ(x̃) = 0
and writing x̃ = (q, ϕ) using the identification ∂Pσ ∼= S(N) we get

˙̃x+ ξ̃σ(x̃) = 0 ⇔

{
q̇ + ξ̃(q) = 0

(q∗∇)ϕ+ Lqϕ = 0.
(4.2.9)

[Update (7.11.23): This part was added later.]

(7) Equivariant Morse–Smale gradients: To proceed, we make stronger assumptions

on the function f̃ on P .

▶ f̃ is a T–Morse function (i.e. its Hessian is non-degenerate normal to critical orbits)

▶ f̃ |Q is a Morse function in the ordinary sense

⇝ As a consequence, c = Z(ξσ) is finite and all stationary point are non-degenerate.

▶ We require the vertical Smale condition from Definition 4.7 to hold for ξσ.

▶ For q ∈ Q with x̃(q) = 0 we require that Lq : Nq → Nq has a complex basis of
eigenvectors ϕ1(q), . . . , ϕk(q) with eigenvalues

λ1(q) < λ2(q) < · · · < λk(q). (4.2.10)

[Update (7.11.23): This conditions was previously stated incorrectly.]

In that case, we call ξσ regular.

[Note: All these assumptions can be arranged by careful choices of f̃ and g̃.]

(8) Floer complexes for regular ξσ: Assuming that ξσ is regular, we can apply the
theory from Section 4.1 to obtain Floer complexes Ĉ, C̄, and Č which compute the
homology sequence of the pair (Bσ, ∂Bσ).

[Note: It no problem that ξσ does not arise as the gradient of a Morse function. The
only thing that matters is that the structure of moduli spaces of trajectories is the same.
And this is the case here.]

(7 1
2 ) Comparing the indices: Assuming that ξσ is regular with f̃ as in (7), it is a natural

question how the indices of stationary points of ξσ are related to f̃ .

▶ Interior stationary points of ξσ correspond to critical T–orbits of f̃ in P \Q and the

index of the with respect to ξσ agrees with the index of the Hessian of f̃ normal to
the critical orbit.

▶ According to (6 1
2 ) and (7), we see that the stationary points on the boundary have

the form p = (q, [ϕi(q)]) and the index is given by

µ(p) =

{
µQ(q) + 2i− 2, if λi(q) > 0

µQ(q) + 2i− 1, if λi(q) < 0
(4.2.11)

where µQ(q) is the index of q as a critical point of f̃ |Q (cf. [KM07, Lem.2.5.5]).
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At interior stationary points of ξσ, the index with respect to to ξσ – that is, the num-
ber of negative eigenvalues of Dpξ

σ – agrees with the number of negative eigenvalues

of Dp̃ξ̃ = Hp̃f̃ restricted to the normal bundle of the corresponding crtivial orib

[Update (7.11.23): This part was added later.]

(9) Relation to Borel homology: The next task is to relate the complexes Ĉ, C̄, and Č
to the Borel homology sequence of the pair (P,Q).

(10) Identifying H∗(Ĉ): The homology of the complex Ĉ can be identified as follows:

HT
∗ (P,Q) HT

∗ (P
σ, ∂P σ) H∗(B

σ, ∂Bσ) H∗(Ĉ).
π∗
∼= ∼=

∼=
(10)

The first isomorphism follows from excision, the second from the freeness of the action,
and the last one is part of Theorem 4.13.

(11) Identifying H∗(C̄): We know from (10) that H∗(C̄) ∼= H∗(∂B
σ). Recall from (4)

that ∂Bσ
π∗−→ is a CPk−1–bundle and as such isomorphic to P(N) → Q. Using the

Leray–Hirsch theorem (LH), one can construct a commutative diagram

HT
∗ (∂P

σ) H∗(∂B
σ) H∗(CPk−1)⊗H∗(Q)

HT
∗ (Q) H∗(CP∞ ×Q) H∗(CP∞)⊗H∗(Q).

∼=
T–free

π∗

∼=
(LH)

incl∗×id

∼= ∼=

The vertical map on the right hand side is an isomorphism in degrees ≤ 2k− 2, so that

H≤2k−2(C̄) ∼= H≤2k−2(∂B
σ) ∼= HT

≤2k−2(Q). (4.2.12)

We can therefore consider H∗(C̄) as an approximation to HT
∗ (Q), the Borel homology

of the fixed points.

(12) Connectivity of (P, P \ Q): The identification of H∗(Č) requires a detour. As noted
in (1), Q has codimension 2k in P . It follows that the pair (P, P \Q) is non-equivariantly
(2k − 1)–connected, that is, the map

πi(P \Q)→ πi(P ) is

{
an isomorphism for i < 2k − 1

surjective for i = 2k − 1
(4.2.13)

This follows from transversality.

(13) Connectivity of Borel constructions: Recall that PhT = ET×T P is a fiber bundle
over BT with model fiber P , and similarly for P \ Q. Using (10) and the homotopy
sequences of these fiber bundles, one can show that the pair (PhT, (P \ Q)hT) is also
(2k − 1)–connected. It follows that

HT
i (P, P \Q) = Hi(PhT, (P \Q)hT) = 0, for i ≤ 2k − 1. (4.2.14)

(14) Identifying H∗(Č): Lastly, using (13) we can relate H∗(Č) to H
T
∗ (P ) again in a range:

HT
≤2k−2(P )

∼=←−−
(13)

HT
≤2k−2(P \Q)

∼=−→ HT
≤2k−2(P

σ)
∼=−→ H≤2k−2(B

σ) ∼= H≤2k−2(Č).

(4.2.15)
Again, we view H∗(Č) as an approximation to HT

∗ (P ).
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(15) Stabilizing to raise the codimension: There is a trick to increase the codimension Lecture 5, 7.11.23
of the fixed point set. Following [KM07, p. 42], we let

P(r) = P × Cr and f̃(r) = f̃ +

r∑
i=1

µi|zi|2 (4.2.16)

with real 0 < µ1 < µ2 < . . . and µ1 > maxp∈c λn(p).

▶ We can form Bσ(r) and ξ
σ
(r) as before.

▶ Although Bσ(r) is non-compact for r > 0, the vector field ξσ(k) generates a complete
flow which is sufficiently regular and has finitely many critical points.

▶ One can define complexes Ĉ(r), C̄(r), and Č(r) which compute HT
∗ (P,Q), HT

∗ (Q),

and HT
∗ (P ), the latter two in the increased range ∗ ≤ 2(r + k − 1).

▶ Lastly, one can argue that there are chain inclusions Č(r) ↪→ Č(r+1) and similarly for
the other flavors.

▶ One can thus form limit complexes Ĉ(∞), C̄(∞), and Č(∞) which compute the Borel
homology sequence of the pair (P,Q).

(16) The module structure: Recall that H∗(BT) ∼= H∗(CP∞) ∼= Z2[u] acts on all Borel
homology groups via the ordinary cap product. The action of u can be realized by chain
maps on the complexes Ĉ(r), C̄(r), and Č(r), at least in suitable ranges of degrees. The
details can be looked up in [LM18, Ch. 2.7].
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Chapter 5

Monopole Floer homology

Throughout this chapter, we fix the following data:

▶ Y is a closed, connected, oriented, Riemannian 3–manifold

▶ (S, ρ) is a spinor bundle for Y representing a spinc structure t ∈ Spinc(Y )

▶ B0 ∈ A(S) is a fixed spinc connection on S

▶ y0 ∈ Y is a base point

5.1 Outline of the construction

As mentioned, the Floer complexes for semi–free T–actions serve as a blueprint for the
construction of monopole Floer homology. The naive idea is that the Seiberg–Witten vector
field

X : C0(Y )→ C0(Y ), X (b, ϕ) =
(
∗db+ ρ−1(ϕϕ)0 + ∗ 12FBt

0

Dϕ+ ρ(b)ϕ

)
(5.1.1)

shares sufficiently many properties with T–equivariant Morse–Smale gradients after choosing
sufficient perturbations and passing to a gauge subquotient. Let us try to make this a little
more precise.

The CSD functional. Recall that the configuration spaces are given by

C0(Y ) = A(S)× Γ(S) and C(Y ) = iΩ1(Y )⊕ Γ(S) (5.1.2)

and are identified via (b, ψ) 7→ (B0 + b, ψ). We have already seen that the CSD functional

L : C0 → R, L(b, ψ) = 1

2
⟨d, ∗db⟩+ 1

2
⟨ψ,Dbψ⟩ (5.1.3)

descends to a (generally circle valued) function

L̄ : B(Y ) = C(Y )/G(Y ) ∼= C0(Y )/G(Y )→ R/d(t)Z. (5.1.4)

where d(t)Z = 2π2
〈
H1(Y,Z) ∪ c1(t), [Y ]

〉
⊂ 2π2Z. Since the G(Y )–action does not have

constant stabilizers, the orbit space B(Y ) cannot be a smooth manifold in any natural way.
So we cannot work on B(Y ) directly.
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Adding a base point. Let y0 ∈ Y be a base point. We consider the following subgroups
of the gauge group:

Gh(Y ) =
{
u ∈ G(Y )

∣∣ d∗(u−1du) = 0
}

(“harmonic gauge group”) (5.1.5)

G∗(Y ) = {u ∈ G(Y ) |u(y0) = 1} (“based gauge group”) (5.1.6)

Gh∗ (Y ) = Gh(Y ) ∩ G∗(Y ) (“based harmonic gauge group”) (5.1.7)

G⊥(Y ) = exp(iΩ0
0(Y )) (“unnamed gauge group”) (5.1.8)

Lemma 5.1. The choice of a base point y0 ∈ Y gives rise to product splittings

G(Y ) = T× G∗(Y ) = T× Gh∗ (Y )× G⊥(Y ) (5.1.9)

where T denotes the constant gauge transformation. Moreover, we have Gh∗ (Y ) ∼= H1(Y ;Z).

We learned last semester that G∗(Y ) acts freely on C0(Y ). Using suitable Sobolev com-
pletions, one can make sense of the orbit space

B̃(Y ) = C0(Y )/G∗(Y ) (5.1.10)

as an infinite dimensional smooth manifold with a residual action of G(Y )/G∗(Y ) ∼= T with

orbit space B(Y ) = B̃/T. Furthermore, the CSD functional descends to a T–invariant map

L̃ : B̃ → R/d(t)Z. (5.1.11)

Moreover, the L2 gradient

X = ∇L : C0(Y )→ C0(Y ), X (b, ϕ) =
(
∗db+ ρ−1(ϕϕ)0 + ∗ 12FBt

0

Dϕ+ ρ(b)ϕ

)
(5.1.12)

descends to a T–invariant vector field X̃ on B̃(Y ).

The basic strategy. The construction then proceeds as follows:

(1) Perturb the CSD functional to Lq = L+q using suitable functions q : C0(Y )→ R which,
among other things, admit L2 gradients that are G(Y )–invariant.

(2) As in the finite dimensional situation, form a blown-up configuration space B̃σ(Y ) on

which T acts freely and consider Bσ(Y ) = B̃σ(Y )/T. This will be an infinite dimensional
smooth manifold.

(3) Note that the gradient Xq = ∇Lq on C0(Y ) descends to a T–invariant vector field X̃q

on B̃(Y ) and gives rise to a vector field X σq on Bσ(Y ) as in the finite dimensional case.

(4) Consider the negative flow equation ẋ+ X σq (x) = 0 for paths x : R→ Bσ(Y ).

(5) Argue that for suitable choices of q the moduli spaces of trajectories share sufficiently
many properties with those of equivariant Morse–Smale gradients for semi-free T–actions
in finite dimensions.

(6) Use this to build chain complexes ĈM∗(Y ), CM∗(Y ), }CM∗(Y ).

(7) Prove that the homology groups ĤM∗(Y ), HM∗(Y ), and }HM∗(Y ) depend only on (Y, t).

(8) Throughout all of this, keep track of the relation to the Seiberg–Witten equations on
the infinite cylinder R× Y .
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Lecture 6, 14.11.23
The obstacles. There are several problems with the strategy outlined above.

(1) First of all, after Sobolev completions the “vector field” X σq is not actually a vector field
in any strict sense.

(2) The flow equation ẋ+X σq = 0 nevertheless makes sense, but it does not actually generate
a flow in any strict sense.

(3) Ideally, we would want trajectories x : R → Bσ(Y ) to have stationary points of X σq as
asymptotic limits. This is not at all clear!

(4) Next on the wish list are stable and unstable manifolds. Their existence can be guar-
anteed by careful choice of q. But it will turn out that they are necessarily infinite
dimensional. So there is no reasonable notion of Morse index! This makes gradings a
somewhat complicated story.

(5) The way out will be a relative index µ(x, y) which corresponds to the difference µ(x)−µ(y)
in the finite dimensional theory. Eventually, it will be possible to obtain smooth, finite
dimensional moduli spaces of trajectories. This issue is commonly referred to as achiev-
ing transversality.

(6) Next come compactness. With transversality in place, compactness of the moduli
space of broken trajectories most be proved.

(7) And then there is gluing which refers to the question which broken trajectories can
actually be realized as limits of unbroken trajectories.

5.2 Blown-up configuration spaces

Recall that for a closed spinc 3–manifold Y with a base point y0 ∈ Y we have found that

B̃(Y ) = C(Y )/G∗(Y ) (5.2.1)

carries a semi-free T–action whose fixed points are the G∗(Y )–orbits of reducible configura-
tions (A, 0) ∈ C(Y ). The idea is to mimic the Morse theoretic constructions from Chapter 4

for the CSD functional and its L2 gradient. We could try to construct the blow-up B̃σ(Y )
directly, but this his two drawbacks:

▶ First, this would require an a priori discussion of a smooth structure on B̃(Y ).

▶ Second, the orbit space B̃(Y ) typically does not have a linear structure.

From a technical perspective, it is more convenient to work with C(Y ) and the full gauge
group G(Y ), although this blurs the analogy with Section 4.2 a little. The discussion below
closely follows [KM07, Chs. 6 & 9].

5.2.1 The σ–model for 3–manifolds

While the G(Y )–action on C(Y ) is not semi-free, it only fails to be free on reducible configu-
rations (A, 0) which are stabilized by the constant gauge transformation (see Lemma 2.33).
We define the blown-up configuration space as

Cσ(Y ) = A(SY )× R+ × S(Γ(SY ))
= {(A, s, ϕ) ∈ A(SY )× R× Γ(SY ) | s ≥ 0, ∥ϕ∥L2 = 1}

(5.2.2)

where S(Γ(S)) the unit sphere with respect to the L2–norm. The corresponding blow-down
map is given by

π : Cσ(Y )→ C(Y ), π(A, s, ϕ) = (A, sϕ). (5.2.3)
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This is a bijection over the irreducible locus C∗(Y ) and

π−1(A, 0) = {(A, 0)} × S(Γ(S)) ∼= S(Γ(S)). (5.2.4)

The gauge group G(Y ) acts on Cσ(Y ) by

u(A, s, ϕ) = (A− u−1du, s, uϕ) (5.2.5)

The action is free, because u ̸= 0, and the blow-down map is G(Y )–equivariant.

5.2.2 The σ–model for 4–manifolds

Now let X be a compact spinc 4–manifold, possibly with boundary. The same discussion as
above applies and gives a blown-up configuration space and blow down map

Cσ(X) = A(SX)× R+ × S(Γ(S+
X)), π : Cσ(X)→ C(X) (5.2.6)

where S(Γ(S+
X)) is the L2–unit sphere. We want to have a blown-up version of the monopole

map

F : C(X)→ iΩ2
+(X)⊕ Γ(S−

X), F(A, ϕ) =
(
1
2F

+
At − ρ−1

X (ϕϕ∗)0, D
+
Aϕ

)
. (5.2.7)

For that purpose, we think of F as a section of the trivial bundle

V(X) = C(X)×
(
iΩ2

+(X)⊕ Γ(S−
X)

)
(5.2.8)

and consider the pull-back Vσ(X) = π∗V(X) over Cσ(X) (which is again just a trivial
bundle). We define the blown-up monopole map as

Fσ : Cσ(X)→ Vσ(X), Fσ(A, s, ϕ) =
(
1
2F

+
At − s2ρ−1

X (ϕϕ∗)0, D
+
Aϕ

)
(5.2.9)

and note that it is G(Y )–equivariant with respect to the obvious G(Y )–action on Vσ(X).
Moreover, we have

Fσ(A, s, ϕ) = 0 ⇔

{
F(A, sϕ) = 0, if s ̸= 0

F(A, 0) = 0 and D+
Aϕ = 0, if s = 0.

(5.2.10)

The blow-down map sends the locus r = 0 to the reducible locus of C(X). The equation
D+
Aϕ = 0 in Fσ(A, 0, ϕ) = 0 should be thought of as including normal information to the

reducible locus that is invisible to the equation F(A, 0) = 0.

Restriction maps and unique continuation. The use of the L2–norms in the construc-
tion of the blown-up configuration causes some trouble with restrictions:

▶ Similarly, if Z = I × Y and ϕ ∈ S(Γ(SZ)), then for t ∈ I it might happen that
ϕt = ϕ|{t}×Y ≡ 0.

▶ If X ′ ⊂ X is an interior domain and ϕ ∈ S(Γ(SX)), then it is possible that ϕ|X′ ≡ 0.

As a consequence, there are only partially defined restriction maps

{(A, s, ϕ) |ϕt ̸= 0} → Cσ(Y ), (A, s, ϕ) 7→ (A, s ∥ϕt∥L2(Y ) , ϕt/ ∥ϕt∥L2(Y )) (5.2.11)

{(A, s, ϕ) |ϕ|X′ ̸= 0} → Cσ(X ′), (A, s, ϕ) 7→ (A, s ∥ϕ∥L2(X′) , ϕ/ ∥ϕ∥L2(X′)) (5.2.12)

The first point is particularly awkward, since general elements of Cσ(I × Y ) will not give
rise to paths in Cσ(Y ). However, for solutions γσ = (A, s, ϕ) of Fσ(γσ) = 0 this trick still
works. This is guaranteed by the following ‘unique continuation theorem’ for spinc Dirac
operators.
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Theorem 5.2 (Unique continuation, cf. [KM07, Prop. 7.1.2 & 7.1.4]).

(i) Suppose that (A, ϕ) ∈ C(I×Y ) satisfies D+
Aϕ = 0. If ϕt = 0 for some t ∈ I, then ϕ = 0.

(ii) Suppose that (A, ϕ) ∈ C(X) satisfies D+
Aϕ = 0. If ϕ vanishes on an open subset of X,

then ϕ = 0.

In particular, for γσ = (A, s, ϕ) ∈ Cσ(I × Y ) with Fσ(γσ) = 0 we obtain a smooth path

γ̌σ : I → Cσ(Y ). (5.2.13)

As before, we can recover γσ from γ̌σ if and only if A is in temporal gauge.

The blown-up Seiberg–Witten equations as a flow. We now focus exclusively on
the case of a compact cylinder Z = I × Y . Suppose that γσ = (A, s, ϕ) ∈ Cσ(Z) satisfies
ϕt ̸= 0 for all t ∈ I. Then the corresponding path is given by

γ̌σ(t) =
(
Ǎ(t), s ∥ϕt∥L2(Y ) , ϕt/ ∥ϕt∥L2(Y )

)
=: (B(t), r(t), ψ(t)). (5.2.14)

We would like to view the equation Fσ(γσ) = 0 as a flow equation for the path.

Lemma 5.3. Suppose that γσ ∈ Cσ(Z) is in temporal gauge. Then Fσ(γσ) = 0 if and only
if γσ corresponds to a path γ̌σ = (B = B0 + b, r, ψ) in Cσ(Y ) satisfies

ḃ = − ∗ db− r2ρ−1(ψψ)0 − ∗ 12FBt
0

ṙ = −Λ(B, r, ψ) r
ψ̇ = −DBψ + Λ(B, r, ψ)ψ

(5.2.15)

where Λ(B, r, ψ) = ⟨ψ,DBψ⟩ is defined using the real L2 inner product on Γ(SY ).

Note that (5.2.15) can be written of the form ẋ+ X σ(x) = 0 with

X̃ σ : Cσ(Y )→ iΩ1(Y )⊕ R⊕ Γ(S),

X̃ σ(B, r, ψ) =

∗db+ r2ρ−1(ψψ)0 + ∗ 12FBt
0

Λ(B, r, ψ) r
DBψ − Λ(B, r, ψ)ψ

 .
(5.2.16)

Informally, we can consider this as a vector field on Cσ(Y ). Indeed, for (B, r, ψ) ∈ Cσ(Y ) we
have canonical isomorphisms

TBA(SY ) ∼= iΩ1(Y ), TrR+
∼= R, (5.2.17)

and the finite dimensional intuition TpS
n = ⟨p⟩⊥ ⊂ Rn+1 suggest that

TψS(Γ(SY )) ∼= ⟨ψ⟩⊥ = {κ ∈ Γ(SY ) | ⟨ψ, κ⟩ = 0} . (5.2.18)

We thus define ‘tangent spaces’

T(B,r,ψ)Cσ(Y ) = iΩ1(Y )⊕ R⊕ ⟨ψ⟩⊥ ⊂ iΩ1(Y )⊕ R⊕ Γ(S) (5.2.19)

and assemble them into a ‘tangent bundle’

TCσ(Y ) ⊂ Cσ(Y )×
(
iΩ1(Y )⊕ R⊕ Γ(S)

)
. (5.2.20)

Now, the last component of X σ(B, r, ψ) satisfies

⟨ψ,DBψ − Λ(B, r, ψ)ψ⟩ = ⟨ψ,DBψ − ⟨ψ,DBψ⟩ψ⟩

= ⟨ψ,DBψ⟩ − ⟨ψ,DBψ⟩ ∥ψ∥2︸ ︷︷ ︸
=1

= 0 (5.2.21)
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and we can therefore view it as a ‘vector field’

X̃ σ : Cσ(Y )→ TCσ(Y ). (5.2.22)

Moreover, if we think of Cσ(Y ) as an infinite dimensional manifolds with boundary

∂Cσ(Y ) = {(B, r, ψ) ∈ Cσ(Y ) | r = 0} , (5.2.23)

then X̃ σ is tangent to the boundary. Keeping on with the spirit of pretending, we might Lecture 7, 21.11.23
just as well compute the ‘derivative’ of the blow-down map

π∗ : TCσ(Y )→ TC(Y ) = C(Y )×
(
iΩ1(Y )× Γ(SY )

)
. (5.2.24)

Since π is given by restricting the product of the identity on A(X) and the scalar product
map R× Γ(SY )→ Γ(SY ) to R+ × S(Γ(SY )), we get

T(B,r,ψ)Cσ(Y ) ∋ (b, s, κ) 7→ π∗(b, s, κ) =
(
b, sψ + rκ

)
∈ T(B,rψ)C(Y ) (5.2.25)

We can also view the L2 gradient X̃ = ∇L of the functional L : C(Y ) → R as a vector
field on C(Y ). From this we see that

π∗X̃ σ(B, r, ψ) =
(

∗db+ r2ρ−1(ψψ∗)0 + ∗ 12FBt
0

⟨ψ,DBψ⟩ rψ + r(DBψ − ⟨ψ,DBψ⟩ψ)

)
= X̃ (B, rψ) (5.2.26)

In particular, X̃ σ corresponds to X̃ over the irreducible locus C∗(Y ) where π is a ‘diffeomor-

phism’. As for the stationary points of X̃ σ and X̃ , we find:

Corollary 5.4. For (B, r, ψ) ∈ Cσ(Y ) we have

X σ(B, r, ψ) = 0 ⇔

{
X (B, rψ) = 0, r ̸= 0

X (B, 0) and ψ is an eigenvector of DB , s = 0.
(5.2.27)

In the case r = 0, the eigenvalue is Λ(B, 0, ϕ)

This should be compared with (4.2.8) in the finite dimensional toy case. The main
difference is that DB is a self-

Remark 5.5. Lastly, we can pretend that G(Y ) is an infinite dimensional Lie group and that
its action on the various spaces if sufficiently well behaved so that the quotient

Bσ(Y ) = Cσ(Y )/G(Y ) (5.2.28)

is an infinite dimensional smooth manifold. The vector field X̃ σ would then descend to a
vector field

X σ : Bσ(Y )→ TBσ(Y ). (5.2.29)

Moreover, B̃(Y ) = C(Y )/G∗(Y ) would be a semi-free T–manifold and the construction would

factor through B̃σ(Y ) = Cσ(Y )/G∗(Y ), realizing the X σ as the blow-up of the gradient of

the T–invariant CSD functional on B̃(Y ) in full analogy with Section 4.2.

5.2.3 The τ–model for cylinders

For a cylinder Z = I × Y there is another way to write the flow equations

ẋ+ X σ(x) = 0, x : I → Cσ(Y ) (5.2.30)

in terms of a 4–dimensional configuration space. This is the so-called τ–model for the
blown-up configuration space on Z:

Cτ (Z) =
{
(A, s, ϕ)

∣∣∣∀t : s(t) ≥ 0, ∥ϕ(t)∥L2(Y ) = 1
}
⊂ A(Z)× C∞(I)× Γ(S+

Z ) (5.2.31)
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This comes with a similar blow-down map also denoted by

π : Cτ (Z)→ C(Z), (A, s, ϕ) 7→ (A, sϕ) (5.2.32)

which is equivariant with respect to the G(Z) action on Cτ (Z) defined by

u(A, s, ϕ) = (A− u−1du, s, uϕ). (5.2.33)

We begin with a few observations on the relation of Cτ (Z) and Cσ(Z).
▶ A path I → Cσ(Y ) uniquely determined elements of Cσ(Z) and Cτ (Z) in temporal gauge.

▶ Unlike as for Cσ(Z), every element γ = (A, s, ϕ) ∈ Cτ (X) determines a path γ̌ : I → Cσ(Y )
in the obvious way, and γ is determined by γ̌ if and only if it is in temporal gauge.

▶ The definition of Cτ (Z) does not require Z to be compact.

There is also a τ–version of a blown-up Seiberg–Witten map:

Fτ : Cτ (Z)→ iΩ2
+(Z)⊕ C∞(I,R)⊕ Γ(S−

Z )

Fτ (A, s, ϕ) =


1
2F

+
At − s2ρ−1

Z (ϕϕ∗)0
ṡ+

〈
D+
Aϕ, ρZ(dt)

−1ϕ
〉
L2(Y )

s

D+
Aϕ−

〈
D+
Aϕ, ρZ(dt)

−1ϕ
〉
L2(Y )

ϕ

 (5.2.34)

Lemma 5.6 (cf. [KM07, p. 119 f.]). (i) Let γ : I → Cσ(Y ) be a smooth path and γτ ∈ Cτ (Z)
(and γσ ∈ Cσ(X) if I is compact) the corresponding element in temporal gauge. Then

γ̇ + X σ(γ) = 0 ⇔ Fτ (γτ ) = 0 ⇔ Fτ (γτ ) = 0 (⇔ Fσ(γσ) = 0). (5.2.35)

(ii) If I is compact, then there is a one-to-one correspondence between the solutions of Fτ = 0
and Fσ = 0.

Proof. (i) follows from a direct computation based on the considerations in Section 2.4.7.
As for (ii), note that Fτ (A, s, ϕ) = 0 implies that s is either identically identically zero or
everywhere positive. In the latter case, one can show that

Fτ (A, s, ϕ) = 0 ⇔ F(A, sϕ) = 0 ⇔ Fσ(A, ∥sϕ∥L2(Z) , sϕ/ ∥sϕ∥L2(Z)) = 0. (5.2.36)

In the case s = 0, suppose that Fτ (A, 0, ϕ) = 0 and fix some t0 ∈ I. Let s0 : I → R be the
unique solution of the initial value problem

ṡ0 +
〈
D+
Aϕ, ρZ(dt)

−1ϕ
〉
L2(Y )

s0 = 0, s0(t0) = 1. (5.2.37)

Then s0 is everywhere positive and a quick computation shows that D+
A(s0ϕ) = 0. In

addition, Fτ (A, 0, ϕ) = 0 implies F(A, 0) = 0 and thus Fσ(A, 0, s0ϕ/ ∥s0ϕ∥L2(Z)) = 0

by (5.2.10).

Remark 5.7. (i) The map Fτ can be viewed as a section of a vector bundle Vτ → Cτ (Z)
with fibers

Vτ(A,s,ϕ) =
{
(η, r, ψ) ∈ iΩ2

+(Z)⊕ C∞(I,R)⊕ Γ(S−
Z )

∣∣∀t : ⟨ϕ(t), ψ(t)⟩ = 0
}
. (5.2.38)

(ii) For technical reasons, it is convenient to introduce the larger space

C̃τ (Z) =
{
(A, s, ϕ) ∈ A(Z)× C∞(I)× Γ(S+

Z )
∣∣∣ ∀t : ∥ϕ(t)∥L2(Y ) = 1

}
(5.2.39)

where the function is allowed to take arbitrary values. Reversing the sign on functions
gives an involution

ι : C̃τ (Z)→ C̃τ (Z), (A, s, ϕ) 7→ (A,−s, ϕ) (5.2.40)

The space Cτ (Z) can be viewed either as a subspace of C̃τ (Z) or as the orbit space of
the involution ι. The blow-down map and the map Fτ can be extended to C̃τ (Z) by
the same formulas.

82



5.3 Sobolev completions

It’s time to get a little more serious about the infinite dimensional analytic setup. We have
already touched upon Sobolev spaces in Section 2.4.2 in the context of vector bundles over
closed manifolds.

(1) Let E → M be a real or complex vector bundle over a smooth n–manifold M . We are
mostly interested in the following cases:

▶ Spinor bundles or bundles of forms over a closed 3–manifold Y .

▶ Spinor bundles or bundles of forms over a compact 4–manifold X, possibly with
boundary

▶ Bundles over a 4–dimensional cylinder Z = I × Y pulled back from Y

Let Γ0(E) be the set of smooth sections of E with compact support in the interior ofM .

(2) A choice of metrics and connections gives rise to Sobolev norms ∥·∥Lp
k
on Γ0(E)

∥ϕ∥Lp
k
=

(∫
M

(
|ϕ|p + |∇ϕ|p + · · ·+ |∇kϕ|p

)
dµg.

) 1
p

(p ≥ 1, k ≥ 0) (5.3.1)

which obviously depend on the choices.

(3) Let Lpk(E) be the completion of Γ0(E) with respect to ∥·∥Lp
k
. By construction, these

Sobolev spaces of sections are Banach spaces and for p = 2 they are Hilbert spaces.

▶ If M is compact, then Lpk(E) is independent of the chosen metrics and connections.

▶ If M is not compact, then Lpk(E) generally depends on these choices!

(4) In the non-compact setting, there are canonically defined local Sobelev spaces Lpk,loc(E)
which can be described as the completion of Γ(E) with respect to the semi-norms given
by ϕ 7→ ∥κnϕ∥Lp

k
where κn : M → [0, 1] is a sequence of smooth functions with compact

supports such that Kn = κ−1
n (1) is a compact exhaustion of M .

▶ If M is compact, then Lpk,loc(E) = Lpk(E).

▶ If M is not compact, then the inclusion Lpk(E) ⊂ Lpk,loc(E) is strict and the right
hand side is not a Banach space.

(5) If Z = I × Y is a cylinder over a closed manifold and E is the pull-back of a bun-
dle F → Y , we make the convention that Sobolev spaces Lpk(E) are defined using a
cylindrical metric on E and a connection on E pulled back from one on F . Then the
compactness of Y ensures that Lpk(E) is canonically defined, even if I is not compact.

5.3.1 Sobolev completions of configuration spaces

In what follows, let M be a Riemannian spinc n–manifold with spinor bundle SM and k ≥ 0
be an integer.

(1) We define Sobolev spaces of connections as

Ak(SM ) = A0 + L2
k(iT

∗M) and Ak,loc(SM ) = A0 + L2
k,loc(iT

∗M) (5.3.2)

where A0 is a fixed smooth spinc connection. The space Ak,loc(SM ) is always indepen-
dent of A0 (and all other choices), where is Ak(SM ) might depend on the choice of A0

if M is non-compact.
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(2) From this we get Sobolev configuration spaces

Ck(M) =

{
Ak(M)× L2

k(SM ), n odd

Ak(M)× L2
k(S

+
M ), n even

(5.3.3)

and Ck,loc(M) defined analogously.

(3) Similarly, if M is compact, we have blown-up versions

Cσk (M) = Ak(M)× R+ × S(L2
k(S

(+)
M )) (5.3.4)

where S still refers to the L2–unit sphere.

(4) For a cylinder Z = I × Y of the usual type, we define

C̃τk (Z) =
{
(A, s, ϕ) ∈ Ak(SZ)× L2

k(I;R)× L2
k(S

+
Z )

∣∣∣ ∥ϕ(t)∥L2(Y ) = 1 ∀t ∈ I
}

Cτk (Z) =
{
(A, s, ϕ) ∈ C̃τk (Z)

∣∣∣ s ≥ 0 almost everywhere
} (5.3.5)

There are also L2
k,loc versions which become relevant if I is not compact.

(5) Now let 2(k + 1) > n. We have a continuous embedding and multiplication maps

L2
k+1 ↪→ C0 and L2

k+1 × L2
j → L2

j , 0 ≤ j ≤ k + 1 (5.3.6)

and similarly for the L2
k,loc versions. Using this, we define Sobolev gauge groups

Gk+1(M) =
{
u ∈ L2

k+1(M ;C)
∣∣ |u| = 1 pointwise

}
and

Gk+1,loc(M) =
{
u ∈ L2

k+1,loc(M ;C)
∣∣ |u| = 1 pointwise

}
.

(5.3.7)

where the group operation is point-wise multiplication.

For the moment, we focus on the compact case. The actions of G(M) and G(Z) on C(M),
Cσ(M) and Cτ (Z) extend to continuous actions of the (k + 1)–completed gauge groups on
the k–completed configuration spaces. We define the orbit spaces

Bk(M) = Ck(M)/Gk+1(M)

Bσk (M) = Cσk (M)/Gk+1(M)
(5.3.8)

and

Bτk(Z) = Cτk (Z)/Gk+1(Z)

B̃τk(Z) = C̃τk (Z)/Gk+1(Z).
(5.3.9)

Lecture 8, 5.12.23

Proposition 5.8 (cf. [KM07, Ch. 9]). LetM be a compact spinc n–manifold and 2(k+1) > n.

(i) Gk+1(M) is a Hilbert Lie Group.

(ii) Ck(M) is a smooth Hilbert manifold on which Gk+1(M) acts smoothly. The orbit space
Bk(M) is Hausdorff.

(iii) Cσk (M) is a smooth Hilbert manifold with boundary on which Gk+1(M) acts smoothly
and freely. The orbit space Bσk (M) is a smooth Hilbert manifold.

(iv) If Z = I × Y is a compact cylinder and 2(k + 1) > 4, then C̃τk (Z) is a smooth Hilbert

manifold on which Gk+1(Z) acts smoothly and freely. The orbit space B̃τk(M)
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With this analytic setup in place, we can now make sense of the bundles TCk(M)
and TCσk (M) and give a precise meaning to our ad hoc considerations before passing to
the completions.

(1) For Ck(M) we consider the trivial bundles

Tj = Ck(M)× L2
j (iT

∗M ⊕ S(+)
M ) (j ≥ 0) (5.3.10)

and for Cσk (M) the sub-bundles

T σj ⊂ Cσk (M)×
(
L2
j (iT

∗M)⊕ R⊕ L2
k(S

(+)
M )

)
(j ≥ 0) (5.3.11)

whose fibers over γ = (A, s, ϕ) are

T σj,γ =
{
(b, r, ψ) ∈ L2

j (iT
∗M)⊕ R⊕ L2

k(S
(+)
M )

∣∣∣ ⟨ϕ, ψ⟩L2 = 0
}

(5.3.12)

We then have canonical identifications

TCk(M) = Tk and TCσk (M) = T σk . (5.3.13)

(2) In the case of a 3–manifold, the ‘vector fields’ X̃ = ∇L and X̃ σ extend to smooth
sections

X̃ : Ck(Y )→ Tk−1 and X̃ σ : Cσk (Y )→ T σk−1 (5.3.14)

and cannot be factored through th actual tangent bundles T (σ)
k ⊂ T (σ)

k−1. The reason

is that the formulas for X̃ (σ) involve differential operators of order 1 which map L2
k

continuously into L2
k−1 but not into L2

k. In that sense, X̃ is not a vector field and the

same discussion applies to the blown-up version X̃ σ.

(3) Lastly, we note that X̃ and X̃ σ are equivariant with respect to the obvious Gk+1(Y )
actions and the latter descends to a smooth section

X σ : Bσk (Y )→ T̄ σk−1 = T σk−1/Gk+1(Y ). (5.3.15)

5.4 Invariants of closed 4–manifolds revisited

Let X be a closed, connected spinc 4–manifold with b+2 (X) ≥ 2. In Section 2.4.5 we defined
the classical Seiberg–Witten invariants by studying the moduli spaces

N(X) = F−1(2η, 0)/Gk+1(X) ⊂ Bk(X) = Ck(X)/Gk+1 (5.4.1)

of solutions to the Seiberg–Witten equations with perturbation η ∈ iΩ2
+(X). We proved that

for suitable η the space N(X) is a closed smooth manifold consisting entirely of irreducible
solutions, thus representing a homology class

[N(X)]2 ∈ H∗(B∗k(X);Z2) ∼= H∗(CP∞ × Pic(X);Z2), (5.4.2)

which is independent of η, the Sobolev order k, and the chosen metric on X. Recall that
the homotopy type of B was identified in Proposition 2.52 as

B∗k(X) ≃ CP∞ × Pic(X) (5.4.3)

where Pic(X) = H1(X;R)/H1(X;Z).
We can recast this story using the blown-up monopole map

Fσ(A, s, ϕ) =
(
1
2F

+
At − s2ρ−1

X (ϕϕ∗)0, D
+
Aϕ

)
. (5.4.4)

and similarly defined moduli spaces

M(X) = (Fσ)−1(2η, 0)/Gk+1 ⊂ Bσk (X) (5.4.5)

The same ideas that were used to study N(X) gives the following result:
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Theorem 5.9 (cf. [KM07, Ch. 27]). Let X be a closed, connected spinc 4–manifold.

(i) There is a dense set of perturbations η such that M(X) is a compact manifold with
(possibly empty) boundary of dimension

dimM(X) =
1

4

(
c21(S

+
X)[X]− 2χ(X) + 3σ(X)

)
. (5.4.6)

(ii) If b+2 (X) ≥ 1, then there is a dense set of perturbations η as in (i) such that ∂M(X) = ∅.

(iii) If b+2 (X) ≥ 2 and M0(X) and M1(X) are defined using different Riemannian metrics
on X and perturbations as in (ii), then M0(X) and M1(X) are cobordant in Bσk (X).

The relation to the classical approach is given as follows:

(1) The blow-down map Bσk (X) → Bk(X) is a diffeomorphism over B∗k(X) and ∂Bσk (X) is
the preimage of the reducible locus. In particular, if b+2 (X) ≥ 1 the for η as in (ii), π
maps M(X) diffeomorphically onto N(X)

(2) The homotopy type of Bσk (X) can be identified as

Bσk (X)
incl←−−
≃
Bσk (X) \ ∂Bσk (X)

π−→
≃
B∗k(X) ≃ CP∞ × Pic(X) (5.4.7)

In particular, we have a an isomorphism

H∗(Bσk (X);Z2)→ H∗(B∗k(X)) (5.4.8)

which sends [M(X)] to [N(X)].

5.5 Perturbations of the CSD functional

Let Y be a closed, connected spinc 3–manifold. Just as we had to perturb the Seiberg–Witten
equations on closed 4–manifolds to obtain meaningful invariants, we should expect the same
necessity on the infinite cylinder R× Y . Since the Seiberg–Witten equations on R× Y are
formally the negative gradient flow equations of the CSD functional

L : C(Y )→ R, L(B0 + b︸ ︷︷ ︸
=B

, ψ) = 1
2 ⟨ψ,DBψ⟩+ 1

2 ⟨b, ∗db⟩+
1
2

〈
b, ∗FBt

0

〉
(5.5.1)

one might hope to be able to realize the necessary perturbations on R× Y as perturbations
of L of the form

Lf = L+ f : C(Y )→ R (5.5.2)

where f : C(Y ) → R is some function. This turns out to be possible, but finding a suitable
class of such functions is a longer story (told in [KM07, Chs. 10&11]). We limit the discussion
to a brief outline decorated with some motivation.

(1) First of all, f should be G(Y )–invariant so that it Lf has the same invariance properties
as L.

(2) Just as L, the function f should have a formal L2 gradient which can be viewed as a
smooth section

q = ∇f : Ck(Y )→ Tk−1, k ≥ 3. (5.5.3)

(3) Given f an in (1) and (2), we get a perturbation of the Seiberg–Witten vector field

X̃q := X̃ + q = ∇Lf : Ck(Y )→ Tk−1 (5.5.4)

which is really the main character of the story. This is usually reflected in terminology:
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▶ q = ∇f is called a perturbation.

▶ f is called a perturbation potential.

(4) The blow-up procedure gives a smooth section qσ : Cσk (Y )→ T σk−1 and thus a perturba-
tion

X̃ σq := X̃ σ + qσ : Cσk (Y )→ T σk−1 (5.5.5)

(5) The goal is that for sufficiently many q the equation γ̇+X σq = 0 in Bσ(Y ) is sufficiently
well-behaved in the sense that one can mimic the construction of the Floer complexes
in vertical Morse theory.

(6) Further regularity conditions on q are necessary to carry to guarantee desirable proper-
ties of the flow equation ẋ+ X σq (x) = 0 on Bσ(Y ). Narrowing down precise conditions
eventually leads to the definition of tame perturbations in [KM07, Def. 10.5.1]. For

example, f(B,ψ) = ∥ψ∥2 is such a tame perturbation.

(7) The existence of sufficiently many q should follow from the Sard–Smale theorem. This
would require a sufficiently large Banach space of tame perturbations. The construction
of such spaces is carried out in [KM07, Ch. 11].

5.6 Non-degeneracy of critical points

We now consider a perturbation q as above and the corresponding ‘vector fields’

X̃ σq : Cσk (Y )→ T σk−1 and X σq : Bσk (Y )→ T̄ σk−1. (5.6.1)

Recall that X σq is supposed to behave like the gradient of a vertical Morse function. In
particular, its stationary points should be non-degenerate in a suitable sense.

5.6.1 Finite dimensional intuition

The non-equivariant case. We begin by recasting the classical notion of non-degeneracy
of critical points.

Lemma 5.10. Let f : P → R be a smooth function on a closed Riemannian manifold P
and ξ = ∇f . The following conditions are equivalent:

(i) f is a Morse function.

(ii) Hpf : TpP × TpP → R is non-degenerate whenever df(p) = 0.

(iii) Dpξ : TpP → TpP is an isomorphism whenever ξ(p) = 0.

(iv) ξ : P → TP is transverse to the zero section.

Proof. The equivalence of the first three conditions follows from the definition of Morse func-
tions and the formula Hpf(v, w) = ⟨v,Dpξ(w)⟩ that we proved in an exercise last semester.
The equivalence of (iii) and (iv) follows from unraveling the definition of transversality.

The equivariant case. Suppose that a Lie group G acts smoothly on a manifold P .

(1) If G acts properly, then the orbits Gx ⊂ P for x ∈ P are smoothly embedded submani-
folds diffeomorphic to G/Gx where Gx is the stabilizer of x.

(2) If G acts properly and freely, then the orbit space B = P/G is a smooth manifold with
a unique smooth structure such that the orbit map q : P → B is a submersion.
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From now on we assume that G acts properly and freely on P .

(3) Combining (1) and (2) shows that all orbits Gx are diffeomorphic to G and the fibers
of the sub-bundle J = ker(dq) can be canonically identified as

Jx = ker(dqx) = TxGx
dLx←−−∼= TeG (5.6.2)

where Lx : G→ P is given by g 7→ gx.

(4) The tangent space at y = q(x) ∈ B can be identified as

TyB ∼= TxP/Jx = TxP/TxGx. (5.6.3)

More globally, there is a short exact sequence of vector bundles over P

0→ J → TP
dq−→ q∗TB → 0. (5.6.4)

(5) The G action on P lifts to a free and proper action on TP which leaves J invariant
(more precisely, we have g∗Jx = Jgx) and we can identify the tangent bundle of B as

TB ∼= (TP/J)/G (5.6.5)

where the inner quotient is one of vector spaces while the outer means the passage to
G–orbits.

(6) If P carries a G–invariant Riemannian metric, we get a G–invariant orthogonal splitting

TP = J ⊕K, K = J⊥ (5.6.6)

and an identification TB ∼= K/G.

(7) Alternatively, suppose that there is a smooth submanifold S ⊂ P such that for each x ∈ S
there is a splitting

TxP = Jx ⊕ TxS. (5.6.7)

In other words, S is transverse to all G–orbits that pass through it. Such a submanifold
is called a (local) slice for the action. In that case we have Tq(x)B ∼= TxS for all x ∈ S.

(8) If we drop the assumption that G acts freely, the tangent spaces to the orbits still from
a set

J =
⋃
x∈P

Jx ⊂ TP, Jx = TxGx. (5.6.8)

However, this is generally not a sub-bundle, since the dimension of Jx depends on the
stabilizer. The same applies to the orthogonal complements Kx taken with respect to a
G–invariant metric on P .

With this understood, we obtain the following equivariant analogue of Lemma 5.10

Lemma 5.11. Let f : P → R be a G–invariant smooth function and ξ = ∇f its gradient
with respect to a G–invariant metric. Then the following are equivalent:

(i) f is a G–Morse function.

(ii) Hxf : Kx ×Kx → R is non-degenerate whenever df(x) = 0

(iii) Dxξ : Kx → Kx is an isomorphism whenever ξ(x) = 0.

(iv) ξ : P → TP is transverse to the subset J =
⋃
x∈P Jx along the zero section z : P → TP

in the sense that whenever ξ(x) = 0 we have

T(x,0)TP
(
= z∗TxP ⊕ T0TxP

)
= ξ∗TxP + z∗TxP + Jx. (5.6.9)

If G acts freely, then either condition is equivalent the induced map f̄ : B → R being a Morse
function.
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5.6.2 The gauge theoretic setting
Lecture 9, 12.12.23

Now let us come back to the perturbed Seiberg–Witten ‘vector fields’

X̃q = ∇Lf : Ck(Y )→ Tk−1 and X̃ σq : Cσk (Y )→ T σk−1 (5.6.10)

with perturbation q = ∇f with potential f : Ck(Y )→ R. Both vector fields will play a role.
We use the following notational convention (cf. [KM07]):

▶ Stationary points of X̃ σq are denoted by a, b, etc.

▶ Stationary points of X̃q are denoted by α, β, etc.

The goal of this section is to define a reasonable notion of non-degeneracy for stationary
points which can be achieved by carefully choosing q.

Defining non-degeneracy. Recall that Gk+1(Y ) is a Hilbert Lie group. In the light of
Lemma 5.11, we should be interested in the tangent spaces to Gk+1(Y ) orbits. To begin
with, we have an identification

T1Gk+1(Y )
∼=←− iL2

k+1(Y ;R), ξ 7→ d

dt
|t=0e

tξ. (5.6.11)

Consequently, we can compute the differentials of the maps

L(σ)
γ : Gk+1(Y )→ C(σ)k (Y ), u 7→ uγ, (5.6.12)

for example in the case of γ = (B,ψ) ∈ Ck(Y ) and ξ ∈ iL2
k+1(Y,R) as

dLγ
∣∣
1
(ξ) = d

dt

∣∣
t=0

etξ(B,ψ) = d
dt

∣∣
t=0

(B − tdξ, etξψ) = (−dξ, ξψ). (5.6.13)

and similarly for γ = (B, r, ψ) ∈ Cσk (Y )

dLσγ
∣∣
1
(ξ) = · · · = (−dξ, 0, ξψ). (5.6.14)

The tangent spaces to the orbits are thus

Jk,γ :=
{
(−dξ, ξψ)

∣∣ ξ ∈ iL2
k+1(Y ;R)

}
= TγGk+1γ ⊂ TγCk(Y ) γ = (B,ψ) ∈ Ck(Y )

J σk,γ :=
{
(−dξ, 0, ξψ)

∣∣ ξ ∈ iL2
k+1(Y ;R)

}
= TγGk+1γ ⊂ TγCσk (Y ) γ = (B, r, ψ) ∈ Cσk (Y )

Similarly, we can define J (σ)
k,γ for lower Sobolev orders 0 ≤ j ≤ k. With this understood,

Lemma 5.11 suggests the following definition.

Definition 5.12. A stationary point a of X̃ σq : Cσk (Y ) → T σk−1 is called non-degenerate if

X̃ σq is transverse to J σk−1 at a. An analogous definition applies to stationary points α of X̃ .

Characterizing non-degeneracy. We can also mimic the formulation in Lemma 5.11(iii)

of non-degeneracy in terms of linearizations. Thinking of the ‘vector field’ X̃ as a map

X̃q : Ck(Y )→ L2
k−1(iT

∗Y ⊕ SY ) (5.6.15)

we have a canonical notion of derivative

DγX̃q : L
2
k(iT

∗Y ⊕ SY )︸ ︷︷ ︸
=Tk,γ

→ L2
k−1(iT

∗Y ⊕ SY )︸ ︷︷ ︸
=Tk−1,γ

, γ ∈ Ck(Y ). (5.6.16)
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Since questions of non-degeneracy are concerned with directions complementary to the tan-
gent spaces of orbits, we consider the fiberwise L2–orthogonal splittings

Tj = Jj ⊕Kj (0 ≤ j ≤ k) (5.6.17)

where Kj is defined as the fiberwise L2–orthogonal complement. By restricting and L2 pro-

jecting DγX̃q we obtain a linear operator

Hessq,γ : Kk,γ ↪→ Tk,γ
DγX̃q−−−−→ Tk−1,γ → Kk−1,γ (5.6.18)

which is an ad hoc version of the Hessian of Lf .
This construction has a blown-up analogue, but this comes with an extra twist that

lies in the definition of complementary sub-bundles to J σj . Instead of taking orthogonal
complements, one proceeds as follows:

▶ Let K∗
j be the restriction of Kj to C∗k(Y ). This is a sub-bundle of the restriction T ∗

j .

▶ The blow-down map π : Cσk (Y ) → C∗k(Y ) is a diffeomorphism over C∗k(Y ) and induces
maps π∗ : T σj → Tj for 0 ≤ j ≤ k.

▶ Define Kσj over C∗k(Y ) be requiring π∗Kσj = K∗
j .

▶ According to [KM07, 9.3.5] Kσj extends to a bundle over Cσk (X) such that there is a
splitting T σj = J σj ⊕ Kσj . This splitting, however, is not orthogonal with respect to to
any natural scalar product!

With this in place, a similar construction as above gives operators

Hessσq,γ : Kσk,γ ↪→ T σk,γ
DγX̃σ

−−−−→ T σk−1,γ → Kσk−1,γ (5.6.19)

where DγX̃ σ is defined by viewing Cσk (Y ) as a Hilbert submanifold of the affine Hilbert
manifold B0+L

2
k(i

∗TY ⊕R⊕SY ). Unraveling the transversality condition in Theorem 5.15
gives the following:

Lemma 5.13 (cf. [KM07, 12.4.1]). A stationary point a of X̃ σ is non-degenerate if and only
if the operator

Hessσq,a : Kσk,γ → Kσk−1,γ (5.6.20)

is surjective. An analogous statement holds for X̃ and Hessq,α.

We record an important property of the operators Hessq,γ without proof.

Proposition 5.14 (cf. [KM07, 12.3.1]). Hessq,γ is a self–adjoint Fredholm operator.

Achieving non-degeneracy. The next step is to show that X̃ σq is non-degenerate for
sufficiently many q. Recall from p. 40 that a countable intersection of dense, open subsets
of a given space is called a Baire set1 and that Baire sets in separable Banach spaces are
dense.

Theorem 5.15 (cf. [KM07, 12.1.2]). Let P be a large Banach space of tame perturbations.

Then the perturbations q ∈ P for which all stationary points of X̃ σ are non-degenerate form
a Baire set.

The proof is based on the following lemma

1Baire sets are called residual in [KM07].
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Lemma 5.16 (cf. [KM07, 12.5.1]). Let E, F , and P be separable Banach spaces, S ⊂ F a
closed submanifold, and

F : E × P → F (5.6.21)

a smooth map. For fixed p ∈ P write Fp = F (·, p) : E → F. Suppose that the following
conditions are satisfied:

(a) F is transverse to S.

(b) For all (e, p) ∈ F−1(S) the following composite is a Fredholm operator:

TeE
dFp|e−−−→ TfF

quot−−−→ TfF/TfS, f = F (p, e). (5.6.22)

Then the set of p ∈ P for which Fp is transverse to S is a Baire set.

Proof. The proof follows a common strategy (cf. [Nic11, Ch. 1.2]). The main steps are:

▶ Condition (a) ensures that F−1(S) is a Banach submanifold.

▶ Condition (b) ensures that the composition

Q : F−1(S) ↪→ E × P pr2−−→ P (5.6.23)

is a Fredholm map.

▶ The Sard–Smale theorem (Theorem 2.32) gives a Baire set of regular values of Q.

▶ If p ∈ P is a regular value of Q, then Fp is transverse to S.

Proof of Theorem 5.15 (sketch). The proof has two parts:

(1) Irreducible case: points of the form (B, r, ψ) with r ̸= 0

(2) Reducible case: points of the form (B, 0, ψ).

The argument in the irreducible case goes as follows:

(1.1) The goal is to show that there is a Baire set of q ∈ P such that all irreducible zeros

of X̃ σq are non-degenerate.

(1.2) An irreducible configuration (B, r, ψ) is a non-degenerate zero of X̃ σq if and only

if (B, rψ) is a non-degenerate zero of X̃q. So we can work with X̃q on the irreducible
locus C∗k(Y ).

(1.3) We consider the ‘parameterized zero sets’

Z∗ =
{
(α, q)

∣∣∣ X̃q(α) = 0
}
⊂ C∗k(Y )× P (5.6.24)

We want to show that these are Banach manifolds.

(1.4) Recall that we have an L2–orthogonal splitting Tj = Jj ⊕ Kj where Jj consists of
the tangent spaces of Gk+1(Y )–orbits. Write q ∈ P as an L2 gradient q = ∇f .
Then X̃q = ∇(L+ f) and, since L and f are invariant under the identity component

of Gk+1(Y ), it follows that X̃q is orthogonal to J ∗
j for all q ∈ P.

(1.5) The restriction K∗
j of Kj to C∗k(Y ) is a Hilbert vector bundle and, in particular, a

Hilbert manifold. By the above we can assemble all X̃q into a smooth map

g : C∗k(Y )× P → K∗
k−1, g(α, q) = X̃q(α) (5.6.25)

and we have Z̃∗ = g−1(0). Moreover, g is transverse to the zero section:
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▶ The transversality condition for (α, q) ∈ Z̃∗ is equivalent to the surjectivity of

K∗
k,α × P 7→ K∗

k−1,α,
(
(b, ψ), h

)
7→ Hessq,α(b, ψ) + h(α). (5.6.26)

▶ Since Hessq,α is a self-adjoint Fredholm operator by Proposition 5.14, its cokernel
and kernel agree and are both finite dimensional.

▶ Is thus suffices to produce for every 0 ̸= v ∈ kerHessq,α and element h ∈ P
with ⟨v, h(α)⟩L2 ̸= 0.

▶ Writing h = ∇h for some h : C(Y )→ R this is equivalent to dh|α(v) ̸= 0.

▶ Lastly, the definition of ‘large Banach spaces of perturbations’ is made to ensure
this property.

(1.6) It follows that Z̃∗ is a Banach manifold and, and so is Z∗ = Z̃∗/Gk+1(Y ).

(1.7) We want to apply Lemma 5.16 to this situation:

▶ We have just verified the transversality condition (a) for g and the zero section
of K∗

k−1.

▶ The condition (b) turns out be equivalent to the Fredholm property of Hessq,α.

▶ The conclusion is that the set of q ∈ P for which X̃q, considered as a section of K∗
j ,

is transverse to the zero section. Let us write P∗ for this set.

▶ But this is equivalent to all irreducible zeros of X̃q being non-degenerate.

It remains to treat the reducible case which is considerably more involved. Lecture 10, 19.12.23

(2.1) Non-degeneracy for reducible zeros (B, 0, ψ) of X̃ σq can be characterized as follows:

▶ Let T red
j = Ak × L2

j (iT
∗Y ) be the ‘L2

j tangent bundle’ of Ak(SY ).

▶ The action of Gk+1(Y ) onAk(SY ) gives a fiberwise L2-orthogonal splitting T red
j = J red

j ⊕Kred
j

where J red
j is tangent to the orbits.

▶ The 1–form component of the X̃q = ∇(L+f) gives defines a section X̃ red
q : Ak(SY )→ T red

k−1.

▶ For fixed B ∈ Ak(SY ) the linearization of the spinor component of X̃q at (B, 0)
gives rise to a linear operator DB,q : L

2
k(SY ) → L2

k−1(SY ) which is a compact
perturbation of the Dirac operator DB .

According to [KM07, 12.2.5], a reducible zero a = (B, 0, ψ) of X̃ σq is non-degenerate if
and only if the following hold:

(a) B is a non-degenerate zero of X̃ red
q

(b) ψ is a eigenvector of DB,q for a simple eigenvalue λ ̸= 0 (i.e. the λ–eigenspace is
1–dimensional).

(2.2) A similar argument as in the irreducible case gives a Baire set Pred for which all zeros

of X̃ red
q are non-degenerate.

(2.3) A more elaborate argument shows that achieving condition (b) at all zeros of X̃ red
q

requires countably further conditions, indexed by n ∈ N, say, each of which is satisfied
for q in a certain Baire set Pn.

Altogether, we see that for q in the intersection of the Baire sets P∗, Pred and Pn for
all n ∈ N all zeros of X̃ σq are non-degenerate. Since the intersection of countably many Baire
sets is again a Baire sets, we are done.
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5.7 Energy and compactness

Energy on compact 4–manifolds. Let X be a compact spinc 4–manifold with bound-
ary Y = ∂X and spinor bundle SX .

(1) Recall that the induced spinc structure on Y is represented by the spinor bundle

SY = S+
X |Y , ρY (b) = ρX(ν#)−1ρX(b), b ∈ T ∗Y (5.7.1)

where ν# is the metric dual of the outward unit normal vector field. In what follows,
let A be a spinc connection on SX and B the induced connection on SY .

(2) The Dirac operators on SX and SY are related by the formula

DB(ϕ|Y ) =
(
ρX(ν#)−1D+

Aϕ−∇
A
ν ϕ

)∣∣
Y
+
H

2
ϕ|Y , ϕ ∈ Γ(SX) (5.7.2)

where H is the mean curvature of Y in X. A general discussion of the concept can be
found in [Jos17, Ch. 5.2] and a proof of the formula is given in [KM07, Lemma 4.5.1].
For the present purposes, it suffices to know that the mean curvature vanishes in the
case that X is cylindrical near Y .

(3) The key to compactness results in Seiberg–Witten theory is the Weitzenböck formula

D2
Aϕ = (∇A)∗∇Aϕ+

1

2
ρX(F+

At) +
s

4
ϕ (5.7.3)

where s is the scalar curvature of X. The proof is a direct computation (cf. [Jos17,
Thm. 4.4.2]). Note that (5.7.3) involves two terms in the Seiberg–Witten equations
on X, namely DAϕ and 1

2F
+
At .

(4) Following [KM07, Def. 4.5.4] we define the notions of analytic and topological energy of
a configuration (A, ϕ) ∈ C(X) as

Ean(A, ϕ) = 1

4

∫
X

|FAt |2 +
∫
X

|∇Aϕ|2 + 1

4

∫
X

(|ϕ|2 + s/2)2 − 1

16

∫
X

s2 (5.7.4)

Etop(A, ϕ) = 1

4

∫
X

FAt ∧ FAt −
∫
Y

⟨ϕ|Y , DB(ϕ|Y )⟩+
∫
Y

H

2
|ϕ|2. (5.7.5)

It is straight forward to check that both these quantities are invariant under the action
of G(X). Note that if X is closed, then the boundary terms in (5.7.5) vanish and
Etop(A, ϕ) is constant with value −π2c21(SX)[X] which is a topological invariant of the
spinc structure.

(5) Using the formulas in (2) and (3) above, one can establish the main energy identity

Ean(A, ϕ) = Etop(A, ϕ) + ∥F(A, ϕ)∥2L2(X) (5.7.6)

where F(A, ϕ) = (12F
+
At − ρ−1

X (ϕϕ∗)0, DAϕ) is the usual Seiberg–Witten map.

Energy and compactness on compact cylinders. Now let Y be a closed spinc 3–
manifold and Z = [t1, t2] × Y a compact spinc cylinder. As usual, given a configura-
tion γ = (A, ϕ) ∈ C(Z) we write γ̌ : [t1, t2]→ C(Y ) for the corresponding path in C(Y ).

(6) In the cylinder case, the topological energy takes the more intuitive form

Etop(γ) = 2
(
L(γ̌(t1))− L(γ̌(t2))

)
. (5.7.7)

In words, the topological energy measures twice the change of L along the cylinder.
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(7) If γ ∈ C(Z) is in temporal gauge, then the analytic energy can be expressed as

Ean(γ) =
∫ t2

t1

∥∥ ˙̌γ(t)∥∥2
L2(Y )

+ ∥∇L(γ̌(t))∥2L2(Y ) dt. (5.7.8)

In the light of the equivalence of the equations F(γ) = 0 and ˙̌γ + ∇L(γ̌) = 0, the
main energy identity boils down to the observation that solutions of the latter (formal)
downward gradient flow equations are characterized by the equality

2
(
L(γ̌(t1))− L(γ̌(t2))

)
=

∫ t2

t1

∥∥ ˙̌γ(t)∥∥2
L2(Y )

+ ∥∇L(γ̌(t))∥2L2(Y ) dt. (5.7.9)

(8) The point of the discussion in (6) and (7) is an a posteriori justification for the admittedly
out-of-the-blue definitions of Ean and Etop in (4). In hindsight, we could have started
with the more intuitive identity (5.7.9) for γ̇ and noted that the two sides of the equations
can be expressed in terms of γ as in (4).

(9) The expression of Ean in (4) has three main advantages over that in (7):

▶ It is defined for all configurations in C(Z) and not only those in temporal gauge.

▶ The resulting function Ean : C(Z) → R is invariant under the full gauge group G(Z)
whereas the right hand side in (7) is only invariant under G(Y ).

▶ The definition in (4) works for arbitrary compact 4–manifolds.

For the record, we note that the G(Z)–invariant formula in (4) for an arbitrary config-
uration γ = (A, ϕ) ∈ C(Z) with A = Ǎ+ c dt can be rewritten as

Ean(γ) =
∫ t2

t1

∥∥∥ ˙̌A(t)− dY c
∥∥∥2 + ∥∥∥ ˙̌ϕ(t)− cϕ̌

∥∥∥2 + ∥∇L(γ̌(t))∥2 dt (5.7.10)

with L2 norms understood everywhere.

The following two theorems indicate the usefulness of the notions of energy.

Theorem 5.17 (Finiteness theorem, compact cylinder case, cf. [KM07, 5.1.1(i)]). Let Y
be a closed, oriented, connected Riemannian 3–manifold and Z = [t1, t2] × Y a compact
cylinder with base Y . For every C ∈ R there are only finitely many spinc structures on Y
(and hence on Z) such that the equation F(γ) = 0 has solutions γ ∈ C(Z) with Etop(γ) ≤ C.
Proof. Assuming that F(γ) = 0 and Etop(γ) ≤ C, the main energy identity gives Ean(γ) ≤ C
which, among other things gives an upper bound∫

Z

|FAt |2 ≤ C +
1

16

∫
Z

s2 = C ′. (5.7.11)

The right hand side is constant as long as the metric on Y is fixed. This, in turn, gives
upper bounds ∫

Z

FAt ∧ ω ≤ C ′ ∥ω∥L2(Y ) , ω ∈ Ω2(Z). (5.7.12)

Since FAt/2πi represents c1(SZ) and de Rham cohomology with compact supports in the
interior of Z computes H∗(Z, ∂Z;R), the above bounds leave only finitely many possibilities
for c1(SZ) and thus for spinc structures on Y .

Theorem 5.18 (Compactness theorem for compact cylinders, cf. [KM07, 5.1.8]). Let Z = [t1, t2]×Y
be a compact spinc cylinder with Y closed and connected. Suppose that the following is given:

▶ γn ∈ C(Z) is a sequence of smooth solutions of F(γn) = 0.

▶ Etop(γn) = 2
(
L(γ̌n(t1))− L(γ̌n(t2)) ≤ C for some C ∈ R uniformly in n.

Then there exists a sequence of smooth gauge transformations un ∈ G(Z) such that unγn
has a subsequence that converges uniformly in the C∞ topology in C(Z ′) for every compact
sub-cylinder Z ′ = [t′1, t

′
2]× Y with t1 < t′1 < t′2 < t2.
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Energy and perturbations. Let Y and Z = [t1, t2]×Y be as above. The previous com-
pactness theorem only deals with the unperturbed flow equation ẋ + ∇L(x) = 0 in C(Y ).
Unfortunately, the unperturbed equations generally suffer from non-degeneracies that pro-
hibit a direct adaptation of the Floer homology construction, making perturbations strictly
necessary.

(10) Let q : C(Y )→ L2(iT ∗Y ⊕ SY ) be a continuous map. From this we get a map

q̂ : C(Z)→ L2(iΛ2
+Z ⊕ S−

Z ) (5.7.13)

defined as follows:

▶ For γ = (A, ϕ) ∈ C(Z) consider the continuous path γ̌ : [t1, t2]→ C(Y ).

▶ Compose with q to get a continuous path q ◦ γ̌ : [t1, t2]→ L2(iT ∗Y ⊕ SY ).
▶ The path interpretations of Ω2

+(Z) and Γ(S−
Z ) discussed in Section 2.4.7 gives rise to

a continuous map

C0
(
[t1, t2], L

2(iT ∗Y ⊕ SY )
)
→ L2(iΛ2

+Z ⊕ S−
Z ). (5.7.14)

Define q(γ) as the image of q ◦ γ̌.

(11) If q is a tame perturbation in the sense of [KM07, 10.5.1], then the construction in (9)
determines a smooth maps

q̂ : Ck(Z)→ L2
k(iΛ

2
+Z ⊕ S−

Z ) (∀k ≥ 2) (5.7.15)

Combined with the inclusion L2
k ↪→ L2

k−1 we obtain a perturbed monopole map

Fq = F+ q̂ : Ck(Z)→ L2
k−1(iΛ

2
+Z ⊕ S−

Z ) (5.7.16)

and for γ ∈ C(Z) in temporal gauge we have

Fq(γ) = 0 ⇔ ˙̌γ + X̃q(γ̌) = 0 (5.7.17)

where X̃q = ∇L+ q. Lecture 11, 9.1.24

(12) Now let q = ∇f be a tame perturbation with potential f : C(Y )→ R. If we write Lf = L+f ,
we get X̃q = ∇Lf . Given γ = (A, ϕ) ∈ C(Z), we can simply take the formulas in (6)
and (9), replace L with Lf , and define

Eanq (γ) =

∫ t2

t1

∥∥∥ ˙̌A(t)− dY c
∥∥∥2 + ∥∥∥ ˙̌ϕ(t)− cϕ̌

∥∥∥2 + ∥∇Lf (γ̌(t))∥2 dt
Etopq (γ) = 2

(
Lf (γ̌(t1))− Lf (γ̌(t2))

)
.

(13) The relation of Eanq , Etopq , and Fq is not as straight forward as in the unperturbed case.

However, it is true that Fq(γ) = 0 implies Eanq (γ) = Etopq (γ) and that Eanq (γ) controls the

L2 norms of FAt and ∇Aϕ (cf. [KM07, 10.6.1]). This is enough to prove the following
refined compactness theorem:

Theorem 5.19 (Compactness for compact cylinder with perturbations, cf. [KM07, 5.1.8]).
Let Z = [t1, t2]× Y be a compact spinc cylinder with Y closed and connected. Suppose that
the following is given:

▶ q is a tame perturbation with potential f (i.e. q = ∇f).

▶ γn ∈ Ck(Z) is a sequence of solutions of Fq(γn) = 0 for some k ≥ 3.
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▶ Etopq (γn) = 2
(
Lf (γ̌n(t1))− Lf (γ̌n(t2)) ≤ C for some C ∈ R uniformly in n.

Then there exist gauge transformations un ∈ Gk+1(Z) such that unγn has a subsequence that
converges uniformly in Ck+1(Z

′) for every compact sub-cylinder Z ′ ⊂ Z.

The proof also gives a regularity result.

Proposition 5.20 (cf. [KM07, 10.7.2&3]). Let q be a tame perturbation and γ ∈ Ck(Z) a
solution of Fq(γ) = 0. Then there exist a gauge transformation u ∈ Gk+1(Z) such that:

(i) The restriction of uγ to any compact sub-cylinder Z ′ in the interior of Z is contained
in Ck+1(Z

′)→ Ck(Z).

(ii) uγ determines an L2
1,loc path (t1, t2)→ Ck(Y ).

As an application, we obtain a compactness result for the zero sets of the vector field X̃q = ∇L+q.

Compactness and blowing up. We are not quite done yet, since we are still lacking a
compactness theorem that applies to the blown-up configurations spaces.

(1) We fix a tame perturbation q and write it as q = ∇f . Recall that applying the blow-up

construction X̃q = ∇L+ q produces a ‘vector field’

X̃ σq : Cσk (Y )→ T σk−1. (5.7.18)

A smooth path γ̌σ : [t1, t2]→ Cσk (Y ) gives rise to an element in the τ -blow-up of C(Z)

γτ ∈ Cτ (Z) =
{
(A, s, ϕ) ∈ Ak(SZ)× L2

k(R)× L2
k(S

+
Z )

∣∣ s ≥ 0
}
. (5.7.19)

The perturbation q gives rise to a perturbed τ -version of the Seiberg–Witten map

Fτq = Fτ + q̂τ : Ck(Z)→ L2
k−1(iΛ

2
+Z ⊕ R⊕ S−

Z ) (5.7.20)

where q̂τ is defined using qσ similarly as q̂ was defined using q (cf. [KM07, p. 158]).
With these definitions, we get

˙̌γσ + X̃ σq (γ̌σ) = 0 ⇔ Fτq(γ
τ ) = 0. (5.7.21)

Again, the point is that the equation Fτq(γ
τ ) = 0 makes sense for arbitrary γτ ∈ Cτk (Z)

and is invariant under Gk+1(Z), whereas the flow equation only applies to configurations
in temporal gauge.

(2) Given a smooth configuration γτ ∈ Cτ (Z) write

▶ γ̌σ for the corresponding path in Cσ(Y ),

▶ γ ∈ Ck(Z) for the blow-down,

▶ γ̌ for the corresponding path in Cσ(Y ).

In order to prove a compactness result for solutions of Fτq(γ
τ ) = 0, we have to control

the function L along γ̌ (aka the topological energy of γ) and another function

Λq : Cσk (Y )→ R, Λq(B, r, ψ) =
〈
ψ,DBψ + q̃1(B, rψ)

〉
L2 (5.7.22)

where q1 is the spinor component of q and

q̃1(B, rψ) =

∫ 1

0

Dq1(B, srψ)(0, ψ)ds. (5.7.23)
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Theorem 5.21 (Compactness for blow-ups on compact cylinders with perturbation, cf. [KM07,
10.9.2]). Let Z = [t1, t2]×Y be a compact spinc cylinder with Y . Suppose that the following
is given:

▶ q is a tame perturbation with potential f (i.e. q = ∇f).

▶ γτn ∈ Cτk (Z) is a sequence of solutions of Fτq(γ
τ
n) = 0 for some k ≥ 3.

▶ Etopq (γn) = 2
(
Lf (γ̌n(t1))− Lf (γ̌n(t2)) ≤ C1 for some C1 ∈ R uniformly in n.

▶ Λq(γ̌
τ (t1 + ϵ)) ≤ C2 and Λq(γ̌

τ (t2− ϵ)) ≥ −C2 for some 0 < ϵ < (t2− t1)/2 and C2 ∈ R.

Then there exist gauge transformations un ∈ Gk+1(Z) such that unγ
τ
n has a subsequence

that converges uniformly in Ck+1(Z
′) for every compact sub-cylinder Z ′ = [t′1, t

′
2] × Y with

t1 + ϵ < t′1 < t′2 < t2 − ϵ.
Lecture 12, 23.1.24

An application of the compactness theorem.

Corollary 5.22 (cf. [KM07, 10.7.4]). Let q be a tame perturbation. Then image in Bk(Y ) of

the zero set of X̃q is compact. In particular, it is finite if all zeroes of X̃q are non-degenerate.

Proof. (1) Let αn ∈ Ck(Y ) with X̃q(αn) = 0.

(2) Let γn ∈ Ck([−3, 3]×Y ) be the corresponding sequence of translation invariant solutions
of Fq(γn) = 0 on Y on R× Y restricted to [−3, 3]× Y .

(3) Since γ̌n(t) = α for all t, we have Etopq (γn) = 0.

(4) Theorem 5.19 gives un ∈ Gk+1([−1, 1] × Y ) such that unγn has a subsequence that
converges in Ck+1([−1/2, 1/2]× Y ).

(5) Restricting to {0}×Y and passing to Bk(Y ) gives a convergent subsequence of [αn].

5.8 Towards monopole Floer homology

Before we narrow in on the missing pieces for the definition of monopole Floer homology,
we take a look back to remind us what we already have. We begin with the diagram

Cσk (Y ) Ck(Y )

Bσk (Y ) Bk(Y )

π

qσ q

π̄

involving the various completed configuration spaces for Y .

(1) Let I be any interval. The ordinary Seiberg–Witten equations (before blow-ups, per-
turbations, and completions) for smooth configurations γ ∈ C(I ×Y ) in temporal gauge
can be expressed in the two equivalent ways

F(γ) = 0 ⇔ ˙̌γ + X̃ (γ̌) = 0 (5.8.1)

where γ̌ : I → C(Y ) is the path interpretation of γ. We refer to the left and right hand
sides as the 4d and 3d versions of the Seiberg–Witten equations on I × Y . The general
philosophy is this:

▶ The 3d equations give intuition for the constructions.

▶ The 4d equations are the objects of interest and the main tools for proofs.
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(2) Before moving on, let us recap the roles of perturbations, blow-ups, and completions:

▶ Perturbations give the necessarily regularity of (spaces of) solutions of the equations.

▶ The blow-up process is a means to deal with the gauge equivariance.

▶ The Sobolev completions provide Hilbert manifold structures that facilitate the infi-
nite dimensional analysis.

(3) The considerations about T–equivariant Morse theory and Floer homology suggest that
we should study the perturbed and blown-up versions of 3d equations

ẋ+ X σq (x) = 0, x : I → Bσ(Y ) (5.8.2)

for C1 curves in the quotient space Bσ(Y ) defined on intervals I ⊂ R. Monopole Floer
homology should arise from chain complexes with. . .

▶ . . . chain groups generated by the zeros of X σq in Bσ(Y ), and

▶ . . . differential counting solutions of ẋ+ X σq (x) = 0 asymptotic to zeros of X σq .

Moreover, the finite dimensional theory suggests that we should study solutions of (5.8.2)
with domain I = R along which the functions L ◦ π and Λq defined in (5.7.22) are
bounded.

(4) Let us take a closer look at the the zero sets of the various vector fields:

▶ Zσq is the zero set of X σq in Bσk (Y ).

▶ Z̃σq is the zero set of X̃ σq in Cσk (Y ).

▶ Z̃q is the zero set of X̃q in Ck(Y ).

From Theorem 5.15 and Corollary 5.22 we know:

▶ For generic q all zeros of X σq will be non-degenerate.

▶ Assuming this, π(Zσq ) = q(Z̃q) is finite.

Remembering how zeros of X̃ σq relate to those of X̃q, we can conclude:

▶ Z̃q consists of finitely many gauge orbits.

▶ Each irreducible gauge orbit in Z̃q contributes an irreducible zero of X σq and vice
versa. In particular, Zσq contains only finitely many irreducible zeros.

▶ Each reducible gauge orbit in Z̃q, say [B, 0], contributes countably many reducible
zeros in Zσq correspond to the eigenvalues of the operator DB,q that appeared in the
proof of Theorem 5.15.

▶ To sum up, Zq has a finite irreducible part and a countably infinite reducible part

(5) One could try to make all of this precise using only smooth configurations in the lan-
guage of Fréchet manifolds. However, it is technically more convenient to use Sobolev
completions and to work ‘upstairs’ in Cσ(Y ) in the affine space. From the 3d perspective,
this puts the equations the following equations on the map:

ẋ+ X̃ σq (x) = 0, x : I → Cσk (Y ) (5.8.3)

Note that the natural habitat for these would be something like L2
1,loc(I, Cσk (Y )), the

space of L2
1,loc paths in Cσk (Y ), which requires some sense making that we have not and

will not do.
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(6) Time for a word of warning about the shortcomings of the path interpretation with
respect to blow-ups and Sobolev completions:

▶ As we have seen, temporal gauge configurations in Cσ(I × Y ) do not have path
interpretations, in general. One way out was to use the τ–blow-up of Cτ (I × Y )
which has ‘underlying path’ and ‘associated temporal gauge configuration’ maps

Cτ (I × Y )→ C∞(I, Cσ(Y ))→ Cτ (I × Y ) (5.8.4)

whose composition restricts to the identity on temporal gauge configurations.

▶ Another shortcoming of the path interpretation is that it does not interact well with
Sobolev completions. While an elaboration on Fubini’s theorem provides continuous
extensions to L2

loc completions

Cτ0,loc(I × Y )→ L2
loc(I, Cσ0 (Y ))→ Cτ0,loc(I × Y ) (5.8.5)

Unfortunately, the images of the subspaces Cτ0,loc(I × Y ) and L2
r,loc(I, Cσs (Y )) under

these maps are not easily characterized.

The bottom line is to take the philosophy in (1) seriously. It would be ill advised to base
the entire analysis on the 3d equations, since the natural habitat for the 4d equations
is much simpler and we are ultimately interested in the solutions to the 4d equations
anyway.

(7) Speaking of 4d equations, the remarks in (6) highlight the importance of the equivalence

Fτq(γ
τ ) = 0 ⇔ ˙̌γσ + X̃ σ(γ̌σ) = 0 (5.8.6)

for smooth γτ ∈ Cτ (I × Y ) in temporal gauge and its underlying path γ̌σ. The main
selling points of the 4d equations Fτq(γ

τ ) = 0 are:

▶ They can be studied in the Sobolev completions Cτk,loc(I×Y ) in which all derivatives
(in I and Y directions) are treated equally.

▶ They are Gk+1,loc(I × Y ) invariant.

▶ They are elliptic modulo the action of Gk+1,loc(I × Y ).

Among other things, ellipticity implies that all solutions of Fτq(γ
τ ) are smooth (see

Theorem 5.23 below) so that the Sobolev completions are merely technical baggage.

5.9 Moduli spaces of trajectories

Theorem 5.23. Let γτ ∈ Cτk,loc(I×Y ) be a solution of Fτq(γ
τ ) = 0 for some k ≥ 3 and some

tame perturbation q. Then there is a gauge transformation u ∈ Gk+1,loc(Z) such that uγτ is
smooth in the interior of I × Y .

Proof. If I is compact, we can argue similarly as for closed manifolds. Let γτ = (A, s, ϕ)
and write A = A0 + a for some smooth reference connection A0 with a ∈ L2

k(iT
∗Z). We

may assume that A is in Coulomb–Neumann gauge with respect to A0, meaning that

d∗a = 0 on Z and a(ν) = 0 on ∂Z (5.9.1)

where ν is the unit outward normal field. For if not, then we can find a gauge transformation
of the form u = eξ where ξ ∈ L2

k+1(Z; iR) is the unique a solution of the Neumann boundary
value problem with normalization

∆ξ = d∗a, dξ(ν) = a(ν),

∫
{0}×Y

ξ = 0. (5.9.2)
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Since the equation d∗a together with Fτ (A, s, ϕ) = 0 is an elliptic system, a bootstrapping
argument similar to the closed case shows that every Coulomb–Neumann solution in the
interior of I × Z.

If I is non-compact, we can cover it with countably many intervals In, n ∈ Z such that
non-consecutive intervals are disjoint (i.e. In∩In+2) consecutive intervals intersect such that
the right end of In lies in the interior of In+1 and the left end of In+1 lies in the iterior of In.
For each n write γn ∈ L2

k(In×Y ) for the restriction of γ and choose un = eξn as above such
that unγn is smooth on the interior of In×Y . The difference ξn+1−ξn is necessarily smooth
on the interior of (In+1 ∩ In) × Y . From here on, one can patch together to functions ξn
using a smooth partition of unity for I subordinate the open cover given by the interiors of
the In to obtain ξ ∈ iL2

k,loc(I × Z) such that efγ is smooth on the interior of I.
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Part III

Appendix
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Appendix A

Background Material

A.1 Riemannian geometry

Let M be an oriented Riemannian n–manifold.

The Levi–Civita connection. We write ∇ for the Levi–Civita connection on TM , its
dual T ∗M , and tensor products involving the two. Recall that the dual connection on T ∗M
and T r,sM = (TM)⊗r ⊗ (T ∗M)⊗s is determined by the Leibniz rules

∇X(α(Y )) = (∇Xα)(Y ) + α(∇XY ) and (A.1.1)

∇(S ⊗ T ) = (∇S)⊗ T + S ⊗ (∇T ). (A.1.2)

where α ∈ Ω1(X) and S, T are sections of tensor bundles. If e1, . . . , en is an oriented local
orthonormal frame for TM , we write e1, . . . , en for the dual coframe for T ∗M determined
by ei(ej) = δij and abbreviate the Levi–Civita connection as ∇i = ∇ei .

Exterior calculus. We think of Λ∗T ∗M as the bundle of alternating multilinear maps
on TM . The wedge product or exterior multiplication

∧ : ΛpT ∗M ⊗ ΛqT ∗M → Λp+qT ∗M (A.1.3)

is defined using the convention

ω ∧ η(Y1, . . . Yp+q) =
1

p!q!

∑
σ∈Sp+q

(−1)σω(Yσ(1), . . . , Yσ(p))η(Yσ(p+1), . . . , Yσ(p+q)). (A.1.4)

The wedge product is associative and graded commutative in the sense that

(ω ∧ η) ∧ ξ = ω ∧ (η ∧ ξ) and ω ∧ η = (−1)|ω||η|η ∧ ω. (A.1.5)

There is another operation on Λ∗T ∗M known as interior multiplication or contraction with
a vector v ∈ TxM defined by

v⌞ : ΛpT ∗
M → Λp−1T ∗

M , (v⌞ω)(w1, . . . , wp−1) = ω(v, w1, . . . , wp−1). (A.1.6)

Interior and exterior multiplication are adjoint in the sense that

⟨v⌞ω, η⟩ =
〈
ω, v♭ ∧ η

〉
(A.1.7)

where v♭ = ⟨v, ·⟩ is the metric dual of v. The contraction of a wedge product can be
computed using the graded Leibniz rule

v⌞(ω ∧ η) = (v⌞ω) ∧ η + (−1)|ω|ω ∧ (v⌞η). (A.1.8)
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Differential forms. Let Ωp(M) = Γ(ΛpT ∗M). The de Rham differential or exterior
derivative

d : Ωp(M)→ Ωp+1(M) (A.1.9)

is defined by requiring df to be the usual derivative for f ∈ C∞(M) = Ω0(M) and the
graded Leibniz rule

d(ω ∧ η) = (dω) ∧ η + (−1)|ω|ω ∧ (dη). (A.1.10)

The de Rham differential and codifferential can be expressed locally in terms of the
Levi–Civita connection by the formulas

d =

n∑
i=1

ei ∧∇i and d∗ = −
n∑
i=1

ei⌞∇i. (A.1.11)

A.2 Spin geometry

A.2.1 Complex Clifford algebras and their representations

Throughout, let V be a finite dimensional real inner product space. The complex Clifford
algebra Cl(V ) is defined as the associative unital C–algebra generated by all v ∈ V subject
to the Clifford relations v2 = −|v|2. We have a canonical embedding i : V ↪→ Cl(V ) which
can be used to identify V with its image in Cl(V ).

Lemma A.1 (Universal property, cf. [LM89, Prop. I.1.1]). Let E be a complex vector space
and ρ : V → EndC(E) an R–linear map such that ρ(v)2 = −|v|2 idE. Then there exists a
unique C–algebra homomorphism ρ̃ : Cl(V )→ EndC(E) such that ρ = ρ̃ ◦ i.

Lemma A.2 (cf. [LM89, Prop. I.1.3]). There is a vector space isomorphism

Cl(V ) ∼= Λ∗V ⊗ C. (A.2.1)

The Clifford algebra has a canonical Z2–grading by Cl(V ) = Cl0(V )⊕Cl1(V ) where the
even part Cl0(V ) is the sub-algebra generated by products vw ∈ Cl(V ) with v, w ∈ V .

Lemma A.3 (cf. [LM89, Thm. I.3.7]). There is an isomorphism of C–algebras

Cl(V ) ∼= Cl0(R⊕ V ), v 7→ e0v. (A.2.2)

For brevity, we write Cln = Cl(Rn) and C(n) for the algebra of complex n×n–matrices.
These algebras can be identified as follows.

Theorem A.4 (cf. [LM89, Ch. I.4]). There are isomorphisms of C–algebras

Cl1 ∼= C⊕ C, Cl2 ∼= C(2), Clm+n
∼= Clm ⊗ Cln, C(r)⊗ C(s) ∼= C(rs).

In particular, this gives the periodicity property Cln+2
∼= Cln ⊗ C(2) and the classification

Cln ∼=

{
C(2k) n = 2k

C(2k)⊕ C(2k), n = 2k + 1.

A Cln–module E is called irreducible if it cannot be written as the direct sum of non-
trivial Cln–modules of smaller rank. Equivalently, E does not have any non-trivial, proper
Cln–invariant sub-modules. We also refer to (left) Cln–modules as Cln–representations.

Theorem A.5 (cf. [LM89, Thm. I.5.6]). The canonical representation of C(r) on Cr is, up
to isomorphism, the only irreducible representation of C(r). The algebra C(r) ⊕ C(r) has
two inequivalent irreducible representations given by the canonical representations of the two
summands.
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Theorems A.4 and A.5 can be used to give a classification of irreducible Cln–modules.
The canonical orientatin of Rn determines the real and complex volume elements

voln = e1 · · · en ∈ Cln, ωC
n =

{
ik voln, n = 2k

ik+1 voln, n = 2k + 1
(A.2.3)

The normalization guarantees that (ωC
n)

2 = 1.

Theorem A.6 (cf. [LM89, Props. I.5.10 & 15]).

(i) If n = 2k is even, then Cln has, up to isomorphism, a unique irreducible com-
plex representation. Any such representaion ∆n has dimension 2k. The subspaces
∆±
n = (1±ωC

n)∆n are Cl0n–invariant and constitute irreducible Cl0n–modules of dimen-
sion 2k−1. The element ωC

n acts on ∆±
n as ± id.

(ii) If n = 2k + 1 is odd, then Cln has, up to isomorphism, two irreducible complex rep-
resentations both of which have dimension 2k. The two isomorphism classes are dis-
tinguished by the action of ωC

n , which either acts as id or − id. If ∆±
n are irreducible

Cln–representations on which ωC
n acts as ± id. If ∆±

n denotes one such representation
in each isomorphism class are isomorphic as Cl0n–representations.

More abstractly, if V is an oriented real inner product space of dimension n, then we
have volume elements volV , ω

C
V ∈ Cl(V ). In odd dimensions, we can use the orientation

to single out one of the two irreducible Cl(V )–modules. Unfortunately, this is a matter of
convention.

Definition A.7. Suppose that V has odd dimension n = 2k+1. We say that an irreducible
Cl(V )–module ∆ is positively (resp. negatively) oriented if ωC

V acts by + id (resp. − id).

Concrete models for ∆n can be obtained as follows. For even n = 2k, we identify R2k ∼= Ck
and let

∆2k = Λ∗Ck (A.2.4)

with Clifford multiplication given ρ2k : Ck → EndC(Λ
∗Ck) given by

ρ2k(ξ)ω = v ∧ ξ − v⌞ξ. (A.2.5)

For odd n = 2k − 1 we can take
∆±

2k−1 = ∆±
2k (A.2.6)

with Clifford action induced by the isomorphism Cl2k−1
∼= Cl02k.

A.2.2 Spinc structures on vector bundles

We now generalize the notions for vector spaces to Euclidean1 vector bundles V → B over
a sufficiently well-behaved space B (e.g. a manifold). We then have a Clifford bundle Cl(V )
whose fiber over x ∈ M is Cl(Vx). A Clifford module or Cl(V )–module is a complex vector
bundle E → B together with a bundle map ρ : Cl(V )→ EndC(E) which equips each fiber Ex
with a Cl(Vx)–module structure (i.e. ρ is a homomorphism of C–algebra bundles). By the
universal property of Cliffod algebras, the so-called Clifford multiplication ρ is uniquely
determined by its restriction to V which is a map of real vector bundles

ρ : V → EndC(E) (A.2.7)

and satisfies ρ(v)2 = −|v|2 idE for all v ∈ V . The argument in [LM89, Prop. I.5.16] shows
that we can always find a Hermitian bundle metric ⟨ , ⟩ on E such that ρ(v)∗ = −ρ(v)

1A Euclidean vector bundle is a real vector bundle of finite rank equipped with a bundle metric.
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for all v ∈ V . The triple (E, ρ, ⟨ , ⟩) is then called a Hermitian Cl(V )–module. A Clifford
module (E, ρ) is called irreducible if Ex is irreducible as a Cl(Vx)–module for each x ∈ B.
If V is oriented, then the orientation gives fiberwise well-defined volume elements as in
(A.2.3) which assemble into sections

voln, ω
C
n ∈ Γ(B;Cl(V )). (A.2.8)

If V has odd rank and B is connected, then for irreducible (E, ρ) we have ρ(ωC
V ) = ±1.

Depending on the sign, we call (E, ρ) positively or negatively oriented.

Definition A.8 (Spinor bundles and spinc structures).
Let V → B be an oriented Euclidean vector bundle over a locally compact space B.

(a) A spinor bundle for V is a Hermitian Cl(V )–module S = (S, ρ, ⟨ , ⟩) which is irreducible
and negatively oriented in the case that V has odd rank n = 2k + 1.

(b) Two spinor bundles S = (S, ρ, ⟨ , ⟩) and S = (S′, ρ′, ⟨ , ⟩′) for V are called isomorphic

if there is a unitary bundle isomorphism U : S
∼=−→ S′ such that Uρ(v) = ρ′(v)U for

all v ∈ V .

(c) Let Spinc(V ) be the set of isomorphism classes of spinor bundles for V . Elements
of Spinc(V ) are called spinc structures and denoted by s = [S, ρ, ⟨ , ⟩].

Remark A.9. The orientation convention for spinor bundles is chosen to be compatible
with [KM07]. In the case that V has rank 3 we have ωC

V = − volV and the convention
guarantees that ρ(volV ) = id. However, other authors use different conventions! For ex-
ample, the spinor bundles in [Sal99, Frø08] are positively oriented. Passing between these
conventions amount to changing (S, ρ, ⟨ , ⟩) into (S,−ρ, ⟨ , ⟩), that is, the sign of Clifford
multiplication is reversed. This has to be taken into account when comparing formulas!
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