Floer Homology and the Seiberg-Witten Equations (SoSe 2023)

- Homework Sheet 9 -

(to be discussed on Thursday, July 6)

Exercise 9.1 (The quadratic term on 3-manifolds).
Let (S, ρ) be a spinor bundle over a 3 -manifold Y. Recall that every pair of spinors $\phi, \psi \in \Gamma(S)$ determines a complex valued 1-form $\rho^{-1}\left(\psi \phi^{*}\right)_{0} \in \Omega^{1}(Y ; \mathbb{C})$. Show that there is a constant c such that for every $\alpha \in \Omega^{1}(Y ; \mathbb{C})$ we have

$$
\left\langle\rho^{-1}\left(\phi \psi^{*}\right)_{0}, \alpha\right\rangle_{\Lambda_{\mathrm{C}}^{1} Y}=c\langle\phi, \rho(\alpha) \psi\rangle_{S}
$$

and determine the value of the constant.
(Hint: Equip $\operatorname{End}_{C}(S)$ with the Hermitian metric $\langle A, B\rangle=\frac{1}{2} \operatorname{tr}_{\mathbb{C}}\left(A^{*} B\right)$.)
Exercise 9.2 (The Yang-Mills equation on cylinders).
Let Y be a closed, oriented Riemannian 3-manifold. The space of connections on the trivial principal $S U_{2}$-bundle $Y \times S U_{2} \rightarrow Y$ is canonically identified with the space of Lie algebra valued 1-forms $\Omega^{1}\left(Y ; \mathfrak{s u}_{2}\right)$.
(a) Show that the Chern-Simons functional

$$
\operatorname{cs}: \Omega^{1}\left(Y ; \mathfrak{s u}_{2}\right) \rightarrow \mathbb{R}, \quad \operatorname{cs}(a)=\frac{1}{8 \pi^{2}} \int_{Y} \operatorname{tr}\left(a \wedge d a+\frac{2}{3} a \wedge a \wedge a\right)
$$

admits a gradient with respect to to the L^{2} scalar product $(a, b)_{0}=\frac{1}{2} \int_{Y} \operatorname{tr}\left(a^{*} b\right)$ vol $_{Y}$.
(b) A smooth curve $a: \mathbb{R} \rightarrow \Omega^{1}\left(Y ; \mathfrak{s u}_{2}\right)$ can be interpreted as a 1-form $\hat{a} \in \Omega^{1}\left(\mathbb{R} \times Y ; \mathfrak{s u}_{2}\right)$ on the cylinder $\mathbb{R} \times Y$. Show that the the gradient flow equation $\dot{a}=\nabla \operatorname{cs}(a)$ is equivalent to the Yang-Mills equation

$$
F_{\hat{a}}^{+}=F_{\hat{a}}+*_{4} F_{\hat{a}}=0
$$

where $*_{4}$ is the Hodge operator on $\mathbb{R} \times Y$ for the cylindrical metric $d t^{2}+g_{Y}$.

