Floer Homology and the Seiberg–Witten Equations (SoSe 2023)

— Homework Sheet 1 —

(due on Friday, April 14)

Grading system: There will be two exercises per week and 4 points available per exercise. A complete solutions give 4 points, almost complete solutions give 3 points, partial solutions with larger gaps give 2 points, promising ideas give 1 point.

Exercise 1.1 (Asymptotics of Morse trajectories).

Let (f,ξ) be a Morse pair on a closed *n*-manifold *M*. Prove the claim from the lecture that every solution $\gamma \colon \mathbb{R} \to M$ of $\dot{\gamma} + \xi(\gamma) = 0$ has limits

$$\gamma(\pm\infty) = \lim_{t \to \pm\infty} \gamma(t) \in \operatorname{Crit}(f).$$

Exercise 1.2 (Another Morse function on the torus).

On $T^2 = \mathbb{R}^2/2\pi\mathbb{Z}^2$ consider the function defined by $f(x, y) = \cos(x) + \sin(y)$. Study the negative gradient trajectories of f with respect to the flat metric on T^2 induced from \mathbb{R}^2 . Show that $(f, \nabla f)$ satisfies the Morse–Smale condition and compute its Morse–Floer complex.