Floer Homology and the Seiberg–Witten Equations (SoSe 2023)

— Homework Sheet 4 —

(due on Friday, May 5)

Exercise 4.1 (Another construction of index pairs).

Let $\phi: X \times \mathbb{R} \to X$ be a flow on a locally compact metric space X denoted by $\phi(x,t) = x \cdot t$. Call $N \subset X$ strongly isolating if there is some finite T > 0such that $x \cdot [-T, T] \subset N$ implies $x \in int(N)$. Consider the following subsets of N:

 $N^{T} = \{ x \in N \mid x \cdot [-T, T] \subset N \} \qquad E^{T} = \{ x \in N^{T} \mid x \cdot [0, T] \cap \partial N \neq \emptyset \}$ It is clear from the definitions that $N^{S+T} = (N^T)^S$ for $S, T > 0, N^T \subset N^S$ for S < T for $N \subset M$, and $N^T \subset M^T$ for $N \subset M$.

- (a) Show that every strongly isolating set is isolating and that every compact isolating set is strongly isolating. Conclude that every compact isolated invariant set $S \subset X$ has a strongly isolating neighborhood.
- (b) If N is a compact isolating neighborhood of S = Inv(N), then (N^T, E^T) is an index pair for sufficiently large $T \gg 0$.

(*Hint: Assuming that* $N^T \subset int(N)$ show that $N^{2T} \subset int(N^T)$.)

Exercise 4.2 (Identifying the Floer differential).

Let (f,ξ) be a Morse–Smale pair on a smooth *n*–manifold M and ϕ the local flow generated by $-\xi$. Moreover let $S \subset M$ be a compact isolated invariant set and $p, q \in \operatorname{Crit}(f) \cap S$ with $\mu(p) - \mu(q) = 1$. Let $S_0 = \{p, q\} \cup (M(p, q) \cap S)$ be the union of all trajectories between p and q. This is a compact isolated invariant set (why?). It is proved in [Flo89, Lemma 3.1] that the Floer differential is given by

$$d\langle p \rangle = \#_2 \hat{M}(p,q) \langle q \rangle.$$

Read the argument in [Flo89] and fill in the omitted details.

References

[Flo89] Andreas Floer, Witten's complex and infinite dimensional Morse theory, J. Differ. Geom. **30** (1989), no. 1, 207–221.