Bing Topology and Casson Handles
2013 Santa Barbara Lectures

Michael H. Freedman
(Notes by S. Behrens)

Last update: February 14, 2013, 16:31 (EST)

Abstract

The ultimate goal of these lectures is to explain the proof of the 4-dimensional Poincaré conjecture. Along the way we will hit some high points of manifold theory in the topological category. Many of these will eventually go into the proof so that the historical diversions are not really diversions.

Warning!

These notes are a mixture of a word-by-word transcription of the lectures and my attempts to convert some of the more pictorial arguments into written form. To understand some of the arguments. To no fault of the lecturer they may be incomprehensible or even wrong at times! Moreover, the current status of the notes is: written, compiled, uploaded. In particular, they have not been revised by the lecturer, me or anyone else. Given time and leisure they might improve in time but for now I will probably be busy typing up the lectures that are yet to come. In any case, comments and suggestions are most welcome.

Contents

1 The Schoenflies theorem after Mazur and Morse. 3
 1.1 The Schoenflies problem ... 3
 1.2 The Eilenberg swindle ... 3
 1.3 Mazur’s Schoenflies theorem 5
 1.4 Push-pull .. 6
 1.5 Removing the standard spot hypothesis 7
 1.6 More about push-pull .. 7

2 The Schoenflies theorem via the Bing shrinking principle 8
 2.1 Shrinking cellular sets .. 8
 2.2 Brown’s proof of the Schoenflies theorem 11
 2.3 The Bing shrinking criterion 11
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Decomposition space theory and shrinking: examples</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Some decomposition space theory</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>Three descriptions of the Alexander gored ball</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>The first shrink ever: the Bing decomposition</td>
<td>18</td>
</tr>
<tr>
<td>3.4</td>
<td>Something that cannot be shrunk</td>
<td>19</td>
</tr>
<tr>
<td>3.5</td>
<td>The Whitehead decomposition</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Decomposition space theory and shrinking: more examples</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Starlike-equivalent sets and shrinking</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>A slam dunk for the Bing shrinking criterion</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>Mixing Bing and Whitehead</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>The sphere to sphere theorem</td>
<td>28</td>
</tr>
<tr>
<td>5.1</td>
<td>The main idea in the proof</td>
<td>28</td>
</tr>
<tr>
<td>5.2</td>
<td>Some things about relations</td>
<td>30</td>
</tr>
<tr>
<td>5.3</td>
<td>Iterating the main idea: admissible diagrams</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>From the Whitney trick to Casson handles</td>
<td>32</td>
</tr>
<tr>
<td>6.1</td>
<td>The Whitney trick in dimension 4</td>
<td>32</td>
</tr>
<tr>
<td>6.2</td>
<td>4-manifolds in the early 1970s: surgery and h-cobordism</td>
<td>35</td>
</tr>
<tr>
<td>6.3</td>
<td>Finding dual spheres</td>
<td>37</td>
</tr>
<tr>
<td>6.4</td>
<td>Casson handles and Kirby calculus</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>Exploring Casson handles</td>
<td>45</td>
</tr>
<tr>
<td>7.1</td>
<td>Picture Camp</td>
<td>45</td>
</tr>
<tr>
<td>7.2</td>
<td>The boundary of a Casson handle</td>
<td>50</td>
</tr>
<tr>
<td>7.3</td>
<td>An exercise in wishful thinking</td>
<td>52</td>
</tr>
<tr>
<td>7.4</td>
<td>A glimpse at reimbedding and “the Design”</td>
<td>53</td>
</tr>
<tr>
<td>8</td>
<td>Combinatorics day</td>
<td>55</td>
</tr>
<tr>
<td>8.1</td>
<td>Gropes and transverse spheres</td>
<td>55</td>
</tr>
<tr>
<td>8.2</td>
<td>Height raising and reimbedding for Casson towers</td>
<td>59</td>
</tr>
<tr>
<td>8.3</td>
<td>Height raising for gropes</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>Geometric control and the Design</td>
<td>61</td>
</tr>
</tbody>
</table>
1 The Schoenflies theorem after Mazur and Morse.

In the 1950s there was pervasive pessimism about the topological category because nobody knew how to tackle even the simplest problems without smooth or piecewise linear charts. The watershed moment was in 1959 when Mazur gave his partial proof of the Schoenflies conjecture [Maz59].

1.1 The Schoenflies problem

The Schoenflies problem is a fundamental question about spheres embedded in Euclidean space. We denote the d-dimensional Euclidean space by \mathbb{R}^d, the unit ball by $B^d \subset \mathbb{R}^d$ and the sphere by $S^d = \partial B^{d+1} \subset \mathbb{R}^{d+1}$. We phrase the Schoenflies problem as a conjecture.

Conjecture 1.1 (Schoenflies). Any continuous embedding of S^d into the \mathbb{R}^{d+1} extends to an embedding of B^{d+1}.

In 1914, the 1-dimensional case of the conjecture was proven in full generality by Caratheodory and Osgood-Taylor using elaborate methods from complex analysis. The 2-dimensional case was studied in the 1920s by Alexander who first circulated a manuscript claiming a proof but soon discovered a counterexample himself, the famous horned sphere. Later Alexander found an extra condition under which the Schoenflies conjecture holds in dimension 2. This extra condition, the existence of a bicollar; makes sense in arbitrary dimensions; it means that the embedding of S^d should extend to an embedding of $S^d \times [-1,1]$ in which S^d sits as $S^d \times \{0\}$.

In the 40 years that followed almost no progress was made which lead to much dismay about the topological category until Mazur gave his argument.

![Figure 1: Alexander’s horned sphere. (The red circle is not contractible in the exterior.)](image)

1.2 The Eilenberg swindle

The strategy of Mazur’s proof was based on the *Eilenberg swindle* which is an observation in commutative algebra. Let A be a projective module (over some ring) written as a summand $A \oplus B = F$ of a free module F. Then on the one hand we have

$$(A \oplus B) \oplus (A \oplus B) \oplus (A \oplus B) \oplus \cdots \cong F^\infty$$

while, on the other hand, a different grouping of the summands gives

$$A \oplus (B \oplus A) \oplus (B \oplus A) \oplus (B \oplus A) \oplus \cdots \cong A \oplus F^\infty$$
since the direct sum is associative and commutative (up to isomorphism). Consequently, A becomes a free module after direct summing with an infinitely dimensional free module. In other words, a projective module is stably free in the infinite dimensional context.

Before going into Mazur’s proof we take a look at a warm up example of an application of this principle in topology.

Example 1.2 (Do knots have inverses?). Knots in \mathbb{R}^3 (or S^3) can be added by forming connected sums. The question is whether, given a knot A, there is a knot B such that $A \# B$ is isotopic to the trivial knot I, denoted by $A \# B \simeq I$.

If we think of knots as strands in a cylinder connecting one end to the other, then the connect sum operation is realized by simply stacking cylinders next to each other. Note that this operation is also commutative and associative. Indeed, the associativity is obvious and to see the commutativity we can simply shrink B so that it becomes very small compared to A, then slide it along A and let it grow again.

Now let us assume that a knot A has an inverse B, ie $A \# B \cong I$. In this case the swindle works as follows. We sum infinitely many copies of $A \# B$ and think of them as living in a cone which, in turn, lives in a cylinder (see Figure 3). Then we clearly have

\[(A \# B) \# (A \# B) \# (A \# B) \# \cdots \cong I^\infty \cong I\]

while a different grouping gives

\[A \# (B \# A) \# (B \# A) \# (B \# A) \# \cdots \cong A \# I^\infty \cong A\]

which proves that A must be the trivial knot.

Remark 1.3. Besides the fact that there are easier proof for the fact that non-trivial knots don’t have inverses, the above proof has another drawback in that it “looses category”. For example, we might have started with smooth or piecewise linear knots but the conclusion holds only in the topological category since the isotopy we constructed will not be smooth or piecewise linear at the cone point.
1.3 Mazur’s Schoenflies theorem

Consider a bicollared embedding \(i: S^d \times [-1, 1] \to \mathbb{R}^{d+1} \) and fix a point \(p \in S^d = S^d \times \{0\} \). Possibly after translation we can assume that \(i(p) = 0 \). We say that \(p \) is a standard spot of \(i \) if the following condition is satisfied. There is a disk \(D \subset S^d \) around \(p \) such that, if we consider \(\mathbb{R}^{d+1} \) as \(\mathbb{R}^d \times \mathbb{R} \), then

1. \(i \) maps \(D \times 0 \) to \(\mathbb{R}^d \times 0 \) and
2. for each \(q \in D \) the interval \(q \times [-1, 1] \) is mapped to \(i(q) \times [-1, 1] \subset \mathbb{R}^d \times \mathbb{R} \).

Roughly, this means that \(i \) is “as standard as possible” around \(p \).

Theorem 1.4 (Mazur [Maz59]). Let \(i: S^d \times [-1, 1] \to \mathbb{R}^{d+1} \) be a bicollared embedding which has a standard spot. Then \(i \) extends to an embedding of \(B^{d+1} \).

Proof. By passing to the one point compactification we can consider \(i \) as a flat embedding \(S^d \to S^{d+1} \) and we cut out a small \((d+1)\)-ball around the standard spot. What is left is another \((d+1)\)-ball which is cut into two pieces \(A \) and \(A' \) by the image of \(i \). The standard spot hypothesis implies that the boundary of \(A \) (resp. \(A' \)) is a \(d \)-sphere which is decomposed into two standard \(d \)-balls \(c \) and \(d \) (resp. \(c' \) and \(d' \)), see Figure 4.

By construction we have \(A \cup_{c', c} A' \cong B^{d+1} \) and, after noticing that gluing two balls along balls (of one dimension lower) gives another ball, it follows that

\[
B^{d+1} \cong (A \cup_{c,c'} A') \cup_{d,d'} (A \cup_{c,c'} A') \cup_{d,d'} (A \cup_{c,c'} A') \cdots \\
\cong A \cup_{c,c'} (A' \cup_{d,d'} A) \cup_{c,c'} (A' \cup_{d,d'} A) \cup_{c,c'} (A' \cup_{d,d'} A) \cdots
\]

where the regrouping is justified by the associativity of gluing.

This is the setup for another swindle and in order to make it work we have to show that the identification \(A' \cup_{d,d'} A \) is also a ball. To see this, note that \(c \) and \(d \) are isotopic in \(\partial A \) and, since \(\partial A \) is collared by the standard spot hypothesis, this isotopy can be extended to an isotopy of \(A \) in the standard way. Analogous results hold for \(c' \) and \(d' \) in \(\partial A' \) and from this we can construct a homeomorphism from \(A \cup_{c,c'} A' \) to \(A \cup_{d,d'} A' \) and, since gluing is symmetric, \(A' \cup_{d,d'} A \) is a ball and the swindle tells us that \(A \) is a ball. In fact, by reversing the roles of \(A \) and \(A' \) we also see that \(A' \) is a ball.

Finally, we can glue back in the neighborhood of the standard spot and we see that \(S^{d+1} \setminus i(S^d) \) is the union of two open balls which proves the theorem. \(\square \)
1.4 Push-pull

After Mazur’s work, there was a lot of interest in removing the standard spot hypothesis. This was done in 1960 in a paper by Marston Morse [Mor60]. He used a technique called push-pull which was common knowledge around that time. This technique is very general and is valuable in its own right. We will introduce the technique by proving a theorem which uses it.

Lemma 1.5 (Application of push-pull). Let X and Y be two compact metric spaces. If $X \times \mathbb{R}$ is homeomorphic to $Y \times \mathbb{R}$, then $X \times S^1$ is homeomorphic to $Y \times S^1$.

Proof. Let $h: X \times \mathbb{R} \to Y \times \mathbb{R}$ be a homeomorphism. Then $Y \times \mathbb{R}$ has two product structures, the intrinsic one and the one induced from $x \times \mathbb{R}$ via h.

By compactness we can find $a, b, c, d \in \mathbb{R}$ such that

- $Y_a = Y \times a$, $Y_c = Y \times c$, $X_b = h(X \times b)$ and $X_c = h(X \times d)$ are disjoint in $Y \times \mathbb{R}$ and
- $X_b \subset Y \times [a, c]$ and $Y_c \subset h(X \times [b, d])$

as illustrated on the left side of Figure 5. The idea is to find a homeomorphism Π of $Y \times \mathbb{R}$ such that the composition $\Pi \circ h: X \times \mathbb{R} \to Y \times \mathbb{R}$ has enough periodicity to create a homeomorphism $X \times S^1 \to Y \times S^1$. We construct Π as a composition

$\Pi = C^{-1} \circ P_Y \circ P_X \circ C$

where the steps are illustrated in Figure 5. The maps P_X and P_Y will constitute the actual pushing and pulling while C, which we might call cold storage, makes sure that nothing is pushed or pulled unless it’s supposed to be.

The maps are defined as follows:

- C rescales the intrinsic \mathbb{R}-coordinate of $Y \times \mathbb{R}$ such that $C(Y \times [a, c])$ lies below the level of X_b and leaves X_d untouched.
- P_X pushes X_d down to X_b along the \mathbb{R}-coordinate induced by h.
- P_Y pulls X_b up along the intrinsic \mathbb{R}-coordinate by the amount $c - a$.

Observe that Π leaves X_b untouched and that $\Pi(X_d)$ appears as a translate of X_b in the intrinsic \mathbb{R}-coordinate. By repeating this construction we can create periods with respect to both translations which proves the claim.

Exercise 1.6. (a) Fill in the details in the proof.
(b) Find spaces X and Y, such that $X \times S^1 \cong Y \times S^1$ but $X \times \mathbb{R} \not\cong Y \times \mathbb{R}$.
1.5 Removing the standard spot hypothesis

Using a similar push-pull argument as above, Morse proved the following:

Theorem 1.7 (Morse [Mor60]). Any flat embedding \(S^d \to \mathbb{R}^{d+1} \) has a standard spot after applying a homeomorphism of \(\mathbb{R}^{d+1} \).

Proof. Consider an embedding \(h: S^d \times [-1, 1] \to \mathbb{R}^{d+1} \) and fix a point \(p \in S^d \times 0 \). By translation we can assume that \(i(p) = 0 \). We choose local coordinates on a disk \(D \subset S^d \) containing \(p \) and observe that we get an induced local coordinate system on \(h(D \times [-1, 1]) \subset \mathbb{R}^{d+1} \), see Figure 6.

In this new local coordinate system, the embedded sphere clearly has a standard spot, so it remains to extend it to a global coordinate system.

To achieve this we can use a push-pull argument. The idea is to compare the standard polar coordinates in \(\mathbb{R}^{d+1} \) with the ones induced by \(h \). Again, by compactness we can find interlaced pairs standard spheres and curved spheres and, using push pull, we can find an isotopy such that transforms one of the curved sphere into a translate of the other along the standard radial coordinate and preserves a neighborhood of the origin. Moreover, now we can extend the local chart by periodicity to cover all of \(\mathbb{R}^{d+1} \).

Combining the results of Mazur and Morse we immediately get:

Theorem 1.8 (Mazur, Morse). Any flat embedding of \(S^d \) into \(\mathbb{R}^{d+1} \) extends to an embedding of \(B^{d+1} \).

However, by the time Morse had completed Mazur’s argument, Brown had already given an independent proof of Theorem 1.8 which will probably be discussed in the next lecture.

1.6 More about push-pull

A way to think of the push-pull argument is that it gives control over a homeomorphism in one linear direction. A major technical problem when working with topological manifolds is to gain control of a homeomorphism in many directions simultaneously. The culminating step in this direction was Kirby’s work on the torus trick which we will take up later.

We end this lecture by giving some more applications, probably also due to Brown, of push-pull.
Theorem 1.9 (Brown). A locally bicollared codimension one embedding is globally bicollared.

Theorem 1.10 (Brown). Collars for codimension one submanifolds are unique up to isotopy.

2 The Schoenflies theorem via the Bing shrinking principle

In this lecture we are getting closer to the material that will be at the core of the 4-dimensional arguments, namely decomposition space theory. We will introduce these ideas through the notion of cellular sets (see Definition 2.1 below).

2.1 Shrinking cellular sets

Most of the following is due to Brown [Bro60]. We begin by introducing two central notions.

Definition 2.1. A subset $X \subset B^d$ is called cellular if it can be written as the intersection of countably many nested balls in B^d, that is, if there embedded d-balls $B_i \subset B^d$, $i = 1, 2, \ldots$, such that $B_{i+1} \subset \text{int} B_i$ and $X = \cap_i B_i$.

As an example, Figure 7 illustrates that the letter X is a cellular subset of B^2.

Exercise 2.2. Which capital letters are cellular sets?

Remark 2.3. Note that cellularity is not an intrinsic property of the space X but depends on the specific embedding.

We will see that the notion of cellular sets is closely related to maps whose point preimages are mostly singletons while some points have larger preimages. One can think of such maps as close to being homeomorphisms. The following terminology will be useful.

Definition 2.4. Let $f: X \to Y$ be a map. A point preimage $f^{-1}(y)$, $y \in Y$, is called an inverse set of f it contains more than one element.

Eventually, we will obtain a characterization of cellular sets in terms of inverse sets. We start by showing that isolated inverse sets are cellular.

Lemma 2.5. Let $f: B^d \to B^d$ be a continuous map between balls with a unique inverse set $X = f^{-1}(y)$, $y \in B^d$ which is contained in the interior of B^d. Then X is cellular.

Note that we do not assume that f maps boundary to boundary.
Proof. We first observe that \(y \in B^d \) is an interior point and that we can find an \(\epsilon > 0 \) such that the standard ball \(B_\epsilon(y) \subset B^d \) around \(y \) is contained in the image of \(f \).

Exercise 2.6. Convince yourself that this is true. (Hint: Invariance of domain)

Next we choose some homeomorphism \(s_\epsilon : B^d \to B^d \) of the target ball which restricts to the identity on the smaller ball \(B_{\epsilon/2}(y) \) and squeezes the rest of \(B^d \) into \(B_\epsilon(y) \). (Such a homeomorphism can be obtained, for example, by constructing an isotopy that moves \(y \) to 0 with which we then conjugate a suitable radial contraction.) Using this we now define a map \(\sigma_\epsilon : B^d \to B^d \) from the source ball to itself by

\[
\sigma_\epsilon(x) = \begin{cases}
 x & \text{if } x \in X \\
 f^{-1} \circ s_\epsilon \circ f(x) & \text{if } x \notin X.
\end{cases}
\]

Note that \(\sigma_\epsilon \) is well defined because \(f \) restricts to an injection \(B^d \setminus X \to B^d \setminus \{y\} \) and, by construction, \(s_\epsilon \) does not map \(f(x) \) to \(y \). Moreover, one can show:

Exercise 2.7. Verify that \(\sigma_\epsilon \) is injective, continuous and a homeomorphism onto its image.

The proof is finished by choosing a sequence \(\epsilon = \epsilon_1 > \epsilon_2 > \cdots > 0 \) which converges to zero and the observation that the balls \(B_i = \sigma_{\epsilon_i}(B^d) \subset B^d \) exhibit \(X \) as a cellular set.

The next result introduces the central idea of shrinking in the context of cellular sets.

Lemma 2.8 (Shrinking cellular sets). Let \(X \subset B^d \) be a cellular set. For any \(\epsilon > 0 \) there exists a homeomorphism \(h^X_\epsilon : B^d \to B^d \) such that

(i) \(h^X_\epsilon \) is the identity outside a \(\epsilon \)-neighborhood of \(X \).

(ii) The diameter of \(h^X_\epsilon(X) \) is less then \(\epsilon \).

Proof. Since \(X \) is cellular we can find a ball around \(X \) all of whose points have distance at most \(\epsilon \) to \(X \). Given such a ball, we can construct \(h^X_\epsilon \) by a similar “radial squeeze” argument as in the previous proof.

Going one step further, we can not only shrink cellular sets but in fact crush them.

Lemma 2.9. If \(X \subset B^d \) is cellular, then the quotient \(B^d/X \) is homeomorphic to \(B^d \).

Proof. We choose a sequence \(\epsilon_1 > \epsilon_2 > \cdots > 0 \) which converges to zero and define a map

\[
g^X = \lim (\cdots \circ h^X_{\epsilon_2} \circ h^X_{\epsilon_1}) : B^d \to B^d
\]

with \(h^X_\epsilon \) given as in Lemma 2.8.

Exercise 2.10. Convince yourself that this limit exists in the space \(C(B^d, B^d) \) of continuous self maps of \(B \) equipped with the sup-norm.

If \(\pi : B^d \to B^d/X \) denotes the quotient map, then it is easy to see that the expression \(\pi \circ g^{-1} \), which is a priori only a relation, actually defines a map. Moreover:

Exercise 2.11. \(\pi \circ (g^X)^{-1} : B^d \to B^d/X \) is a homeomorphism.
Remark 2.12. Some remarks about the topology of quotients are in place. First of all, we will always equip quotient spaces with the quotient topology which means that the open sets in the quotient are exactly those sets whose preimages are open. Since all these lectures live in the world of compact metric spaces, it is important to note that it is not completely obvious how to obtain metrics on quotient spaces. What keeps us safe is the Urysohn metrization theorem which states that compact, second countable Hausdorff spaces are metrizable. Compactness and second countability are never an issue since these properties are preserved by dividing out closed sets, so all we have to check is the Hausdorff property which will be obvious in most cases we will encounter.

We want to point out two rather obvious properties of the map g^X which nevertheless have interesting consequences. On the one hand, it is easy to see that g^X maps X to a single point while it is injective in the complement of X. This gives another characterization of cellular sets.

Corollary 2.13. A subset $X \subset B^d$ is cellular if and only if there is a map $f: B^d \to B^d$ as in Lemma 2.5 which has X as its unique inverse set. (In fact, one can assume that $B^d = B^d$, that f is surjective and that it restricts to the identity on a neighborhood of the boundary.)

On the other hand, g^X is defined as the limit of homeomorphism. Maps with this property are important enough to have a name.

Definition 2.14. A continuous map $f: X \to Y$ between complete metric spaces X and Y is called approximable by homeomorphisms or ABH if it can be written as the limit of homeomorphisms in the sup-norm.

Hence, from the above consideration we can deduce:

Corollary 2.15. If $f: B^d \to B^d$ is the identity on the boundary and has a unique inverse set, then f is ABH.

Remark 2.16. A more precise statement of Lemma 2.9 is that the projection $\pi: B^d \to B^d/X$ is ABH.

Proposition 2.17. Let $f: B^d \to B^d$ be a map which is the identity on the boundary and has finitely many inverse sets X_1, \ldots, X_N. Then:

1. Each X_i is cellular.
2. f is ABH.
3. The quotient $B^d/\{X_1, \ldots, X_N\}$ is homeomorphic to B^d.

Proof. We only treat the case $N = 2$, the rest is an easy induction. As in the proof of Lemma 2.5 we consider a conjugation of the form $f^{-1} \circ s_1 \circ f$ where s_1 is a squeeze for X_1 but this time we don’t get a homeomorphism because of X_2. Instead, we obtain a map which has X_2 as its unique inverse set. From this we see that X_2 is cellular and can thus be collapsed. Moreover, using Corollary 2.13 we can fix the above map to obtain a homeomorphism with which we can continue with the arguments in the proof of Lemma 2.5 eventually showing that X_1 is also cellular. Finally, the fact that f is ABH can easily be deduced from the local nature of the construction of g^X above. □
2.2 Brown’s proof of the Schoenflies theorem

After this lengthy discussion we come back to the Schoenflies theorem (Theorem 1.8) which is almost turned into a one-line consequence by Proposition 2.17. For convenience we restate the Schoenflies theorem in a slightly different but equivalent form.

Theorem 2.18 (Brown [Bro60]). Let \(i: S^{d-1} \to S^d \) be an embedding which admits a bicollar. Then the closure of each component of \(S^d \setminus i(S^{d-1}) \) is homeomorphic to \(B^d \).

![Figure 8: The setup of Brown’s proof.](image)

Proof. We extend \(i \) to an embedding \(I: S^{d-1} \times [-1,1] \to S^d \) and denote by \(A, B \subset S^d \) the closures of the components of the complement of the image of \(I \). Observe that the quotient \(S^d/(A,B) \) is obviously homeomorphic to \(S^d \) since \(I \) essentially identifies it with the suspension of \(S^{d-1} \) which is homeomorphic to \(S^d \) (see Figure 8). We can thus write down the composition

\[
S^d \xrightarrow{\pi} S^d/(A \sqcup B) \xrightarrow{\cong} S^d
\]

which is a map with exactly two inverse sets, namely \(A \) and \(B \). In order to apply Proposition 2.17 we have to reduce the situation to a map between balls. This is achieved by excising small, standard balls from the source and target spheres such that the ball in the source (blue in Figure 8) is contained in the image of \(I \) and the one in the target (green in Figure 8) is contained in the interior of the image of the one in the source.

2.3 The Bing shrinking criterion

The Bing shrinking criterion is a natural generalization of Lemma 2.8 where we showed how to shrink cellular sets. The idea of shrinking goes back to a paper of Bing in 1952 [Bin52] but there was no clear formulation in the literature until Bob Edward’s ICM talk in 1978 [Edw80] where he gave a very succinct statement of a shrinking criterion which had previously been absent in the literature.

Theorem 2.19 (Bing shrinking criterion, Edwards 1978 [Edw80]). Let \(f: X \to Y \) be a map between complete metric spaces. Then \(f \) is ABH if and only if for any \(\epsilon > 0 \) there is a homeomorphism \(h: X \to X \) such that

(i) \(\forall x \in X: \text{dist}_Y(f(x), f \circ h(x)) < \epsilon \) and

(ii) \(\forall y \in Y: \text{diam}_X((f \circ h)^{-1}(y)) < \epsilon \).
The first condition roughly means that \(h \) is close to the identity as measure in the target space \(Y \) and the second condition controls the size of preimage sets. This is very similar to what we have seen in the process of shrinking cellular sets. The upshot of the theorem is that finding a coherent way of shrinking the preimage sets is equivalent to approximating by homeomorphisms.

Proof. The one direction is very easy. If we have a sequence of approximating homeomorphisms \(h_n: X \to Y \), then the compositions of the form \(h_n^{-1} \circ h_{n+k_n} \) will satisfy (i) and (ii) for a given \(\epsilon > 0 \) as long as \(n, k_n \) is large enough.

The other, more interesting direction can be proved by elementary methods but we will sketch a “Bourbaki style” proof due to Edwards. Consider the space \(C(X,Y) \) with the sup-norm topology. This is well known to be a complete metric space. According to Edwards we consider the set

\[
\{ f \circ h \mid h: X \to X \text{ homeomorphism} \} \subset C(X,Y)
\]

and denote by \(E \) its closure. Then \(E \) is also a metric space and, in particular, satisfies the **Baire category theorem** which states that the countable intersection of open and dense sets is still dense. For \(\epsilon > 0 \) we let \(E_{\epsilon} \) be the subset of \(E \) of all maps whose inverse sets have diameter strictly less than \(\epsilon \). This is clearly an open set and the conditions (i) and (ii) eventually imply that \(E_{\epsilon} \) is also dense in \(E \). By the Baire category theorem the set \(E_0 = \cap_{\epsilon>0} E_{\epsilon} \) is dense in \(E \), in particular, it is none-empty. But \(E_0 \) clearly consists of homeomorphisms because the inverse sets have to be points.

The relation to cellularity is given by the following easy exercise.

Exercise 2.20. If \(X,Y \) are compact metric spaces and \(f: X \to Y \) is ABH, then all point preimages \(f^{-1}(y) \) are cellular.

Remark 2.21. So far we have discussed the situation where we take a ball and a couple of subsets and we ask whether we can crush these sets to points and still get something homeomorphic to a ball. The general question in decomposition space theory is a little wilder. Usually we have some manifold and there may be infinitely many things to crush in it, possibly even uncountably many. To answer the question whether the quotient is homeomorphic to the original space there are two main tools. One of them is the Bing shrinking criterion with which we can try to shrink everything simultaneously in a controlled way. However, we will later see examples which indicate that this is a highly non-trivial problem. The problem is that, when we have infinitely many inverse sets, these might be linked in the sense that whenever we shrink some of them, some others will be stretched out, leading to a subtle and beautiful story which things can or cannot be shrunk.

In this discussion the Alexander’s horned sphere makes another prominent appearance and, in fact, it was main the focus of Bing’s paper [Bin52]. Bing’s motivation was the following. In the 1930s Wilder had constructed an interesting space and had asked whether it was homeomorphic to the 3-sphere. He considered the exterior of Alexander’s horned ball and took its double. Wilder’s interest was the fact that the doubled object has an obvious involution which merely exchanges the two halves. However, if this space turned out to be homeomorphic to \(S^3 \), then this would give a very interesting involution on the 3-sphere whose fixed point set is a very wild 2-sphere. As a consequence, it would be a topological involution which is not conjugate to a smooth involution. While he could gather some evidence that his space was the 3-sphere, Wilder was unable to produce a conclusive proof and his question remained unanswered until Bing’s paper.
3 Decomposition space theory and shrinking: examples

3.1 Some decomposition space theory

We begin by setting up some basic terminology from decomposition space theory. An extensive account is given in Daverman’s book [Dav86] although the terminology used therein differs slightly from ours.

Definition 3.1. A decomposition of a space X is a collection $\mathcal{D} = \{ \Delta_i \}_{i \in I}$ of pairwise disjoint, closed subsets $\Delta_i \subset X$, the decomposition elements, indexed by a (possibly uncountable) index set I.

Given a decomposition \mathcal{D} of X, the quotient space or decomposition space of \mathcal{D} is the space X/\mathcal{D} obtained by crushing each set $\Delta \in \mathcal{D}$ to a point and endow it with the quotient topology as in Remark 2.12. We generically denote quotient maps by $\pi: X \to X/\mathcal{D}$.

Remark 3.2. You may notice that our notion of decomposition is a slight abuse of language. Strictly speaking, a decomposition should be a partition of the whole space into pairwise disjoint sets. However, any decomposition as in Definition 3.1 can be completed to an honest decomposition by adding singletons to the decomposition for each point which was not contained in any decomposition element. Clearly, these singletons do not change the decomposition space or the quotient map so that they can essentially be ignored.

We will usually start with X being a compact, second countable, Hausdorff space (and thus metrizable by Urysohn’s theorem) and we need a condition to guarantee that the X/\mathcal{D} stays within this nice class of spaces. As mentioned earlier, the only problem is the Hausdorff property.

Definition 3.3. Let X be a space with a decomposition \mathcal{D}. Given any subset $S \subset X$ we define its (\mathcal{D}-)saturation as

$$S^* = \pi^{-1}(\pi(X)) = (S \setminus \bigcup_{\Delta \in \mathcal{D}} \Delta) \cup (\bigcup_{\Delta \subset S} \Delta)$$

and say that S (\mathcal{D}-)saturated if $S = S^*$.

In other words, a subset is saturated if it is the union of decomposition elements and points outside decomposition elements.

Definition 3.4. A decomposition $\mathcal{D} = \{X\}$ of X is upper semi-continuous if each $\Delta \in \mathcal{D}$ has a saturated neighborhood system or, equivalently, if $U \subset X$ is an open subset, then its saturation U^* is also open.

Figure 9 illustrates some typical upper semi-continuous behavior of a decomposition and a failure thereof.

![Figure 9: Upper semi-continuity and its failure](image)

Note that X/\mathcal{D} is different from $X/(\bigsqcup \Delta_i)$ where all the Δ_i are crushed to a single point!
Exercise 3.5. Show that the two conditions in Definition 3.4 are in fact equivalent.

Exercise 3.6. Let \(D \) be an upper semi-continuous decomposition of \(X \). Show that, if \(X \) is second countable, then so is \(X/D \). Show the same for the Hausdorff property.

The latter exercise implies that, if we consider upper semi-continuous decompositions of compact metric spaces, then we never have to leave this nice class of spaces. However, there is usually no canonical metric on the quotient. It’s tempting to try to “see” a metric on the quotient without going through any metrization theorems but it’s usually not that easy.

![Figure 10: The “middle third” construction of the Cantor set.](image)

Example 3.7. An interesting 1-dimensional decomposition is to take the “middle third” construction of the Cantor set in the unit interval (see Figure 10) and to think of the closed middle third regions as the elements of the decomposition. It turns out that the quotient is again homeomorphic to the interval and one might try to measure length on the quotient by imagining being a taxi cab driving through the interval and turning the meter off inside decomposition elements. But the inconvenient thing is that the Cantor set has measure zero, so the naive taxi cab idea doesn’t work.

Now that we have singled out the appropriate class of spaces and decompositions for our purposes, we introduce the important concept of shrinkability. With the Bing shrinking criterion (Theorem 2.19) in mind we make the following working definition.

Definition 3.8 (Shrinkability, working definition). An upper semi-continuous decomposition \(D \) of a compact metric space \(X \) is shrinkable if the quotient map \(\pi: X \to X/D \) is ABH.

This definition certainly hides the actual shrinking but it avoids the (ultimately inessential) ambiguity of choosing a metric on the decomposition space on the other end of Theorem 2.19. We will usually appeal to the following shrinking criterion which easily follows from Theorem 2.19.

Corollary 3.9. Let \(D \) be an upper semi-continuous decomposition of a compact metric space \(X \). Assume that for any \(\epsilon > 0 \) there exists a homeomorphism \(h: X \to X \) such that

(i) \(h \) is supported in an \(\epsilon \)-neighborhood of the decomposition elements and

(ii) for each \(\Delta \in D \) we have \(\operatorname{diam}(h(\Delta)) < \epsilon \).

Then \(D \) is shrinkable.

Remark 3.10. In its most general form, shrinkability can be defined for an arbitrary decomposition \(D \) of an arbitrary space \(X \) by requiring that for any saturated open cover \(U \) and any arbitrary open cover \(V \) of \(X \) there exists a homeomorphism \(h: X \to X \) such that

(i) \(\forall x \in X \exists U \in U: x, h(x) \in U \) and

(ii) \(\forall \Delta \in D \exists V \in V: h(\Delta) \in V \).
3.2 Three descriptions of the Alexander gored ball

We now come back to Bing’s discussion of the Alexander horned sphere, more precisely, its exterior as shown in Figure 1. By turning the latter picture inside out we obtain a ball where the horns poke into the inside. Following a suggestion of Bob Edwards we call this creature the *Alexander gored ball*, denoted by A. We will give three descriptions of A.

3.2.1 The usual picture: an intersection of balls

The first picture is the above mentioned inside out version of Figure 1. Starting with the standard 3-ball, we drill two pairs of holes in it creating two almost-tunnels which are “linked” as in Figure 11 and repeat this construction indefinitely as indicated.

Remark 3.11. Note that this construction is easily modified to show that A is a cellular subset of B^3.

![Figure 11: A as a countable intersection of 3-balls.](image)

3.2.2 The grope picture

There’s an equally productive picture of A as an infinite union of thickened, punctured tori with some limit points added. The construction goes as follows. We denote by T_0 the 2-torus with an open disk removed and let $T = T_0 \times [0, 1]$. We also fix a meridian-longitude pair of curves $\mu, \lambda \subset T_0$. We start with a single copy T_0 of T and attach two extra copies T_{00} and T_{01} along $\mu_0 \times \{0\}$ and $\lambda_0 \times \{1\}$, respectively, where meridian and longitude are indexed according to the corresponding copy of T (note that there’s a

![Figure 12: A as a grope.](image)
Next, we attach four more copies T_{000}, T_{001}, T_{010} and T_{011} along $\mu_0 \times \{0\}$, $\lambda_0 \times \{1\}$, $\mu_1 \times \{0\}$ and $\lambda_1 \times \{1\}$ and so on. The result is an infinite union of copies of T indexed by a tree as indicated in Figure 12. This process can be done carefully so that the resulting space is embedded in 3-space and which forces the longitudes and meridian to get smaller and smaller in the successive stages such that they will ultimately converge to points in the limit. It is clear from the construction that these limit points form a Cantor set in 3-space; indeed, they correspond to the limit points of the tree in Figure 12 which, in turn, correspond to infinite dyadic expansions.

We claim that the infinite union of tori together with these limit points is homeomorphic to \mathcal{A}. To see this we first give a complicated description of B^3. Figure 13 shows a picture of $B^2 \times I \cong B^3$ which can be interpreted as relative handle decomposition built on B^2 with a canceling 1- and 2-handle pair (the neighborhoods of the yellow arcs). In the intermediate level we see a copy of T_0 with a longitude-meridian pair given by the belt circle of the 1-handle and the attaching circle of the 2-handle each of which naturally bounds a disk; we call these disks caps for T_0, anticipating some future language. We now take this picture of $B^2 \times I$ and replace the neighborhood of each yellow arc, which is clearly homeomorphic to $B^2 \times I$, with a copy of the entire picture and repeat this process indefinitely. Note that, with each step the caps will appear smaller and smaller and, again, limit to a Cantor set in B^3. Moreover, through each of these limit points there will be precisely one yellow arc with endpoints on either the top or the bottom of $B^2 \times I$ giving rise to a Cantor set worth of arcs.

The relation between the two construction of the gored ball now becomes obvious. On the one hand, we can modify the construction slightly to the extend that, in each step we drill out the neighborhoods of the yellow arcs (parametrized by $B^2 \times [-1, 1]$, say), but instead of gluing the model along the whole of $S^1 \times [-1, 1]$ we only glue along $S^1 \times [-\epsilon, \epsilon]$ for some small $\epsilon \in (0, 1)$. This modified construction matches precisely with Figure 11. On the other hand, it is easy to see that, if we remove the neighborhood of the yellow arcs from $B^2 \times I$ in Figure 13 then we are left a copy of $T = T_0 \times I$. Removing the neighborhoods of all yellow arcs in each step of the construction exhibits the infinite union of tori in Figure 12 embedded in B^3 and what’s missing from the gored ball is exactly the limit Cantor set of the longitude meridian pairs.

Remark 3.12. The “union of (capped) tori”-construction is a first example of a (capped) grope. More general versions of this constructions (where the torus can be replaced with a different orientable surface with one boundary component in each step and the thickening takes place in 4-space) will play a central role in the 4-dimensional arguments. Forgetting the embedding into 3-space in our toy example, we can think of the grope as a 2-complex.
made by assembling a countable collection of punctured tori as in the middle of Figure 12.
This kind of picture, although not accurate in three dimensions, will appear frequently in
the 4-dimensional context.

Remark 3.13. A is simply connected, because...

3.2.3 The gored ball as a decomposition space

Finally, we will exhibit A as a decomposition space B^3/D where the decomposition D
of B^3 is given by the Cantor set of yellow arcs in our complicated picture of $B^3 \cong B^2 \times I$
from the previous section. Moreover, these yellow arcs will exhibit some iterated clasping
as in Figure 14.

To see that the quotient space of D is homeomorphic to A we take a closer look at
the first description. There we had written $A = \cap_{k=0}^\infty B_k$ as a countable intersection of
3-balls B_k such that $B_0 = B^3$ and $B_{k+1} \subset B_k$. The important observation is that, in
each step, B_{k+1} can be obtained from B_k by performing an ambient isotopy of 3-space, in
particular, we have homeomorphisms $h_k: B_k \to B_{k+1}$. Taking the limit we obtain a map

$$h_\infty := \lim_{k} h_k: B^3 \to \cap_k B_k = A$$

whose union of inverse sets consist of all points that are moved by h_k for infinitely many k
and it is easy to see that the h_k can be chosen such that these points agree with the
yellow arcs in D. Moreover, it is clear that h_∞ factors through B^3/D and induces a
bijection $B^3/D \cong A$ which is, in fact, a homeomorphism given that h_∞ is continuous.

Exercise 3.14. Show that $h_\infty: B^3 \to A$ is continuous.

Remark 3.15. This construction of A brings up an interesting question about the Bing shrinking criterion. We've described A as the result of crushing certain arcs in B^3 to
points and this crushing could be done by homeomorphisms of 3-space and it can be
done so as not to move points far in the quotient. So one might think that crushing this
decomposition should not change the topology of B^3. However, the point is that the Bing shrinking criterion requires homeomorphisms of B^3 and not of the ambient space. It only
tells us that the topology of 3-space does not change when D is crushed to points. In fact,
for fundamental group reasons the topology of B^3 has to change which tells us that D
cannot be shrunk.
3.3 The first shrink ever: the Bing decomposition

In the following we will see the first decomposition that was ever shrunk and how it was shrunk. Interestingly enough, it was quite a non-trivial shrink.

We take the double DA of the Alexander gored ball and also double the corresponding decomposition D of B^3 to obtain a decomposition $B = DD$ of S^3 known as the Bing decomposition. The picture of the Bing decomposition is what nowadays would be called the infinitely iterated untwisted Bing double of the unknot in S^3 (the left of Figure 15 shows second iteration). More precisely, the Bing decomposition is the countable intersection of nested solid tori where the nesting pattern is shown in the right of Figure 15.

Remark 3.16. When we draw a picture of a decomposition what we really draw is usually only a defining sequence, that is, we describe a system of closed sets nested in each other and the decomposition element are the components of the intersection. In many cases it is enough to indicate a nesting pattern as we did above for the Bing decomposition.

Theorem 3.17 (Bing, 1952 [Bin52]). The Bing decomposition is shrinkable. In particular, the quotient map $D\pi: S^3 \to DA$ is ABH.

As mentioned earlier, this answered the question of Wilder whether the obvious involution on DA was an exotic involution on S^3 instead of just an involution on some pathological metric space.

So how do we shrink this thing? Recall that the decomposition elements are the countable intersection of nested solid tori where each torus contains two successors which form a neighborhood of the Bing double of the core of the original torus. Note that the n-th stage of this construction adds 2^n solid tori and in each stage the tori get thinner and thinner while their “length”\(^2\) roughly remains the same. Now, given some $\epsilon > 0$ we have to come up with a homeomorphism of S^3 which shrinks each decomposition element to size less than ϵ and whose support has distance less than ϵ from the decomposition elements. The basic idea is as follows: We focus an a stage far enough in the construction, call it n_ϵ, where the 2^{n_ϵ} tori are thinner than ϵ and in each of these tori we produce an isotopy that shrinks the decomposition elements. Since all tori within a given stage are isometric it is enough to describe such an isotopy on a single torus.

To construct such an isotopy, the first thing to note is that the normal directions in the torus will not cause any problem because we can choose the torus as thin as we like.

\(^2\)More precisely: the length of the core curves.
The only problem is the linear extent and in doesn’t really matter what coordinate system we use to make that small. Bing’s idea was to lay the torus out along the real line, to just measure diameter in terms of that direction and to make the tori of the subsequent stages have small diameter. This can be achieved by successively rotating the clasps in the subsequent stages as indicated in Figure 16.

Remark 3.18. Why the obvious rotation doesn’t seem to work at first sight but does eventually. (Coming soon...)

An interesting question in point set topology, similar in spirit to Wilder’s original question, is whether the Bing involution on S^3 is topologically conjugate to a Lipschitz homeomorphism (with respect to the round metric). What makes this interesting is that it has to do with dihedral group symmetry. The basic element in the shrinking process above is to rotate within sub-solid-tori in a big solid torus and this rotation creates a tremendous stretching, because the tori are very thin and we have to rotate rather long distances around them. Moreover, each rotation can be made clockwise or counterclockwise and this choice seems to be reversed by the Bing involution. So to say that the involution is Lipschitz means that the top and the bottom copy of A have roughly the same shape. But if they have the same shape, then the cavities between the rotated layers in the tori should be mirror images of each other which seems very unrealistic. Unfortunately, it is not clear how to make this rigorous because the tori can have very bad shapes and cannot be assumed to be round.

This very specific question motivates a more abstract question which we state as a conjecture.

Conjecture 3.19. Any finite, bi-Lipschitz group action on a compact 3-manifolds is conjugate to a smooth action.

3.4 Something that cannot be shrunk

Until now we have seen both simple and complicated things that shrank and later in these lectures we’re going to through extreme efforts to show that certain other things also shrink. But not everything shrinks as the following example, also due to Bing, shows.

We consider the decomposition B_2 of S^3 defined by a similar defining sequence as the original Bing decomposition. Again, the decomposition consists of a Cantor set worth of continua which are defined as a nested intersection of solid tori and the solid tori are nested in such a way that, at each stage, two of them are place inside one in the previous stage. The only difference is in how the two are placed and, basically, the “2” in B_2 means that they go around twice instead of once (see Figure 17).

In order to see that B_2 doesn’t shrink, we call the two nested tori in the defining pattern P and Q and consider two meridional disks A and B in the ambient solid torus.
The idea is to show that some decomposition element has to intersect both A and B in the first stage, no matter what happens in the subsequent stages. More precisely, we will show that in each stage n at least one of the 2^n tori has to intersect A and B. If that’s true, then the decomposition can’t be shrunk.

We take a 2-fold cover of this picture and take lifts of P, Q, A and B which we continue to denote by the same letters for convenience. Although each of them has two lifts, it will be enough to consider only one of them for P and Q.

Lemma 3.20. In the lifted picture, either P or Q has “substantial” intersection with A and B

The precise meaning of “substantial” is as follows. Ideally, the intersections should be in meridian disks for P and Q but this is too much to hope for, so we have to come up with a slightly weaker notion. The right notion turns out to be intersections in punctured meridian disks, that is, meridian disks punctured by loops that are trivial in the boundary of P or Q (see Figure 18).

Proof. We look at the intersections $\partial P \cap A$, $\partial P \cap B$, $\partial Q \cap A$ and $\partial Q \cap B$, each will be a collection of circles. Since these circles lie in planar disks, are unknotted and have framing zero in space, each of them must be either a longitude, a meridian or trivial in the boundary of P or Q. Moreover, all these possibilities can occur and we have to think about them.

First, suppose there is some longitudinal intersection in $\partial P \cap A$, say. We claim that either $\partial Q \cap A$ or $\partial Q \cap B$ contains no longitude. The reason for this is that such an intersection would not be consistent with the linking in the picture. Observe that the cores or any longitudes of P and Q together with either boundary of an A or B disk form a copy of the Borromean rings which are known to be a non-trivial link as detected by the Milnor invariant $\bar{\mu}_{123}$, for example. But if Q had a longitudinal intersection with either A or B, then the link would have to be trivial. Moreover, we claim that Q must intersect all lifts of A and B in punctured meridian disks for if either of them contained only trivial
intersections, then standard arguments in 3-manifold topology would allow us to remove all intersections and make \(Q \) disjoint from that lift and the link would have to be trivial or at least have trivial \(\bar{\mu}_{123} \). So each lift must contain at least one meridian and an innermost one will then bound a punctured meridian disk.

Now, if there is no longitude in the intersections, then we focus on \(P \) and \(Q \) one at a time. For example, if \(P \) has no substantial intersections (and thus only trivial intersections) with both lifts of \(A \), then we can deform it into the complement of those lifts. Similarly, if \(Q \) has no substantial intersection with either both lifts of \(A \) or \(B \), then we can deform the whole link into either half or three quarters of the solid torus and in neither case can this create a non-trivial \(\bar{\mu}_{123} \).

Based on this lemma we can run an inductive argument. If in some stage there is a \(P \) or \(Q \) which has substantial intersections with a lift of \(A \) or \(B \), then within it we see a \(P \) and a \(Q \) and one of those has to have a substantial intersection with \(A \) and \(B \).

3.5 The Whitehead decomposition

Another prominent example is the Whitehead decomposition \(W \) of \(S^3 \). Just as the two other examples it can be described as an infinite intersection of nested solid tori with nesting pattern as in Figure 19. In other words, in each stage a solid torus is embedded into its predecessor as a neighborhood of a Whitehead double of the core. This decomposition is clearly not shrinkable because its elements are not even cellular. But there’s a very interesting story when the situation is moved into four dimension by crossing with a line which will be discussed in the next chapter.

Remark 3.21. Actually, one should be a little more precise. In order to explain the nesting pattern we should not only describe the core of the nested solid torus but also a framing number which determines how the core is thickened. Although this affects how subsequent stages are embedded, the shrinking properties of the decomposition will actually be independent of the framings. So for the point set topology we don’t have to pay attention to the framings. But in the context of smooth constructions it will be important that the framing number is zero, that is, that we take untwisted doubles.

Remark 3.22. From the construction it is clear that the Whitehead decomposition has only a single element, also known as the Whitehead continuum, whereas the Bing decomposition had a Cantor set worth of elements. But in practice, this distinction is fleeting because there will be multiplicities. For example, the nesting patterns might involve several copies of Whitehead or Bing doubles in each step. The meaning of multiple Bing double is easy to understand

Exercise 3.23. Repeat the “union of tori” construction of the gored ball with a genus \(g \) surface \(\Sigma \) with one boundary component: fix a standard basis of curves for \(H_1(\Sigma) \), start with a copy of \(\Sigma \times [0, 1] \), successively attach further copies of \(\Sigma \times [0, 1] \) along the basis curves
such that everything embeds in 3-space and, finally, add the limit set of the sequence of basis curves and take the double. Show that the corresponding decomposition of S^3 has a nesting pattern where g parallel Bing doubles of the core are embedded in a solid torus.

Similarly, we will see that multiple Whitehead doubles are related to some kind of 4-dimensional diagrams (Figure 20) which we will learn all about. The left picture, where there is no branching, corresponds to a single Whitehead double while the right hand side would have two Whitehead doubles which would also lead to a Cantor set worth of decomposition elements.

4 Decomposition space theory and shrinking: more examples

In the last section we focused on the idea of shrinking cellular decomposition, that is, decompositions whose elements are cellular sets (Definition 2.1). The natural question is to what extent is the converse true. More precisely, suppose we have a cellular decomposition, is it shrinkable?

In Proposition 2.17 we have seen that the answer is yes for finite decompositions. So the first real problem occurs when there are infinitely many cellular sets and we saw two examples of this case, one where the answer was yes (\mathcal{B}) and one where the answer was no (\mathcal{B}_2). So cellularity alone is not enough. Note that both examples have a further property in common. Namely, we can arrange that the decompositions only have a countable number of elements and further that for any $\epsilon > 0$ there are only finitely many elements that have diameter larger than ϵ. The latter condition is called null. More abstractly:

Definition 4.1. A collection of subsets $\{T_i\}_{i \in I}$ of a metric space X is called null if for any $\epsilon > 0$ there are only finitely many $i \in I$ such that $\text{diam}(T_i) > \epsilon$.

An instant consequence of nullity is that the collection of sets must be countable; we simply have to consider a countable sequence of ϵ’s converging to zero.

To realize \mathcal{B} and \mathcal{B}_2 as null (and thus countable) we can model the defining sequences each asymmetrically with one torus being longer than the other (see Figure 21). So the dyadic pattern has a long branch and a short branch and the decomposition elements only have non-zero size when we take the short branch only finitely many times and, if we always take the small torus to have $\frac{1}{10}$ the diameter of the previous one, then the diameter of this decomposition element is less than $\frac{1}{10^n}$ to the power of the number of short branches that we took.
Consider a subset $S \subset \mathbb{R}^d$ of Euclidean space. We say that S is starlike if it has an “origin” $0_S \in S$ and is a union of closed rays emanating from this origin. More generally, we call a subset $S \subset X$ of an arbitrary space starlike-equivalent if a neighborhood of S embeds in Euclidean space such that S is mapped onto a starlike set.

Exercise 4.3. Let $S \subset \mathbb{R}^d$ be a starlike set. We define its radius function as the map $\rho_S: S^{d-1} \to [0, \infty)$ given by $\rho_S(\xi) = \max \{t \geq 0 \mid 0_S + t\xi \in S\}$. Show that S is closed if and only if its radius function is upper semi-continuous.

Obviously, starlike sets are contractible. Moreover, it is easy to see that closed, starlike sets are cellular. In fact, they are a little more than that: not only can they be approximated by arbitrary balls but by starlike balls which just amounts to approximating the radius function by a continuous function.

Exercise 4.4. If $\rho: S^{d-1} \to (0, \infty)$ is a continuous function, then the starlike set given by $\{t\xi \mid t \leq \rho(\xi)\} \subset \mathbb{R}^d$ is homeomorphic to a ball.

This extra bit of regularity that starlike-equivalent sets have over cellular sets turns out to be strong enough to guarantee shrinkability.
Theorem 4.5 (Bean [Bea67]). Any null, starlike-equivalent decomposition of \(\mathbb{R}^d \) is shrinkable.

Most of the work is in proving the following lemma.

Lemma 4.6. Let \(T \subset B^d \) be starlike and let \(\{T_i\} \) be a null collection of closed sets disjoint from \(T \). Then for any \(\delta > 0 \) there is a radial homeomorphism \(k: B^d \to B^d \) which is the identity on the boundary and satisfies

(i) the diameter of \(k(T) \) is less than \(\delta \) and

(ii) either \(k(T_i) \) has diameter less than \(\delta \) or each point \(x \in T_i \) the distance of \(t \) and \(k(t) \) is less than \(\delta \).

In other words, the lemma tells us that we can shrink \(T \) without doing too much damage to the other \(T_i \). However, it does not say, for example, that none of the \(T_i \) gets stretched bigger than it was before. Even if something had diameter less than \(\delta/1000 \), say, all we can say is that it will stay smaller than \(\delta \).

Proof of Theorem 4.5. We fix some \(\epsilon > 0 \) and consider all the stars which are larger than \(\epsilon \). By nullity there are only finitely many of those and we can thus find coordinates in which they all appear starlike. Keeping the modulus of continuity of the coordinate transformation in the back of our head, we simply have to apply the lemma in the new coordinates with \(\delta > 0 \) determined by the modulus of continuity.

Proof of Lemma 4.6. We only indicate the construction of \(k \) and refer to [FQ90, Section 4.5] for a detailed proof. For convenience, we assume that the origin of \(T \) is the actual origin of \(B^d \).

We start by choosing a nice neighborhood system of the star \(T \), that is, we write \(T = \bigcap_{i=0}^{\infty} V_i, V_{i+1} \subset \text{int}V_i \), where the \(V_i \) are starlike balls with the following properties:

- \(V_0 \) meets only those \(T_i \) with diameter less than \(\delta/2 \).
- Each \(T_i \) meets the frontier of at most one \(V_j \) (“no spanning”).

This can be achieved by the null condition and upper semi-continuity. Next, we define \(B_i \) to be a sequence of round balls of radii \(r_i \) around the origin of \(T \) such that the \(r_0 = 1 \) (in other words, \(B_0 = B^d \)) and the radii decrease as slowly as \(0 < r_i - r_{i+1} < \frac{\delta}{8} \) and converge to \(\delta \). As a final step in the setup we let \(W_i = V_i \cup B_i \).

\[A \text{ full proof was actually presented in the lecture but the written account in [FQ90] seems hard to beat.} \]
We then define a map \(k : B^d \rightarrow B^d \) by requiring that, for each ray \(R \) emanating from the origin, \(k \) maps the segment \(R \cap (W_i \setminus W_{i+1}) \) affinely onto \(R \cap (B_i \setminus B_{i+1}) \). This is illustrated in Figure 23.

The rest of the proof is a tedious, but straightforward case by case study in which it is actually necessary to go down to \(\delta/8 \) in certain estimates.

Remark 4.7. The fact that the lemma is true is probably not too surprising, but it is somewhat remarkable that there does not seem to be a soft, qualitative proof. Although the Bing school is probably as far from analysis as one gets in mathematics, one actually has to put pencil to paper and make a calculation involving a \(\delta/8 \)-argument.

Remark 4.8. A useful generalization of Bean’s theorem is due to Mike Starbird and one of his student [Reference?]. Instead of stars one can consider birds (Figure 24) and ask: what is the difference between a star and a bird? While a star is starlike, meaning that a single radial crush reduces it to a point, a bird is recursively starlike or birdlike which means that a finite number of starlike crushes are enough to turn the bird into a point. Going through the arguments above, it becomes clear that they generalize to birdlike decompositions and it turns out that this is exactly what we need in the proof of the Poincaré conjecture; we will need to shrink 2-stage birds instead of stars. In [Fre82] there are things called “red blood cells” (Figure 25) which have to be crushed. These are sets of the form \(S^1 \times B^3 \cup B^2 \) where \(\partial B^2 \) goes to \(S^1 \times \{p\} \) where \(p \in \partial B^3 \). If such a set is embedded in a standard way in Euclidean space then it has birdlike equivalent structure. Roughly, it becomes starlike after crushing the central \(B^2 \) but the precise argument involves keeping track of some normal directions.

4.2 A slam dunk for the Bing shrinking criterion

Recall that the Whitehead decomposition \(W \) was constructed as the intersection of nested solid tori where the basic embedding pattern was as shown in Figure 26. It’s quite easy to see that the elements of the Whitehead decomposition are not cellular because it is
impossible to embed a ball around the embedded torus in the big torus. It is also known
that its complement is not simply connected at infinity. So the Whitehead decomposition
is definitely not shrinkable. Surprisingly, if we cross with \(\mathbb{R} \) and consider the uncountable decomposition

\[\mathcal{W}_\mathbb{R} = \{ W \times \{ t \} | W \in \mathcal{W}, t \in \mathbb{R} \} \]

of \(S^3 \times \mathbb{R} \), then this becomes shrinkable!

Remark 4.9. This observation leads to the notion of *manifold factor*: while \(S^3 / \mathcal{W} \) is not a manifold (this also follows from local fundamental group considerations), the Bing shrinking criterion shows that the product \(S^3 / \mathcal{W} \times \mathbb{R} \cong (S^3 \times \mathbb{R}) / \mathcal{W}_\mathbb{R} \) is homeomorphic to \(S^3 \times \mathbb{R} \).

The fact that \(\mathcal{W}_\mathbb{R} \) is shrinkable was first proved by Andrews and Rubin in 1965 [AR65] although the argument seems to have been known to Shapiro several years earlier who probably mentioned it to Bing. We will present the same argument that Bob Edwards decided to explain on a napkin during some southern California topology meeting around 1977. At that time it had been known that the Whitehead link and Whitehead doubles were intimately connected with Casson handles and the fact that the Whitehead decomposition was nearly a manifold was very encouraging for the attempt to prove the Poincaré conjecture since it indicated that the extra direction that is available in four dimension might make some of the wildness disappear.

Theorem 4.10. The decomposition \(\mathcal{W}_\mathbb{R} \) of \(S^3 \times \mathbb{R} \) is shrinkable.

We will only present a sketch of the proof. A more detailed account is given in Kirby’s lecture notes [Kir89 p.87], for example.

Proof. Schematically, going into a very deep stage of the Whitehead decomposition has the effect of squeezing down the radial coordinate in the outer solid torus of that stage and
the stage appears as a “circle with and arc inside” whose ends slightly overlap. Crossed with the real line this picture sits in every level.

We know that we can do nothing to shrink the “arc” inside the “circle” but using the fourth dimension we can shift the embeddings in a spiral fashion so that there is a holonomy, meaning that going once around the big torus raises the extra direction by an arbitrarily small amount (see Figure 27). If we re-embed the subsequent stages in that way, the tori don’t link themselves but a different copy and the totality of tori in the next stage appear as spirals. So instead of a line worth of circles we are left with a circle worth of spirals.

But now we can shear the picture to straighten the spirals and the interval segments of which they are made are now very short vertical segments. So every one of the subsequent tori has now been shifted and sheared so that it is concentrated mostly in the vertical direction in which it is very short. Looking back at what we have done so far, we realize that we have met the requirements of the Bing shrinking criteria because we did not have to begin in the outer stage. We can start in an arbitrarily deep stage, which takes care of the support condition, and by shifting we can make the subsequent stages arbitrarily small.

Remark 4.11. The proof of the Poincaré conjecture which we will present follows more closely the approach of [FQ90] and will not directly use the above theorem but it did play a central role in the original proof [Fre82].

4.3 Mixing Bing and Whitehead

So far we have considered decompositions of S^3 obtained by iterating either Bing or Whitehead doubling. We can also mix the two in the sense that, in each stage, we can either use the Bing or the Whitehead double to pass to the next one. Roughly, it turns out that, if we put in enough Bing, Bing always wins over Whitehead and the decomposition will be shrinkable.

We have by now become used to the idea that, in the end, Bing doubling somehow makes things shorter while Whitehead doubling doubles the length. So if we build a mixed Bing-Whitehead decomposition, we should think that the Bing doubles are helping us while the Whitehead doubles are hurting us.

Precise results in this direction were worked out by Starbird and Ancel [AS89] in the late ’80s. One very concise result addresses decompositions of the form

$$W B^{b_1} W B^{b_2} W B^{b_3} \ldots$$

which means that in the first stage we start with a Whitehead double followed by Bing doubling in the next b_2 stages and so on.

Theorem 4.12. The decomposition defined a sequence as in (4.1) is shrinkable if and only if the series $\sum_{i=1}^{\infty} \frac{b_i}{2^i}$ diverges.

The proof is a tour-de-force in matching up the two techniques that were highlighted in Section 3. The first technique was Bing’s rotation trick to show that something does shrink and the other was to track intersections with certain meridional disk to show that something doesn’t.

While the precise bound is probably not very intuitive, it should be clear that the decomposition shrinks if the sequence of Bing doubles grows sufficiently fast. Although each Whitehead double sets us back in terms of shrinking, we can make up for it with enough layers of Bing.

Interestingly enough, Theorem 4.12 is exactly what will come out of the four manifold topology.
5 The sphere to sphere theorem

It’s time to discuss another main component in the proof of the Poincaré conjecture: the so-called sphere to sphere theorem. The formulation we will give is actually a ball to ball theorem; the statement is as in [FQ90, p.80] but the proof will be closer to the original one given in [Fre82]. As pointed out by Bob Edwards, there is another writeup by Rick Ancel [Anc84]. To put this into context, recall that we have seen a null, cellular decomposition that did not shrink. The ball to ball theorem is a tool for shrinking such decompositions when the extra information is available that the quotient is a manifold. In the basic case, the quotient is a ball.

Theorem 5.1. Let $f : B^4 \to B^4$ be a surjective map such that

(a) the collection of inverse sets is null,

(b) the singular image of f is nowhere dense and

(c) for a closed neighborhood E of ∂B^4 the restriction $f^{-1}(E) \to E$ is a homeomorphism.

Then f can be approximated by homeomorphisms that agree with f on E.

Here, the singular image of f, henceforth denotes by $\text{sing}(f)$, is the set of points in the target whose preimages are not singletons.

Some remarks about this theorem are in place. First of all, the restriction to dimension 4 is completely irrelevant but Moreover, there is a much more general result of Siebenmann which states that, under weaker assumption than in Theorem 5.1, any map between manifolds of dimension five or higher can already be approximated by homeomorphisms. This was actually known before Theorem 5.1 which would have been an easy special case in high dimensions. So it was only the 4-dimensional case that required a special argument Second, there’s a general principle called majorant shrinking due to Bob Edwards which was developed in the context of proving the local contractibility of the space of homeomorphisms. It addresses the question of approximating a given map by homeomorphisms which already is a homeomorphism on the preimage of a closed set. It turns out that this works in general, that is, if one understands the annulus conjecture, the torus trick and all the things that go into the local contractibility of homeomorphisms, then the hypothesis (c) in Theorem 5.1 is completely redundant. However, this involves working with non-compact spaces leading to a rather elaborate theory. This was actually central to the original arguments in [Fre82] but it is not used in [FQ90].

5.1 The main idea in the proof

Before going into the details we will outline the main idea in the proof. The first step in the proof is to relabel the source and target balls to X and Y to avoid confusion, that is, we write $f : X \to Y$ where $X = Y = B^4$. Note that f fails to be a homeomorphism to begin with because of its inverse sets and, obviously, the ones with largest diameter are the most offensive. Since we are assuming that the collection of inverse sets is null, there are at most finitely many largest inverse sets and we can work on each separately. The idea is to look at a small neighborhood of such a largest inverse set $f^{-1}(y)$ in X, to implant it photographically in a tiny ball U around its image point $y \in Y$ and then to taper the original f into this little photograph by similar tricks as in Brown’s proof of the Schoenflies theorem. What this step accomplishes is to get rid of one largest inverse set but it turns out that there’s price to pay: although we start with a function what we’ll end up with is only a relation.

4Recall that a subset is nowhere dense if its closure has empty interior.
Thinking in terms of the graph of the function, we have traded a large horizontal spot for some vertical steps. A good example to keep in mind is the graph of the Cantor function (Figure 28) which has a large horizontal spot in the middle. What’s going to happen is that a neighborhood of this horizontal spot is changed by a homeomorphism which tilts the horizontal spot but introduces some vertical cliffs. Moreover, we can control the tilting such that the vertical spots are as short as we want.

Eventually, the theorem will then follow from an iteration of this idea once we have recast it in the language of relations.

Now we will put the above ideas into precise formulas. For simplicity we assume that a largest inverse set of f maps to $0 \in Y$. We take two concentric round balls $U \subset B \subset Y$ around $0 \in Y$ where U has very small radius (for example, we can take $U = B_{\delta}(0)$ and $B = B_{2\delta}(0)$ for some small $\delta > 0$) and define an “inverse squeeze” homeomorphism

$$i: B \xrightarrow{\cong} Y$$

which is the identity on U and radially stretches $B \setminus U$ onto all of Y. We note that the composition $i^{-1} \circ f$ is a homeomorphism near ∂X and we let

$$j: X \xrightarrow{\cong} B$$

be any homeomorphism extending $i^{-1} \circ f: \partial X \to \partial B$. This is implanting the picture. Note that such an extension is always possible by taking the cone, for example, but we will need some more flexibility later on. Finally, we define something called $f_1: X \to Y$

$$f_1 = \begin{cases}
 f & \text{on } X \setminus f^{-1}(B) \\
 j & \text{on } f^{-1}(U) \\
 j \circ (f^{-1} \circ i \circ f) & \text{on } f^{-1}(B) \setminus f^{-1}(U).
\end{cases} \quad (5.1)$$

Exercise 5.2. Check that f_1 is well defined.

Now, why is f_1 not a function? The reason are the points $y \in B \setminus U \subset Y$ such that $i(y)$ lies in the singular image of f while y itself doesn’t. In that case, $f^{-1}(y)$ must be a single point $x \in f^{-1}(B \setminus U) \subset X$ and going through the definition it is easy to see that $f_1(x)$ is, in fact, a subset of Y with more than one element. So it is only a relation. But note that $f_1(x)$ is by definition contained in B which we could choose arbitrarily small. So f_1 is close to being a function in some sense.

Before we continue we collect recall some elementary things about relations.
5.2 Some things about relations

Recall that a relation from X to Y is just a subset $R \subset X \times Y$. As indicated above, we like to think of a relation as a multivalued function $X \xrightarrow{R} Y$ which assigns to $x \in X$ the subset $R(x) = \{y \in Y \mid (x, y) \in R\} \subset Y$.

Note that a function $f : X \to Y$ can be considered as relation by looking at its graph and, conversely, a relation is the graph of a function if each $R(x)$ is a singleton. In this sense, the set of functions naturally embeds in the set of relations.

Just as functions, we can compose relations and the composition of two relations $X \xrightarrow{R} Y \xrightarrow{S} Z$ is defined as the subset $S \circ R = \{(x, z) \in X \times Z \mid \exists y \in Y : (x, y) \in R, (y, z) \in Z\} \subset X \times Z$.

Also, any relation $X \xrightarrow{R} Y$ has an inverse given by $R^{-1} = \{(y, x) \in Y \times X \mid (x, y) \in R\} \subset Y \times X$.

Obviously, we have $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ and it is easy to see that these constructions reduce to the corresponding operations for functions.

Next, we want to bring topology into the picture, as usual in the context of compact metric spaces. First of all, it is an easy exercise in point set topology that for compact metric spaces X and Y a function $f : X \to Y$ is continuous if and only if its graph is closed in $X \times Y$ (in fact, compact Hausdorff is enough). So the appropriate generalization of continuous functions are the closed relations. Clearly, the failure of a relation $R : X \to Y$ to be a function is measured by the quantity $vd(R) = \max_{x \in X} \text{diam}_Y (R(x))$ which we call the vertical defect of R. At this point, the symmetric nature of the relation language becomes apparent. We can also define the horizontal defect as $hd(R) = \max_{y \in Y} \text{diam}_X (R^{-1}(y))$ which is obviously the same as $vd(R^{-1})$ and thus obstructs the function nature of R^{-1}. As a final piece of notation we define the singular image of a R just as in the case of function as $\text{sing}(R) = \{y \in Y \mid |R^{-1}(y)| > 1\}$.

The simple, but important observation is that a continuous function $f : X \to Y$ is a homeomorphism if and only if its horizontal defect $hd(f)$ is zero, that is, if its inverse relation f^{-1} is a function. So far our strategy has been to stay within the world of functions and to approximate f be homeomorphisms by reducing the horizontal defect. However, we could also go to the world of closed relations and try to reduce both the horizontal and vertical defect and this is exactly how we will prove Theorem 5.1.

5.3 Iterating the main idea: admissible diagrams

As mentioned before, the idea is to iterate the construction of f_1 out of f and, in order to do this, we have to extend the construction from functions to relations where we now have to worry about the singular images of both the relation and its inverse. A simple way of doing this (which was suggested by Dick Ancel and Jim Cannon) is to use a
third ball $Z = B^4$ to keep track of where the singular sets lie. The formalism involves commutative diagrams of closed relations of the form

$$B^4 = X \xrightarrow{R} Y \xrightarrow{s} Z = B^4$$

![Diagram](image)

Figure 29: The sets \mathcal{A}, \mathcal{B} and \mathcal{C}.

denote altogether by $\mathfrak{A} = (R, S; r, s)$ where r and s are onto functions. Such a diagram \mathfrak{A} is called *admissible* if

(a) $S = R^{-1}$,

(b) the collections of inverse sets of R and S are null and cellular in X and Y,

(c) the singular images $\text{sing}(r)$ and $\text{sing}(s)$ are nowhere dense in Z,

(d) the sets $\mathcal{A} = \text{sing}(r) \setminus \text{sing}(s)$, $\mathcal{B} = \text{sing}(s) \setminus \text{sing}(r)$ and $\mathcal{C} = \text{sing}(r) \cap \text{sing}(s)$ (see Figure 29) are *mutually separated*, that is, each is disjoint from the closures of the others and

(e) R restricts to a homeomorphism $R: r^{-1}(C) \xrightarrow{\cong} s^{-1}(C)$.

Remark 5.3. Technically, we should also put the set E in the picture on which R should be a homeomorphism with inverse S. But since E will not play a role in the argument we will ignore it.

The start data for our inductive scheme is the diagram

![Diagram](image)

which is clearly admissible. So when we start s is the identity so that \mathcal{B} and \mathcal{C} are empty and we only have \mathcal{A}. But when we do the first step and pass to f_1 we erase some singular image of f by implanting the photograph and we create singular image of the inverse relation which means that \mathcal{B} and \mathcal{C} come alive. Thereafter we have to deal with \mathcal{A}, \mathcal{B} and \mathcal{C} and, roughly, \mathcal{C} is where we’ve already solved the problem in the sense that, even though there is some singular image, we have arranged the map above them to be a homeomorphism. Eventually, the proof ends when \mathcal{C} becomes the whole thing.

Lemma 5.4. Let $\mathfrak{A} = (R, S; r, s)$ be an admissible diagram. For any neighborhood $\mathcal{N}(R) \subset X \times Y$ of R and any $\epsilon > 0$ there is an admissible diagram $\mathfrak{A}' = (R', S'; r', s')$ with $r' = r$, $R' \subset \mathcal{N}(R)$ and $hd(R') < \epsilon$.

31
In other words, there is a relation which is arbitrarily close to R whose horizontal spots have arbitrarily small size and we can also control the vertical defect.

In the proof of the lemma we use a concept of general position which is very different from the usual manifold-notion. We state it as an exercise.

Exercise 5.5. Let X be a compact metric space and let $C \subset X$ be countable and $N \subset X$ be nowhere dense. Then for all $\epsilon > 0$ there exists a homeomorphism h of X which is ϵ-close to the identity supported near C such that $h(C) \cap N = 0$.

Proof of Lemma 5.4. As in the first pass through we are going to consider small concentric balls U and B, but this time they are going to live in Z.

We first define a homeomorphism $j: X \rightarrow s^{-1}(B) \subset Y$ by

$$j = \begin{cases} s^{-1} \circ i^{-1} \circ r & \text{on } \partial X, \\ \text{some extension to a homeomorphism elsewhere.} & \end{cases}$$

The relation R' will be

$$R' = \begin{cases} R & \text{on } X \setminus r^{-1}(B), \\ j & \text{on } r^{-1}(U), \\ j \circ (r^{-1} \circ i \circ r) & \text{on } r^{-1}(B) \setminus r^{-1}(U). \end{cases}$$

The is almost the same as the formula (5.1) for f_1, the only thing that’s slightly different is the definition of j. Again, it is easy to check that R' is well defined. To complete the new admissible diagram we simply take $r' = r$ and for s' we are forced to choose

$$s' = \begin{cases} s & \text{on } Y \setminus s^{-1}(B), \\ i^{-1} \circ r \circ j^{-1} & \text{on } s^{-1}(B). \end{cases}$$

It remains to check the mutual separation. By construction we have

$$A' = A \setminus U, \quad B' = B \cup (i^{-1}(\text{sing}(r)) \setminus U) \quad \text{and} \quad C' = C \cup (A \cap U).$$

Now the proof is almost done. By choosing B small enough we can guarantee that R' is contained in $\mathbb{N}(R)$ and the photographic implanting trick using j wipes out one large horizontal spot of R and by repeating the construction finitely many times all horizontal spots are small. \square

6 From the Whitney trick to Casson handles

6.1 The Whitney trick in dimension 4

After all this work in compact metric spaces, we now step into the smooth world. An important geometric construction in smooth manifold is the Whitney trick which was introduced by Whitney [Whi44] in order to prove that any n-dimensional smooth manifolds, $n \geq 3$, embeds in the Euclidean space \mathbb{R}^{2n} of twice the dimension, which is one better than what we get for free (=by general position). However, this result is of little consequence compared to the method used to prove it.

Remark 6.1. Conspicuously, Whitney’s proof does not work for $n = 2$ although, by example, the fact that any surface embeds in \mathbb{R}^4 is still true since it holds for the real projective plane.
Whitney looked at the manifold M^m as it is mapped into \mathbb{R}^{2n} and he realized that by general position there are only transverse double points to think about to which one can assign signs and he also realized the algebraic sum of these points can be controlled by putting in small kinks (see Figure 30). In particular, one can make it zero. In the case of algebraically zero self intersection he was led to a local picture as in Figure 31 where there are two sheets of the manifold (two different manifolds would work, too) with two intersection points of opposite signs. To improve the situation to an embedding he noticed that the must be a disc W as in the picture (which he probably didn’t call W) and that it looks like it should be possible to push one sheet over the other along the disk to cancel the two intersection points.

While this looks pretty good in the plane, how should it work in high dimensions? Some aspects of the picture are conserved when passing to higher dimension, for example, the intersection points stay 0-dimensional (since the dimensions of the two intersecting sheets add up to the dimension of the ambient space) and the disk W is going stay 2-dimensional. The idea is to find two arcs connecting the two points, one in each sheet, which will make up two halves of the boundary of W. In addition, some normal data is necessary in order to do the push without introducing new intersections. Something that’s favorable high dimensions ($n \geq 3$) is that 2-dimensional objects are generically disjoint from everything $< n - 2$-dimensional, so we don’t have to worry about making (the interior of) W embedded and disjoint from the image of the manifold; in contrast, in four dimensions ($n=2$) W will intersect itself and the manifold. Another advantage is that the space of $(n-1)$-planes in \mathbb{R}^{2n-2}, whose fundamental group controls the ambiguity in normal data, is simply connected for $n \geq 3$ while for $n = 2$ the fundamental group is \mathbb{Z}. However, since we are ultimately interested in 4-manifolds we have to make a careful analysis of the 4-dimensional situation.

A local model for a transverse intersection of surfaces in 4-manifolds are the planes $\{z = 0\}$ and $\{w = 0\}$ in \mathbb{C}^2. If we look at a small 3-sphere around the origin, then it is an extremely important observation that the two planes intersect the 3-sphere in a Hopf link (see Figure 32). Let’s build up to the Whitney trick from this starting point. Suppose that we have two intersection points of opposite sign. That means we should have two Hopf links.
in two separate 3-spheres (Figure 33). This picture comes from thinking of neighborhoods of the points and asking what’s going on the boundary, but for the Whitney trick we have to look a little more globally at a neighborhood of the circle made up from the two arcs connecting the points. Assuming that the ambient 4-manifold is simply connected, the neighborhood of such a circle is $S^1 \times B^3$ and on its boundary $S^1 \times S^2$ it turns out that we see a Bing double of $S^1 \times \{\text{south pole}\}$ in the solid torus $S^1 \times \text{southern hemisphere} \subset S^1 \times S^2$. Note that the opposite signs of the two intersection points account for the fact that we see a link with linking number zero, if signs agreed, then we would get linking number plus or minus two.

Figure 33 is also great for understanding the “normal data” mentioned above which is nothing but a choice of framing for the circle. Note that we have drawn an untwisted Bing double and the reason for this is that we have implicitly chosen the correct framing. A different framing will give a twisted Bing double as in Figure 34. In any case, this picture really only lives in the copy of $S^1 \times S^2$ embedded in the our ambient 4-manifold and not in a 3-sphere. But if there’s an embedded Whitney disk W bounded by the circle and we attach it to the picture, then we create a bordism from $S^1 \times S^2$ to a 3-sphere inside the 4-manifold. In other words, then W provides a core for surgery which takes this $S^1 \times S^2$ to a 3-sphere and it’s highly relevant what link we end up with in this 3-sphere. Because if we end up with the unlink, then we can easily see how to separate the two surfaces; we can think of each circle as representing a hole in a surface which needs to be repaired and if we can fill these holes with disjoint disks then we obtain new surfaces without intersection points and it’s not hard to see that they are isotopic to the original surfaces.
6.2 4-manifolds in the early 1970s: surgery and h-cobordism

The 1950s and 1960s saw the development of surgery theory and the h-cobordism theorem which allowed to translate classification problems for manifolds of dimension five and higher completely into questions in homotopy theory and algebra. In the beginning of the 1970s surgery theory had become very mature; at the frontier were things like equivariant or controlled surgery which were very technical subjects. On the other hand, almost nothing was known in dimension four. The main reason was the failure of the Whitney trick and the goal of this section is to pin down how this failure prevents us from using surgery and the h-cobordism theorem.

Surgery theory addresses the existence problem whether we can find a manifold within some previously identified homotopy type. (This might take place in the smooth, PL, topological or any other category.) The h-cobordism theorem is related to the corresponding uniqueness problem. When we have found two manifolds M_1 and M_2 of dimension d, say, in the same homotopy type and we want to find an isomorphism between them. The strategy, which was developed by Smale, is to first find some cobordism N of dimension $d + 1$ between the two and then try to find the simplest possible one. Preferably this simplest N should be in the same homotopy type as the M_i, in other words, the inclusions $M_i \hookrightarrow N$ should be homotopy equivalences, and in this case N is called an h-cobordism. In a favorable situation, for example, if all fundamental groups are trivial and the dimensions are high enough, then Smale would conclude that N is a product and, in particular, M_1 and M_2 are isomorphic. But in the end, it turns out that the existence and uniqueness side involve essentially the same methods because in the h-cobordism story the main problem is to take turn some cobordism into and h-cobordism using surgery.

In dimension four, Milnor had investigated the simply connected homotopy types of closed manifolds or, more abstractly, Poincaré duality spaces which are certain cell complexes that obey the algebraic condition that manifolds obey in terms of the duality between homology and cohomology. Milnor was able to classify the (homotopy types of) 4-dimensional Poincaré duality spaces that are simply connected and it turned out that they are in one-to-one correspondence with (equivalence classes of) of \mathbb{Z}-unimodular quadratic forms or, in less fancy terms, symmetric integer matrices with determinant plus or minus one up to similarity. So in 1973, the existence and uniqueness questions in dimension four that people were thinking about were which of these forms are realized by smooth (or equivalently PL) manifolds and whether two homotopy equivalent 4-manifolds are h-cobordant and thus diffeomorphic (or PL homeomorphic). It turns out that these two questions are very similar.

An interesting example of a simply connected 4-manifold known as the $K3$ surface is
Figure 35: Trying to surger out a hyperbolic pair.

given by a quartic $K = \{W^4 + X^4 + Y^4 + Z^4 = 0\}$ in \mathbb{CP}^3. It was known that its quadratic form is isomorphic to the matrix

$$E_8 \oplus E_8 \oplus H \oplus H \oplus H$$

where E_8 is the famous even, 8-by-8 integer matrix known as the Cartan matrix of the exceptional Lie algebra and $H = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is a so-called hyperbolic pair which corresponds to the intersection form of $S^2 \times S^2$. Now, we know that there is a Poicaré duality space corresponding to $E_8 \oplus E_8$ and there is the obvious projection

$$E_8 \oplus E_8 \oplus H \oplus H \oplus H \xrightarrow{pr} E_8 \oplus E_8.$$

The question was whether one could realize this projection geometrically. More precisely, is it possible to do surgery on K with the effect of removing the hyperbolic pairs from the intersection form? We know by now that this won’t work in the smooth category as a consequence of Donaldson theory. One might wonder why we didn’t just take one copy of E_8, but it was already known by Rokhlin’s theorem that the intersection form of a smooth, spin 4-manifold must have signature divisible by 16. It turns out that one copy of E_8 does occur for a topological 4-manifold which is a concrete instantiation of something called the Kirby-Siebenmann invariant which we’ll get to later on. So since back in 1973 we knew Rokhlin’s theorem and we were always trying to work in the smooth category (and only desperation forced us out of it) we’re going to try to make a smooth $E_8 \oplus E_8$-manifold out of the K3 surface K.

So what’s the picture for doing this? We know from the Hurewicz theorem that the hyperbolic pairs in the homology of K are represented by maps $S^2 \to K$ which we can take as smooth and in general position. One hyperbolic pair is shown schematically on the left of Figure 35. In general, there will be excess intersections, after all we only know the algebraic intersection numbers. If we could use the Whitney trick to remove the extra intersections to get to the picture on the right then we could do surgery on either of the embedded spheres, that is, we could cut out a neighborhood diffeomorphic to $S^2 \times B^2$ of one sphere and replace it with $B^3 \times S^1$, with the effect of removing the hyperbolic pair from the intersection form. (The other sphere is also important since it makes sure that the surgery does not change the fundamental group.)

Remark 6.2. All this is completely analogous to dimension two. If we have a surface which has an extra genus that we don’t want, then we identify a dual pair of simple closed curves, cut out an annular neighborhood of one of them and fill in the two resulting boundary components with disks.

Next, let’s try to prove the h-cobordism theorem in dimension four. Given an h-cobordism N^5 between two simply connected 4-manifolds M_1 and M_2, we look at a handle
decomposition of \(N \) and try to simplify it as much as possible. The handle decomposition induces a chain complex computing \(H_*(N, M_1) = 0 \) which can be simplified algebraically such that there are only 3-chains and 2-chains and the boundary map is an isomorphism represented by the identity matrix in suitable bases. The whole idea of the proof is to match the geometry with the algebra of the chain complex. We can easily remove handles of index 0 and 5 and with just a little more work, since everything is simply connected, we remove handles of index 1 and 4. What is left are only handles of index 2 and 3 and the level in between the 2- and 3-handles is another 4-manifold \(M_{2/3} \) which is obtained from either \(M_1 \) or \(M_2 \) by a sequence of surgeries on embedded circles. But since the manifolds are simply connected all circles are null-homotopic and in dimension 4 homotopy implies isotopy, so the surgeries happen on trivial, standard circles and it’s an easy exercise that this results in \(S^2 \times S^2 \) summands. It follows that we have diffeomorphisms

\[
M_{2/3} \cong \begin{cases}
M_1 \# k(S^2 \times S^2) \\
M_2 \# k(S^2 \times S^2)
\end{cases}
\]

where \(k \) is the number of 2- (or 3)-handles. The spheres we see in \(M_{2/3} \) are the \(k \) belt spheres of the 2-handles and the \(k \) attaching spheres of the 3-handles and each of them has a dual sphere which intersects it in a single point. So the situation is very clean separately, but the problem is that the belt spheres and attaching spheres together don’t look so nice. However, the algebra forces that for each belt sphere there is an algebraically dual attaching sphere. So the picture is very similar to the one we encountered when we tried to surger out hyperbolic pairs (see).

This time we have a pair of embedded spheres which are algebraically dual and if we can get rid off all extra intersection points, then we can also cancel the remaining handles of index 2 and 3, hence \(N \) must be the trivial cobordism.

6.3 Finding dual spheres

The solution to finding Whitney disks is virtually the same for surgery and the \(h \)-cobordism problems and the first two steps toward the solution were taken by Andrew Casson in 1974 [Cas86]. Let us put Casson’s ideas into a broad brush before going into the details.

The first idea is that the solving local problem is impossible but there is global information that might help. So what is the local problem? Since the 1950s Fox and Milnor had developed the idea of slice knots, that is, knots in \(S^3 \) which bound a smooth or locally flat disks in \(B^4 \). Slice knots arise, for example, as cross sections of knotted 2-spheres in 4-space. By now, a tremendous amount is known about the obstruction theory for slice knots. For example, Peter Teichner and his collaborators [COT03][COT04] have pushed

[5] More precisely, we take a relative handle decomposition of \(N \) built on \(M_1 \).
this very far and before Casson and Gordon [CG78] had developed some higher order obstructions. But even in 1973 it was known that there were obstructions, for example, the Seifert matrix has to obtain a certain form for a knot to be slice. This is discouraging for out attempts to remove self-intersections of immersed disks in 4-manifolds because any knot bounds an immersed disk in B^4 for non-slice knots it’s impossible to remove the intersection points. But Casson realized that there was global information that could be exploited, namely the fact that the spheres in the surgery and h-cobordism problem come in dual pairs.

The second idea is that there is a trade-off the fundamental group of the complement, which is bad, and intersections which, in some sense, are also bad. This can be explained in the local model of a transverse double point (see Figure 32 on page 54). We already saw that the intersecting planes appear as a Hopf link in the boundary of a small ball around the intersection. Another interesting gadget that appears in this picture is the Clifford torus $\{(z, w) \in \mathbb{C}^2 \mid |z| = |w| = \frac{1}{\sqrt{2}}\}$ which is the common boundary of tubular neighborhoods of the two components of the Hopf link. This Clifford torus exemplifies the relation between intersection points and the fundamental group of the complement because the complement of the intersecting planes actually deformation retracts onto the Clifford torus and thus has free Abelian fundamental group of rank two (generated by linking circles of the planes). In contrast, the complement of two disjoint planes in \mathbb{C}^2 has free fundamental group of rank two, so the intersection point must account for a relation in the fundamental group. This is just the most microscopic instance of a concept that we’ll be working with all the time.

So how are Casson’s ideas used to make progress on the surgery and h-cobordism problems? In both problems we have an algebraically dual pair of spheres $a, b \subset M$ in a 4-manifold M and we’d like to remove algebraically canceling pairs of (self-)intersection points by finding Whitney disks. For simplicity, we take M simply connected most of the time. For starters, we’re going to try to fix up the fundamental group of the complement. We’d like to arrange that $\pi_1(M \setminus (a \cup b))$ is also trivial; more generally, if M is not simply connected, we’d like the map $\pi_1(M \setminus (a \cup b)) \to \pi_1(M)$ to be an isomorphism. In that case we call the pair a, b π_1-negligible. The simple reason is that a Whitney move, for example, on b across a Whitney disk that intersects a, will not help us in reducing the number of intersection points. So if a, b are π_1-negligible, then at least we have a chance to find useful Whitney disks although, even if we can achieve π_1-negligibility, the Whitney disks will still cross themselves and we still have work to do. But this is just a first step in what will turn out to be an infinite construction and before we proceed with the construction we want to keep firm control over the fundamental group.

The key thing in arranging something to be π_1-negligible is to make all linking circles null-homotopic in the complement as can be seen immediately by van Kampen’s theorem. Geometrically, such a null-homotopy would create an immersed disk in the complement which, together with the meridian disk bounding the linking circle, gives a sphere which intersects the original object in one point. So π_1-negligibility is basically equivalent to the existence of what we call geometric duals, that is, spheres that meet the important pieces in one point.

Remark 6.3. In [FQ90] the terminology transverse spheres is used for geometric duals with self-intersection zero which is sometimes useful. In these lectures we will also never run into geometric duals with nontrivial self-intersection although they can arise in certain situations.

In the surgery situation we need geometric duals \hat{a} and \hat{b} for spheres a and b which form a hyperbolic pair in the intersection form of M, in particular, a and b are algebraically dual. The idea is to modify a and b simultaneously by regular homotopies until they
become geometrically dual. We take some framed, immersed Whitney disk W for a pair of algebraically canceling intersection points between a and b which will meet both a and b in general. The first step is to push a and b off W as indicated in Figure 37 by so-called finger moves resulting spheres a' and b' intersecting each other just as a and b but they don’t meet W and have more self-intersections than the original spheres. Next we do a Whitney trick across W on either a' or b' and we get new spheres that are regularly homotopic to a and b, have two fewer intersection point but possibly more self-intersections each. Repeating this process finitely many times we eventually obtain a geometrically dual pair \hat{a} and \hat{b}.

In the h-cobordism problem the setup was slightly different. Here a and b are not only algebraically dual but each is embedded and comes with a geometric dual \hat{a} and \hat{b}, respectively. These dual spheres already tell us that a and b are π_1-negligible individually but they might not be simultaneously, the problem is that \hat{a} might intersect b, for example. Our task is to arrange \hat{a} to be disjoint from b with the additional difficulty of that we’re only allowed to move a and b by isotopies (instead of regular homotopies) in order to keep them embedded. The first step is to make the intersection number $\hat{a} \cdot b$ zero which is easily achieved by “adding” copies of a to \hat{a}, that is, connect summing a and \hat{a} inside M along a suitable arc. This is also known as the Norman trick. Next we take some framed, immersed Whitney W disk for intersections between \hat{a} and b and, as in the surgery case, the idea is to cleanse W from bad things and then do the Whitney trick on \hat{a}. However, we have to pay close attention to a and b in the process. If we did the Whitney trick right away we’d be running danger of creating new intersections with whatever W intersects which a priori might be either of a, b, \hat{a} and \hat{b}. But we don’t care about intersections of \hat{a} with b or itself so that the only problems are caused by intersections of W with a or b. We can remedy the b intersection by Norman tricks adding copies of b to W so that the new W has only problematic intersections with a which, in turn, can be removed by isotoping a off W by finger moves in the direction of b. This will possibly make the new Whitney disk more singular (if \hat{b} meets W) and create new a, b-intersections and but that’s okay.
Now that the Whitney disk is clean, a singular Whitney trick on \hat{a} produces a (most likely immersed) geometric dual for the isotoped version of a.

Remark 6.4. You probably noticed that finger moves are exactly the inverses of Whitney tricks. It is ironic that the first step in order to do Whitney tricks is to do their inverses, we somehow have to make the situation worse before we can start to make it better.

As mentioned, this is only the first step in Casson’s construction. The following lemma, which can be proved using similar tricks as above, leads the way to the further steps.

Lemma 6.5. Let M be a simply connected 4-manifold and let $\alpha : (D^2, \partial D^2) \to (M, \partial M)$ be a properly immersed disk such that there exists a 2-cycle β with $\alpha \cdot \beta = 1$ (homologically). Then α is regularly homotopic (rel ∂) to a π_1-negligible $\alpha' : (D^2, \partial D^2) \to (M, \partial M)$.

Exercise 6.6. Prove Lemma 6.5.

6.4 Casson handles and Kirby calculus

We have figured out that for both the surgery and the h-cobordism problem we can assume that there’s a pair of algebraically dual spheres whose union is π_1-negligible and we can start throwing Whitney disks for unwanted intersection points into their complement. That’s still not perfect because the disks will cross themselves but Casson noticed that the process can be iterated. Indeed, any Whitney disk meets the Clifford tori of its intersection points exactly once and thus we can use Lemma 6.5 to arrange the Whitney disks to be disjoint and π_1-negligible in the complement of a and b so that we can map a second collection of Whitney disks into the complement of a, b and the union of the first collection of Whitney disks and so on (see Figure 39). This leads to an infinite process for building a 2-dimensional spine which, in the end, turns out to be contractible (it is not homeomorphic to the disk in any obvious way, though). Indeed, we’re building some infinite, non-compact 2-complex going into the 4-manifold which has lots of free fundamental group at every stage but at each stage that free fundamental group is annihilated by the immersed disks of the next stage so the direct limit will be a contractible space. So we can build this thing that’s somehow “like a disk” and it bounds the Whitney circle. This is the first conceptual core of the idea of what Casson called flexible handles and what everyone else calls Casson handles.

Remark 6.7. Note that the Whitney disks in the higher stages of Figure 39 don’t really look like the ones we know in that they only involve one intersection point each (see also...
Such one-sided Whitney disks were also discussed in Whitney’s paper \cite{Whi44} and there is a corresponding Whitney trick just as in the two-sided case. The difference is that, in the case of self-intersections, the two-sided trick produces regular homotopies while the one-sided version only gives homotopies. (For intersections of two different surfaces the two-sided trick actually produces isotopies of one of the surfaces.) To keep the pictures as simple as possible we only draw one-sided Whitney disks in higher stages. For two-sided Whitney circles we’ve seen earlier that the two intersecting sheets appear on the boundary of a tubular neighborhood as a Bing double. Similarly, in the one-sided case we see a Whitehead double (Figure 41) which might be twisted if we choose the wrong framing. (Note that this is intimately related to our discussion in Remark 3.21.)

As the term “handle” indicates, there’s still something missing from our discussion: we’ve just focused on the 2-dimensional spine and we have to find a way to thicken the construction a little bit in order to get a good 4-dimensional neighborhood. This is related to the framing issued mentioned before and disasters lurk if we don’t carefully select framing conditions for all the Whitney disks. But it turns out that this is not a big issue in the end. We will define the framing conditions idiosyncratically in terms of the so-called Kirby calculus. There is an equivalent way of understanding this in terms of 3-manifold topology which fits perfectly with our discussion of Bing and Whitehead doubling and decomposition space theory. It turns out that one of the most important things in the infinite construction is what the frontier looks like, which is a 3-manifold. Different framings can actually produce different frontiers and we can understand if we got the framings right in terms of the 3-manifold topology of the frontier. We’ll say more about this later.

6.4.1 Kinky handles and Kirby calculus

We want to understand how to thicken immersed Whitney disks, so we have to know what a neighborhood of a disk crossing itself in a 4-manifold look like. By standard results in
differential topology, a generic immersion of B^2 can be extended (uniquely up to isotopy) to an immersion of $B^2 \times B^2$ – in other words, a 4-dimensional 2-handle [6] – which factors through an embedding of a self-plumbing of $B^2 \times B^2$ into the 4-manifold (see Figure 42). (Recall that self-plumbing means to identify two interior sub-disks and glue them together interchanging horizontal and vertical coordinates [7].) Note that the plumbings don’t affect the solid torus $\partial_- = S^1 \times D^2$ – the attaching region of the 2-handle – which is indicated in blue; self-plumbed 2-handles are commonly called kinky handles and ∂_- serves as their attaching region. In summary, the correct notion of a thickened (or framed) immersed Whitney disk is an embedding of a kinky handle and any Whitney disk has a canonical thickening, that is, whenever we can find a Whitney disk we can also find a kinky handle and vice versa.

Exercise 6.8. Show that $B^2 \times B^2$ becomes homeomorphic to $S^1 \times B^3$ after one self-plumbing.

To see how we get to Figure 41, we should take the sphere that contains the Hopf link around the crossing and surger it to itself by cutting out a 3-ball on each component and declaring that their boundary 2-spheres are identified by reflection (Figure 43, left). That gives a Whitehead double embedded in $S^1 \times S^2$ and its 0-framed neighborhood is just the attaching region ∂_- of the corresponding kinky handle.

The pictures in Figure 43 actually show the full glory of the 4-dimensional situation. In fact, we should think of the whole situation as a 4-ball around the intersection point to which a 4-dimensional 1-handle is attached and its attaching region are the two balls in the left picture. So we simply have to imagine a 4-dimensional 1-handle connecting these balls. Schematically, this is shown in Figure 44 and there’s another notation which is part of the Kirby calculus to represent links in simple 3-manifolds such as $S^1 \times S^2$. In that notation we record the fundamental group generator of $S^1 \times S^2$ dually by drawing a circle that links both strands in the middle of Figure 43 and putting a dot on it. The

6 Some terminology: the disks $B^2 \times \{0\}$ and $\{0\} \times B^2$ are called core and cocore, their boundaries $S^1 \times \{0\}$ and $\{0\} \times S^1$ are the attaching circle and belt circle and $\partial_- = S^1 \times B^2$ is called the attaching region. (For some reason, $B^2 \times S^1$ doesn’t seem to have a standard although the term belt region suggests itself.)

7 More precisely, we take disjoint embeddings $\phi, \psi: D^2 \to \text{int}D^2$ and identify $\phi(D^2) \times D^2$ with $\psi(D^2) \times D^2$ via $(\phi(x), y) \sim (\psi(y), x)$.

42
meaning of this notation is that anytime we see an unlink with dots on it in S^3, we should think of removing the standard slices in B^4 beneath the dotted components as indicated in the right of Figure 44. If we just have one dotted component, then the complement of the standard slice is homeomorphic to a meridian of the dotted circle times a 3-ball, so it is sort of the Alexander dual space of $S^1 \times B^3$. Moreover, by general position we can always arrange links in the boundary of the Alexander dual picture to be actually out on the boundary of B^4. So a general link in $S^1 \times S^2$ can then be drawn as a link in S^3 which might link the dotted unknot.

The other thing we have to know about Kirby calculus is that whenever we see a link component that doesn’t have a dot on it, then that means that a 4-dimensional 2-handle has been attached to the 4-ball (instead of dug out in the case with dots) and then it better have a number next to it in order to determine a framing by adding that number of twists to the canonical framing of the knot in S^3.

6.4.2 The definition of Casson handles

We can finally describe what Casson handles actually look like in the simply connected context. The process of building Casson handles in a π_1-negligible situation is then as follows:

- Locate Whitney disks for unwanted intersections.
 (Lather.)
- Make them π_1-negligible and thicken to kinky handles.
 (Rinse.)
- Repeat this process for the new π_1-negligible situation.
 (Repeat.)

Note that each thickening process induces a canonical framing on the corresponding Whitney circle and we have to use precisely this framing to attach the kinky handles in each stage. This infinite process replaces each original Whitney disk with a contractible 4-dimensional gadget called a Casson handle, generically denoted by CH, and inside CH we find the attaching region ∂_- of the kinky handle in the first stage which now serves as attaching region for CH. In other words, a Casson handle (CH, ∂_-) has been attached to each original Whitney circle. After scraping off all frontier of CH except for ∂_- we obtain an open Casson handle which we denote by CH. Our main goal is to prove the following theorem.

Theorem 6.9. The pair (CH, ∂_-) is homeomorphic to $(B^2 \times \mathbb{R}^2, S^1 \times \mathbb{R}^2)$.

Note that there’s \mathbb{Z} worth of choices for the framing coming from $\pi_1(SO(2))$.

Figure 44: How to read Kirby diagrams.
Once we know this result we can make surgery and h-cobordism work in the simply connected context in dimension four because everything we wished to have done with Whitney disks we can now do with Casson handles.

In order to draw Kirby diagrams of Casson handles, the first thing we do is to make the pattern in the middle of Figure 43 more symmetrical by passing to the right picture using the symmetry of the Whitehead link so that the attaching region ∂_- of the kinky handle appears as an unknot and the dotted circle has the clasp on it. Next we note that the diagram generalizes immediately to kinky handles with several self-plumbings, we simply have to add several dotted circles to (untwisted) Whitehead doubles of meridians of the attaching circle. For the inductive process we have to located the attaching regions for the higher stages of kinky handles and it is easy to see that, in each stage, the kinky handles are attached to meridians of the dotted circles of the previous stage and the framing condition is that we have to use the zero framing of these meridians. Figure 45 shows the first three stages of the simplest Casson handle where each Whitney disk has only one self-intersection and Figure 46 shows an example with more complicated branching of self-intersections.
7 Exploring Casson handles

7.1 Picture Camp

Welcome to Picture Camp! We’re going to draw a lot of pictures and get familiar with them. The first set of pictures are kind of schematics – although they can be made rigorous by regarding them as cross section of 4-dimensional picture – where arcs represent bits of surfaces.

Piping. We might have a configuration of bits of surfaces a, b and c as in the left of Figure 47 where a and c both intersect b in one point. (Note that it wouldn’t make a difference if the self intersection of b were in the middle because we’re looking at 2-dimensional sheets.) Then we can add a tube along some arc on b to unite the sheets of a and c – that is, we take an ambient connected sum of a and c – so that the result has no intersection with b. This is called piping.

Here’s an example of how we will use piping. Suppose we have an immersed disk attached to some lower stage stuff and it has a dual sphere which might have self-intersections, too. Ans suppose we know that the loops in the dual associated with its self-intersection points are trivial in the fundamental group while the double point loops in the disks are essential. Then we can pipe the dual onto the disk and what we get is still a disk. But we gain something because we see that the new disk has trivial double point loops.

Pushing down. Another picture which we call pushing down is shown in Figure 49. Lots of our constructions have a surface coming into another surface sort of forming a T-junction (for example, when we glue in Whitney disks). What we see is that one point of intersection between a and b is traded for two points of intersection of opposite sign.
between a and c.

Spinning. The last of the schematic pictures is called *spinning* which we have already used to adjust framings of Whitney disks at the expense of creating intersections. Suppose we have one edge of a surface a and another thing W coming in. Then spinning means that we change the normal picture by first pushing the arcs behind and then bring the back arc through to create an intersection point at some moment and then after creating that intersection point the arc stays on top and we push it back to the original position.

The Whitehead link. Next we point out some symmetric links that we have to deal with. We’ve already encountered the Whitehead link (Figure 51) as the beginning of a Casson handle. Recall that in Kirby calculus it represents a neighborhood of a disk with a single self-intersection. The symmetry allows us to draw either component as a trivial unknot. (Technically, this link appears in two forms depending on the sign of the claps, but this seems to be irrelevant for the decomposition space theory.)

There’s a quite useful generalization of this symmetry. Let $\text{Wh}_{j,k}(H)$ be the link obtained from the Hopf link H by taking the untwisted Whitehead double of the first and the second component j and k times, respectively. Note that the Whitehead link is either $\text{Wh}_{0,1}(H)$ or $\text{Wh}_{1,0}(H)$ and the symmetry says that these two are isotopic.
Exercise 7.1. Show that $\text{Wh}_{j,k}(H)$ and $\text{Wh}_{j',k'}(H)$ are isotopic if and only if $j+k = j'+k'$.

The Borromean rings. Another link arose when we studied the double of the Alexander gored ball. There we encountered a link in a solid torus and referred to it as the Bing double of the core circle. But it's often convenient to represent the solid torus dually by drawing the core of its complement in the 3-sphere (which is also a solid torus) and if we do that we get the Borromean rings which have a threefold symmetry as indicated in Figure 52.

While we're drawing the Borromean rings, there's also a 4-dimensional picture associated with them. If we put dots on two components, then we claim that we see a Kirby diagram of a thickened punctured torus $T_0 \times B^2$ where the third component with the 0-framing represents $\partial_- = \partial T_0 \times B^2$ (see Figure 53). To see this, note that T_0 deformation retracts onto a wedge of circles and as an abstract manifold $T_0 \times B^2$ can't be anything else than $S^1 \times B^2 \times S^1 \times B^3$. In Kirby calculus this is represented by a dotted 2-component and the two circles appear as meridians of the dotted circles. Furthermore, the core of ∂_- should be representable as a curve in the complement of the dotted circles and it has to represent the commutator of the meridians in the fundamental group. And since this is a very simple picture it must be the simplest possible such curve and therefore it's the third component of the Borromean rings.

If that proof doesn't satisfy you entirely, here's a more math style derivation. When we analyzed the Alexander gored ball we sat that $T_0 \times I$ can be obtained from $B^2 \times I$ by drilling out two 3-dimensional 1-handles. Now, if we cross with another I-factor to get $T_0 \times B^2$, then we simply have to cross the 3-dimensional picture with I and on the boundary we see what's shown in Figure 54.
Some more Kirby calculus. Some of the basic ingredients in manifold topology is manipulating Morse functions and the most basic manipulation is to cancel critical points of adjacent indices when they’re geometrically in a configuration where they can be canceled; the way Smale would have said this is that the descending manifold of the index \(k + 1 \) critical point meets the ascending manifold of the index \(k \) point transversely in one point. The paradigm picture for this is the igloo melting back into the arctic (see Figure 55) where a 3-dimensional 1-handle (the archway) and 2-handle (the roof) are canceled. The cancellation criterion is satisfied since the roof edge passes over the archway exactly once and the cancellation proceeds by melting the igloo back down into the ice.

So how does this look in Kirby calculus? In the case of index 1 and 2 (which is all we’ll need) there’ll be a dotted circle representing a 1-handle and the attaching circle of the canceling 2-handle linking the dotted circle geometrically once (see Figure 56). Canceling them means that they disappear from the picture but we can’t just erase them, we have...
to pay attention to other things that might pass through (indicated by the tubes). If nothing passes through the dotted circle, then erasing works fine, but if something passes through, then the we have to modify the tubes as in Figure 56. Note that the framing of the two handle doesn’t matter for the cancellation criterion but it does affect the way the cancellation appears in the diagram.

Actually, in the diagrams for Casson towers and handles all the framings will be zero if we do it correctly, so we never have to do the calculation with a nonzero twist. In order to fully appreciate why we need zeros let’s look at a simple example and see what happened if there was a non-zero twist.

Example 7.2. We consider a 2-stage Casson tower with one disk in each stage such that the first stage has one self-intersection, the second is embedded and its framing produces framing coefficient k in the Kirby diagram (see Figure 57). By construction, the 2-handle of the second stage cancels the 1-handle of the first stage and in order to make the cancellation more transparent we have used the symmetry of the Whitehead link to draw the 1-handle as an unknot and the attaching region ∂ as a Whitehead double. According to the rules, when we cancel we have to twist what goes through the 1-handle side k-times, in this case that’s ∂.

Suppose first that we were lucky and the 2-handle had zero framing. Then can simply erase the pair and we don’t have to twist anything. What’s left would be ∂ represented by a zero framed unknot. But that’s just the picture of a 2-handle

$$(B^2 \times B^2, S^1 \times B^2) \cong (B^4, 0\text{-framed unknot}).$$

So this would be great it’s perfectly consistent with the schematic picture (top left) because it says that the little kink in the first stage wasn’t necessary after all.

However, if k wasn’t zero but $k = 1$, say, then we’d have to put one full twist in ∂ and we’d either get a trefoil or a figure eight knot (depending on the sign of the clasp). In any case, neither of them is slice and it doesn’t look like there’s a smoothly embedded core associated with this construction. So this is not an auspicious start for a 4-dimensional 2-handle and we’ve kind of gotten off on the wrong foot. This is one of the many places where it’s necessary to keep zero framings propagating in Casson’s construction.

Example 7.3. Now let’s consider a general Casson tower with only zero framed 2-handles. Again, by construction, all 1-handles except for those in the last stage can be canceled with the 2-handles of the subsequent stages. What would that look like? To keep things simple let’s first assume that each stage has only one disk with a single self-intersection; Figure 58 contains shows the case of two stages. Using the symmetry of the generalized Whitehead
Figure 58: Cancellation in a more complicated Casson tower.

links (Exercise 7.1) it is easy to see that after canceling we see the link $\text{Wh}_{0,n}(H)$ where n is the number of stages, that is, we see ∂_- as a trivial unknot and a 1-handle which appears as an iterated Whitehead double of a meridian.

From here on, it is probably obvious that the general case, with an arbitrary branching pattern in the stages of the tower, results in ∂_- as a trivial unknot together with ramified, iterated Whitehead doubles of a meridian.

Exercise 7.4. Use cancellation in Kirby calculus to show that

(a) as an absolute space, a Casson tower is diffeomorphic to $\natural r S^1 \times B^3$ for some r.

(b) the interior of a Casson handle is diffeomorphic to \mathbb{R}^4.

Remark 7.5. As we keep Whitehead doubling links, in some sense they become more and more fragile with respect to 4-dimensional topology. It’s not link the link would become the unlink or anything like that because each doubling gives an amalgamation with a free group in the link group but, for example, if we start with a link that has non-trivial Milnor invariants, then after we double a couple of times we get a boundary link whose Milnor invariants vanish, and if we double further, we get something called a *good boundary link* which, for all our knowledge, looks like it was smoothly slice. So it look like if we can double things repeatedly, we’re making the link closer and closer to the trivial link. That philosophy is intimately related to the idea that it’s good to go to higher and higher Casson towers. Somehow the fact that the boundary region of a Casson handle is tangled up with a more and more highly doubled 1-handle as we increase the tower should intuitively make us think that the 1-handle is influencing the attaching region less and less and it’s looking more like an actual 2-handle.

7.2 The boundary of a Casson handle

A Casson handle CH is a non-compact 4-dimensional manifold improperly embedded in 4-space and its boundary has two pieces

$$\partial CH = \partial_- CH \cup T_2 \partial_+ CH$$

where $\partial_- CH$ is just a solid torus, the attaching region, and we want to explain what the more complicated piece $\partial_+ CH$ looks like. We assume that CH is given to us as a Kirby diagram living in S^3, which we consider as a union of two solid tori

$$S^3 \cong S^1 \times B^2 \cup_{T^2} B^2 \times S^1 (= \partial(B^2 \times B^2))$$

(7.1)

where $\partial_- CH$ shows up as $S^1 \times B^2$, and the idea is to keep track of what’s happening to the other solid torus $B^2 \times S^1$ throughout the construction. It turns out that the Kirby diagram gives us a precise way of understanding this.
Remember that when we discussed the Alexander horned sphere as the boundary of the gored ball it was very helpful to focus on the portion of the boundary which was there permanently. In the construction of the gored ball as an infinite union (with some limit set thrown in), in each finite stage of the union there were always some annulus regions in the boundary that were there only temporarily, they weren’t in the boundary anymore after we attached the next stage. Similarly, in one higher dimension, as we go out in the Casson handle attaching stages of kinky handles, the attaching regions of the kinky handles are only temporarily in the boundary; when we attach the k-th stage it has some solid tori in it which disappear from the boundary when we attach the $(k+1)$-th stage.

Let’s see how this works in detail. For convenience we write $T_n \subset \text{CH}$ for the Casson tower in the n-th stage and note that the boundary decomposes as $\partial T_n = \partial_- \text{CH} \cup \partial_+ T_n$. Since $\partial_- \text{CH}$ is not affected by going to higher stages it is enough to focus on the ∂_+-parts. At the very beginning, we just have $T_0 = B^4$ and $\partial_+ T_0$ is the solid torus $B^2 \times S^1$ from (7.1). In the first stage we attach 1-handles along dotted circles in $\partial_+ T_0$ which appear as untwisted Whitehead doubles of the core $\{0\} \times S^1$. Recall that the dotted circle notation for 1-handles means that a neighborhood of a standard slice for the dotted circle is to be removed from B^4. This has the following effect on the boundary.

Exercise 7.6. Show that carving out the standard slice underneath a dotted circle from B^4 changes the boundary by a zero framed surgery on the dotted circle.

So we obtain $\partial_+ T_1$ from $\partial_+ T_0$ by zero framed surgery on the dotted circles, that is, we remove a neighborhood of each dotted circle and replace it with a solid torus such that the longitudinal push off of the dotted circle bounds a disk. Thus $\partial_+ T_1$ has two parts, $\partial_+ T_0$ minus neighborhoods of the dotted circles and a collection of solid tori which are slightly more impossible to draw; the former is a cobordism from $T^2 = \partial (\partial_+ T_0)$ to tori around the Whitehead curves given by the dotted circles. The important observation is that the impossible to draw tori are isotopic to the attaching regions of the 2-handles in the second stage and will thus disappear when we pass to $\partial_+ T_2$, so we don’t actually have to draw them. Moreover, the dotted circles of the second stage can be isotoped into the attaching regions of their corresponding 2-handles so that the cobordism part of $\partial_+ T_1$ remains untouched when passing to $\partial_+ T_2$, in fact, it will stay permanently in the boundary and gives the first piece of $\partial_+ \text{CH}$.

With this understood, it’s very easy to figure out how to keep going. In each stage we’re supposed to put in the attaching regions of the 2-handles of the next stage, which would fill in all the holes in S^3 again, and then remove neighborhood of the dotted circles. In particular, if there were no extraneous 1-handles hanging off in the next stage, the attaching regions of the 2-handles would repair the damage in S^3 and then we’d see that $\partial_- \text{CH}$ bounded a disk and we’d be done. But realistically, there will always be a proliferating number of 1-handles and that means that the next stage is not a solid torus but it’s a solid torus minus some Whitehead curves sitting at its core. So $\partial_+ \text{CH}$ is a cobordism from a torus to a (perhaps iterated) Whitehead double, followed by another such cobordism and so on.

What we see is that $\partial_+ \text{CH}$ is something that we’ve already run into when we were studying decompositions. If there was no branching, it would just be the solid torus $B^2 \times S^1$ minus a standard Whitehead continuum and, if there was branching, it would be a solid torus minus a Cantor set worth of Whitehead continua which correspond to the endpoints of the tree which describes the branching pattern.
7.3 An exercise in wishful thinking

Later we will develop some combinatorics involving a careful study of dual spheres that will enable us to achieve a lot of additional control over Casson’s construction. But let’s jump ahead a little bit and imagine that

(a) such control has been achieved and

(b) there was a variant of the construction that also involved surface stages to see what this would say about the boundary.

Casson’s original construction gives some non-compact thing which might fill up the whole manifold which Casson himself analyzed to a certain extent. In particular, he showed that an open neighborhood of the construction was proper homotopy equivalent to a standard handle, but that was a bit of a dead-end result, it wasn’t possible to do much with that statement. But imagine that the construction was geometrically controlled – for example, like our construction of the Alexander gored ball where we went smaller and smaller in each step – and proceeded to a well defined limit. Then ∂_- would still be a solid torus but ∂_+ now would be the decomposition space of a ramified Whitehead decomposition instead of its complement. Indeed, the farther and farther out stages would get smaller and smaller which is exactly what would happen if we had taken that infinite intersection and crushed it to a point. So where we wanted to have a handle we at least see something with a manifold factor (remember Theorem 4.10?) as its frontier and if this were topologically collared, we’d see a solid torus cross an interval in there; everything would resolve and that would mean that we could put in a topological Whitney disk and we’d really be cooking but, of course, we have no way of knowing it’s collared. But at least it looks like we’re moving in the right direction.

Now, as long as we’re imagining, suppose when we build this construction, instead of always using disks with double points, we were able to replace such a disk with an embedded surface. In fact, that’s not such a far fetched thing because double points of surfaces can be resolved locally with the result of increasing the genus; in a ball around the double point we can simply replace the two intersecting sheets by the annulus connecting the two components of the Hopf link on the boundary (see Figure 59).

At the end of the day it turns out that, once we’ve found a Casson handle, then we can replace it with a construction that has any number of surface stages alternating in any fashion we like with any number of disk stages. For convenience we’ll still call such a modified construction a Casson handle although Casson didn’t talk about surfaces.

Now suppose we can do the modified construction in a controlled way. That’s going to be a winning combination. Instead of just getting successive layers of disks we could intersperse an arbitrary number of surface stages whenever we like and at the end everything would be getting smaller and smaller and converge to a Cantor set. But from what we have learned in picture camp we know that the frontier of such a construction...
would be the decomposition space of a mixed Bing-Whitehead decomposition; each disk stage gives a Whitehead double while surface stages result in Bing doubling (Figure 53). Now, remember that we had this result of Starbird and Ancel (Theorem 4.12) which tells us exactly when such decompositions shrink. Roughly, we need lots of Bing doubles to compensate for a few Whitehead doubles, in other words, we need lots of surface stages to make up for each disk stage.

To sum up, as \(\partial + \) we can expect

Without control: \(\partial_+ = B^2 \times S^1 \setminus D_{W/B} \)

With control: \(\partial_+ = B^2 \times S^1 / D_{W/B} \)

and if we have enough surface stages then the decomposition \(D_{W/B} \) is shrinkable so that we have \(\partial_+ = B^2 \times S^1 \) in the controlled case so that the frontier of this infinite construction would exactly look like the boundary of a 2-handle. That’s considerable progress because if we think of goal as trying to produce a 2-handle where we wish to find a Whitney disk, at this point the boundary of whatever we have found is find, except we don’t know if it’s collared.

Our strategy will be to produce not only one frontier but to fill this kind of Casson handle up with many frontiers, each of which is recognized to be the standard thing, and at the end of the day very little of the Casson handle will be left unexplored, so little that it can ultimately be related to the standard handle by the sphere-to-sphere theorem (Theorem 5.1).

Remark 7.7. One might wonder: why we don’t take just surface stages? After all, this would always give shrinkable decompositions. But the problem with this approach is that we will actually need some disk stages to achieve the control. In turns out that we really need to intersperse with some disks to keep local information about the fundamental group.

7.4 A glimpse at reimbedding and “the Design”

To give more motivation for the combinatorics to come we continue to plow ahead and take a look at what we like to call “the design”. One of the conclusions of these combinatorics is the idea of **reimbedding** which roughly says that, if we have a sufficiently complicated finite construction, then we can produce arbitrarily larger finite constructions inside.

Theorem 7.8 (Reimbedding, disk stages only). Inside any Casson tower \(T^0_m \) of sufficiently large height \(m \) (that is, there are \(m \) stages of disks) there is another tower \(T^1_n \subset T^0_m \) of arbitrary height \(n \) such that \(T^1_n \) and \(T^0_m \) have the same bottom stage.

Remark 7.9. In [Fre82] we used the constant \(m = 6 \) which is not optimal. In fact, Gompf and Singh [GS84] lowered the bound to \(m = 5 \) which may or may not be optimal. But at the end of the day it doesn’t really matter what the constant is as long as there is one.

Let’s see what we can do with this. For example, we can take something of height 6 and locate something of height 13 inside which we consider as something with six stages, six further stages and one more stage on top (just to make sure that nothing is tangled up in the fundamental group). Then we do the same thing in the middle six stages and repeat this process ad infinitum as shown schematically in Figure 60.

This picture already shows how to obtain control. We can modify each step by using the top stages to show that the middle six stages are null-homotopic inside the original 6-stage tower. After all, as an absolute manifold the middle six stages are just a boundary sum of copies of \(S^1 \times B^3 \) (and thus have a 1-dimensional spine), the final layer then provides null-homotopies for each \(S^1 \times \{0\} \) and in four dimension homotopy implies isotopy for 1-dimensional things. So this whole middle 6-stage tower can be moved into a little ball
somewhere inside the original tower and only then we focus on its internal structure. By construction this modified process forces the towers to converge to points and if there was branching in the construction we’d see a Cantor set again.

This controlled construction gives us a single frontier inside the Casson handle, but remember, our goal is to fill up most of the handle with, ultimately, a Cantor set worth of frontiers. In order do that we need another construction that bifurcates in another direction. This means that, every time we do this reimbedding, we want to have two choices, sort of an inner and an outer way to proceed. So we start over with a 6-stage tower but now we take a tower with $19 = 6 + 6 + 6 + 1$ stages inside. Now there are two middle 6-stage towers in each we find another 19-stage tower and so on. Then the frontier exhibits a dyadic branching pattern as indicated in Figure 61 and it’s easy to explicitly see what we’re building: in the 3-dimensional context each piece would be $B^2 \times S^1$ minus a neighborhood of a ramified Whitehead link\(^9\) and the thick red lines indicate that we take a small neighborhood so that each piece is of the form $(B^2 \times S^1 \setminus \nu L) \times I$ for some link L.

Now since these pieces are explicitly parametrized, we can take the standard 2-handle $B^2 \times B^2$ and start fitting them into it (see Figure 62). What we end up seeing is, first of all, the attaching region (shaded in grey), and then the red pieces will appear as indicated. In particular, they will get smaller and smaller and converge to some limit set (which may or may not be a Cantor set, this depends on whether we work with disks only or allow surfaces). What we have found is some common closed set in both the Casson handle and

\(^9\)Remember that we’re only using disks it this point, if we were also using surfaces, we’d see mixed Bing-Whitehead links.
Remark 7.10. The path to the proof that we’re going to explain – before we double back and give the original proof whose high point is a fantastic shrink due to Bob Edwards [Fre82, Chapter 8] – is to use surface stages because we can lean rather heavily on what we’ve already learned about shrinking decompositions that have adequate Bing components to them. The point of going through enough combinatorics to work with surface stages – a technology that was unavailable in 1981 – is that we can really arrange the limit set in the standard 2-handle to be a Cantor set.

The complement of the Design in both the exotic and standard situation is a countable number of regions and, although they’re a tiny bit mysterious in the exotic guy, back in the standard handle all this is explicitly coordinate driven and they’re just product solid tori. The proof will finish by studying a common quotient Q where α and β are decomposition maps ad the argument will be that we can first shrink the α-decomposition using the bird-like equivalent techniques so that α turns out to be ABH and that will tell us that Q is a ball. Then we have a map from CH to a ball and, although we don’t know that CH is a ball, we’ll understand that it is contained in a ball (in a similar way that the Alexander gored ball is contained in the standard 3-ball) and we can use the ball-to-ball theorem to deduce that β is also ABH so that CH must be homeomorphic to the standard handle.

8 Combinatorics day

We’re first going to explain some of the original combinatorics in working in honest Casson handles [Fre82] and then go into more detail of the combinatorics with surface stages [FQ90]. The latter turns out to be much simpler and is really quite an improvement because.

8.1 Gropes and transverse spheres

We’ve already met a grope in Section 3.2.2 when we discussed the Alexander gored ball as a union of thickened, punctured tori. As far as we know, the term grope was introduced...
by Jim Cannon and we’re going to use the word to mean something that might be either 2-, 3- or 4-dimensional but the dimension should always be clear from the context.

Roughly, what a 2D grope looks like is that we start with an oriented surface with one boundary component called the base or 1st stage, take a symplectic basis on the surface, attach other oriented surfaces with a single boundary component – the 2nd stage – and repeat this process (see Figure 63). Note that each surface in the construction can have arbitrary genus but since the pictures get exponentially complicated anyway we’re tempted to draw only genus one surfaces. Abstractly, a 2D grope is a 2-complex but we can embed it in 3-space by attaching half of the surfaces in each stage on the outside and the others to the inside as in Figure 64. In order to get a 3D grope we simply take a thickening of this picture in 3-space. (That’s fine for any finite stage but if we do an infinite construction and want a limiting object, then it’s important that the stages shrink and limit to a Cantor set.) Finally, to get 4D gropes we just take the 3-dimensional model and cross it with an interval. The 4D version is also equivalent to a handle picture in the spirit of the pictures for Casson towers. Basically, the pictures look almost the same, the only difference is that we see Bing doubles (one for each genus) instead of Whitehead doubles (Figure 65).

We generically denote gropes by G and call the boundary of the base surface the attaching circle and its thickening the attaching region $\partial_- G$ of the grope. Moreover, any 3D or 4D grope naturally contains a 2D grope as a deformation retract, this will be called the body.

Remark 8.1. Group theoretically gropes are related to the commutator series (or derived series) of the fundamental group because a grope displays its attaching circle as a com-

Figure 63: A grope as a 2-complex.

Figure 64: A 2-dimensional grope in 3-space.

10 A symplectic basis is a basis of H_1 consisting of simple closed curves $a_i, b_i \subset$ such that a_i and b_i intersect transversely in one point and there are no further intersections.
mutator in the first stage, then as a commutator of commutators and then a commutator of commutators of commutators and so on.

From now on we mostly focus on 4D gropes. Note that in our models in 4-space the top stage surfaces of a grope have a symplectic basis of curves which bound embedded disks (already visible in the 3D picture). If we add them to the picture, then we obtain an example of a capped grope. More generally, we call any immersed disk in 4-space which bounds a basis curve in a top stage surface and is otherwise disjoint from the body of the grope a cap and a capped grope G^c is a grope G together with caps for all basis curves in the top stage. Note that we allow arbitrary intersections and self-intersections among the caps.

Remark 8.2. As usual, there’s a framing issue that we’ve swept under the rug. The basis curves have a natural framing in 4-space11 and this framing must extend across the caps. In Kirby calculus language this means that we attach 0-framed kinky handles to meridians of the 1-handles in the top stage of a grope. However, since we allow the caps to intersect each other it is not completely straightforward to draw the pictures.

Exercise 8.3. Figure out how intersections among caps appear in the handle pictures.

Exercise 8.4. Show that a capped grope with embedded caps is diffeomorphic to a standard 2-handle (relative to their attaching regions).

We have a lot to learn about 1-stage capped gropes. A 1-stage capped grope is simply an oriented surface with a single boundary component with disks attached along a symplectic basis, Figure 67 shows the genus one case. Let’s first look at the picture in three dimensions. If we have embedded caps as in the picture, then we can certainly use either one of them to turn the punctured torus into a disk by surgery. But there’s another

11Up to orientations, they have a canonical framing inside the surface which canonically extends to a framing in 3-space and the latter is canonically framed in 4-space.
interesting option when both disks are available which is called symmetric surgery or contraction [FQ90]; we remove cylinders around both curves but we think mod 2 and leave the square where the cylinders intersect in the space, and then we put in four disks (one pair for each cap) back in. The virtue of this construction is that it allows us to trade intersections with caps for self-intersections of whatever was intersecting the caps. Indeed, say something called X intersects the caps as in Figure 68, then the observation if that, after the contraction we can push one arc up and the other down. Note that this process of pushing off the contraction creates two self-intersections of X for each intersection with the caps.

Remark 8.5. Why is this an important technology? Recall that one of the key points in Casson’s constructions was to clean things up by promoting homological duals to geometric duals which we called dual spheres. They are what makes these constructions run, they enable us to make higher stages in Casson towers and eventually to build Casson handles. It turns out that, if we understand it correctly, contraction is a very efficient machine for producing dual spheres. In fact, a test of how efficient it was has enabled Quinn to prove the annulus conjecture in dimension four [Qui82] (see also [Edw84]). He thought of the annulus conjecture as a controlled h-cobordism theorem and in order to do h-cobordism with geometric control you need ready access to dual spheres everywhere, you couldn’t go looking for them far away.

In our original approach [Fre82] we were basically making dual spheres “by hand” and, although there was an algebraic presence of contraction picture in the background, we first learned about it from Bob Edwards at the 1982 Durham conference when Quinn had just announced his proof.

The technique of pushing off contractions has had a lot of influence in using gropes as a variant of Casson towers and that’s the way the book [FQ90] is written; basically, wherever we could we used a capped surface instead of a disk which is much more convenient in terms of combinatorics. We’re going to try to explain the bare bones of both, the old
and the new combinatorics. But before we want to give the most interesting corollary of
the contraction trick which allows us to produce infinitely many disjoint duals in one fell
swoop whereas with the only technology we had to find duals one at a time.

To see why this is useful, suppose we have a surface S intersected once by another
surface T. If there is a dual sphere \hat{S} for S we can pipe T and \hat{S} to remove the intersection
of T and S. That’s good, but suppose we don’t have just T but another surface T' and we
want both T and T' disjoint from S. and we only have the one dual sphere \hat{S}. Of course,
even if we have only one dual sphere \hat{S} we can pipe both T and T' with parallel copies
of \hat{S} to achieve disjointness from S, but this is not entirely satisfactory because we add
intersections of T and T' unless \hat{S} happens to be embedded with trivial normal bundle.
It would be much more convenient to have not only one dual but an arbitrary number of
disjoint ones. So how do capped gropes and contraction solve this?

Lemma 8.6 (\infty-Lemma). A (4D) capped grope G^c with immersed caps (disjoint from the
body) contains arbitrarily many disjointly immersed disks with boundary parallel in ∂G^c.

Proof. The proof is extremely simple. We first contract and then push the caps off the
contraction. What we get is a new capped surface disjoint from the contraction and we
simply repeat this process.

Back to the situation described before the lemma, if we remove a disk D from \hat{S} where
it meets S, we’re left with an immersed disk. Now, if we had a capped grope instead of
the immersed disk, then we could cap off parallel copies of D with disks from the lemma
and get infinitely many disjoint dual spheres and we can pipe arbitrarily many things off S
without making them cross themselves!

8.2 Height raising and reimbedding for Casson towers

Let’s see how we can raise height in Casson towers with the help of the \infty-Lemma [8.6]
In the next section we’ll talk about the more general towers interlacing surface and disk
stages used in [FQ90]. The combinatorics for Casson towers is slightly messier and we
could skip this part, but it’s the way the original proof [Fre82] worked.

Suppose we’re looking at a 4-stage Casson tower. Then there’s a little computation in
topology that tells you that the third stage has a transverse sphere.

Exercise 8.7. Prove this! (Hint: Lemma 4.1 in [Fre82])

This transverse sphere has two problem: it is immersed and crosses the fourth stage.
What we’ll do is to turn this sphere into a dual torus which has caps, and the caps cross
themselves and the top stage. In the light of Lemma 8.6 this is an improvement since it’s
more powerful to have a dual capped surface than just a dual sphere. The way this works
is that the Clifford tori of double points in the second stage and do something with it...
By contracting this capped surface back to a sphere we can trade its intersections with
the fourth stage for self-intersections in the fourth stage disks.

Then we use the Clifford tori in the third stage obtain a dual capped surface for the
fourth stage.

The next thing is to use that we’re in a higher tower so that all the double point loops
in the fourth stage bound null-homotopies but these may cross the caps. Well, what can
we do about that? We can make these null-homotopies cross themselves even more than
they did to begin with and get them disjoint from an actual dual sphere.

Yada yada yada...
(Sorry, didn’t understand this stuff well enough to write something useful.)

So at the end of the day we see that within any 6-stage Casson tower we can find a 7-stage tower and then we can keep going and eventually prove the reembedding theorem 7.8.

8.3 Height raising for gropes

We’re over the most painful combinatorics and go to the good new days where we use capped gropes to height raise instead of all disk stages and we’ll see that the combinatorics is much more pleasant. Here’s the key result.

Lemma 8.8 (Height raising for capped gropes). Inside any 3-stage capped grope G_3^c there exists an n-stage capped grope $G_n^c \subset G_3^c$ with the same attaching region.

Proof. When building the grope G_3^c we can divide each stage of surface into a left $(-)$ and right branch $(+)$ because of the symplectically dual basis. (In the picture in 3-space this would be the inside surfaces versus the outside.) On top we have the caps which are immersed and cross all through each other. Schematically, this is shown in the left picture in Figure 69.

The first thing we can do is to take the left branch and to sacrifice one of its bits of height in order to get all the intersections off. More precisely, we contract the third level of the left branch to push all intersections with the caps from the right branch off and we get the right side of Figure 69. The left branch of the second stage is then just a capped surface.

In the next step we use the shortened left branch to create a capped surfaces dual to the surfaces in the right branch of the second stage. To keep things simple we assume that everything has genus one; the general case is only notationally more complicated. Denote the base surface by Σ and let Σ_{\pm} be the left $(-)$ and right $(+)$ branches of the second stage which are attached along a symplectic basis $C_{\pm} \subset \Sigma$. If we take the unit normal bundle of Σ and restrict it to C_-, then we get a torus T and it is easy to see that T intersects Σ_+ in one point. So we have found a homological dual to Σ_+ which is already a good sign but, of course, we want a higher quality dual. Note that T meets the left branch Σ_- in a circle (in fact, a parallel push off of C_-) so that we can remove a neighborhood of this circle from T and fill the resulting two boundary components with two parallel copies of the capped surface Σ^c_-. This “surgery” turns T into a capped surface and since the caps of Σ_- didn’t interfere with the right branch we really get a dual capped surface for Σ_+.

At this point the right branch still has all three stages and caps on top. Now we use piping to convert all intersection among the right branch caps into intersections with Σ_+ (recall that the conversion ratio is 1:4) and for each of these intersections we throw in a disjoint copy of the dual capped surface for Σ_+. At the end of the day this turns each cap from the right branch into a capped surface. This recreates all kinds of intersections between right branch caps and left branch caps, so we’re kind of back to where we started.
<table>
<thead>
<tr>
<th>left</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 + 2$</td>
<td>$1 + 2$</td>
</tr>
<tr>
<td>$1 + 1$</td>
<td>$1 + 3$</td>
</tr>
<tr>
<td>$1 + 3$</td>
<td>$1 + 2$</td>
</tr>
<tr>
<td>$1 + 2$</td>
<td>$1 + 4$</td>
</tr>
<tr>
<td>$1 + 5$</td>
<td>$1 + 3$</td>
</tr>
<tr>
<td>$1 + 4$</td>
<td>$1 + 7$</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

Figure 70: The heights of both branches progress in Fibonacci sequences. (The red numbers indicate on which branch we are working.)

But notice that the multiplicities have changed. The left branch now has height one over the base surface but the right branch has three stages on top of the base surface.

Now we simply reverse the roles. We do a contraction on the right branch to get the caps disjoint, create something dual to the left branch and pipe away. The important observation is that this time we not only get a dual capped surface but actually a dual 2-stage capped grope. So the height of the right branch goes down from 3 to 2, but the left branch grows taller from height 1 to 3. By iterating this process further and alternating between the left and right branch we see that the height of the branches evolves as in the table in Figure 70. At the end of the day, we can first raise the height of both branches asymmetrically and then use contraction to cut the heights down symmetrically.

Remark 8.9. Having to work alternately on the left and the right side seems to be a general feature of using gropes. The reason is that, although we can use a copy of the left side to make a dual for the right side and vice versa, these dual are not disjoint, they intersect in two points. And that usually spoils more homogeneous arguments so that we have to go back and forth between the two sides.

Remark 8.10. Lemma 8.8 is kind of a baby reimbedding lemma. But what we’ll actually have to work with gropes that have not only one but two layers of caps.

9 Geometric control and the Design

Sorry, backlog ...

(to be continued...)
References

