SOME GHOST LEMMAS

APOSTOLOS BELIGIANNIS

How GHOSTS EMERGE

Let \mathscr{A} be an additive category and let $\mathfrak{X} \subseteq \mathscr{A}$ be a full subcategory. It is an important problem if \mathscr{A} can be build from \mathfrak{X} in some specific way. A first step in this problem is to study the induced restricted Yoneda functor

$$\mathsf{H}_{\mathfrak{X}}:\mathscr{C}\to\mathsf{Mod}\text{-}\mathfrak{X},\quad\mathsf{H}_{\mathfrak{X}}(A)=\mathscr{A}(-,A)|_{\mathfrak{X}}$$

where $\operatorname{\mathsf{Mod}} X$ denotes the category of contravariant additive functors $X^{\operatorname{op}} \to \mathscr{A}b$. The maps in \mathscr{A} invisible by $\operatorname{\mathsf{H}}_X$, i.e. the maps $f: A \to B$ in \mathscr{A} such that $\operatorname{\mathsf{H}}_X(f) = 0$, i.e. $\mathscr{A}(X, f) = 0$, $\forall X \in X$, are generally called X-phantom maps and they form an ideal in \mathscr{A} . If $X = \{T\}$ consists of a single object $T \in \mathscr{A}$, then the T-phantom maps are called T-ghost maps. In this case the functor above takes the form $\operatorname{\mathsf{H}}_T : \mathscr{A} \to \operatorname{\mathsf{Mod-End}}(T)$, $\operatorname{\mathsf{H}}_T(A) = \mathscr{A}(T, A)$. More generally one may consider H-phantom maps where $\operatorname{\mathsf{H}} : \mathscr{A} \to \mathscr{B}$ is an additive functor, i.e. maps f such that $\operatorname{\mathsf{H}}(f) = 0$. The complexity of the ideal of X-phantom or T-ghost maps in some sense measures the possibility to build \mathscr{A} from \mathfrak{X} or T.

We denote by $\operatorname{add} \mathfrak{X}$, resp. $\operatorname{Add} \mathfrak{X}$, the full subcategory of \mathscr{A} consisting of the direct summands of finite, resp. infinite set-indexed, direct sums of objects from \mathfrak{X} .

Examples. (i) Take $\mathscr{A} = \mathbf{D}(\mathsf{Mod}-\Lambda)$ for an Artin algebra Λ and take $\mathfrak{X} = \mathbf{K}^b(\mathfrak{P}_\Lambda)$, the homotopy category of bounded complexes of finitely generated projective modules. Then the ideal of \mathfrak{X} -phantom maps is zero iff $\mathbf{D}(\mathsf{Mod}-\Lambda) = \mathsf{Add}\,\mathbf{K}^b(\mathfrak{P}_\Lambda)$, and this happens if and only if Λ is an iterated tilted algebra of Dynkin type.

(ii) Take \mathscr{A} to be the category Mod- Λ over a ring Λ and $\mathfrak{X} = \text{mod}-\Lambda$ to be the category of finitely presented modules. Then any \mathfrak{X} -phantom map is zero and this corresponds to the fact that any module is a filtered colimit of finitely presented modules.

(iii) Take $\mathscr{A} = \text{mod}-\Lambda$ for an Artin algebra Λ and $\mathfrak{X} = \{T_1, T_2, \dots, T_m\}$ a finite set of modules. If the *n*th power of the ideal of \mathfrak{X} -phantom maps is zero, then mod- Λ consists of all modules admitting a finite filtration of length at most *n* with successive factors, modules which are factors copies of the T_i .

(iv) Take $\mathscr{A} = \mathbf{D}(\mathsf{Mod}-\Lambda)$ for an Artin algebra and $\mathfrak{X} = \{\Sigma^n \Lambda \mid n \in \mathbb{Z}\}$ to be the set of all suspensions of Λ in the derived category. If the *n*th power of \mathfrak{X} -ghost maps is zero, then any complex of $\mathbf{D}(\mathsf{Mod}-\Lambda)$ is an *n*-fold extension of complexes of projective modules with zero differential, i.e. of complexes in $\mathsf{Add}\{\Sigma^n \Lambda \mid n \in \mathbb{Z}\}$.

(v) Take \mathscr{A} to be the stable homotopy catregory of spectra and \mathfrak{X} the category of finite spectra. Then the \mathfrak{X} -phantom ideal is square zero and any spectrum is an extension of coproducts of finite spectra.

1. A GHOST LEMMA FOR ABELIAN CATEGORIES

Let \mathscr{A} be an abelian category.

Let \mathcal{U} and \mathcal{V} be full additive subcategories of \mathscr{A} which are closed under isomorphisms and direct summands. In the sequel we use the following notations:

- (i) $Fac(\mathcal{U})$ is the full subcategory of \mathscr{A} consisting of all factors of objects from \mathcal{U} .
- (ii) $\mathcal{U} \diamond \mathcal{V} = \operatorname{add} \{A \in \mathscr{A} \mid \exists \text{ an exact sequence} : U \rightarrow A \twoheadrightarrow V, \text{ where } U \in \mathcal{U} \text{ and } V \in \mathcal{V} \}.$ Inductively we define $\mathcal{U}_1 \diamond \mathcal{U}_2 \diamond \cdots \diamond \mathcal{U}_n, \forall n \ge 1$, for subcategories \mathcal{U}_i of \mathscr{A} . For any $\mathcal{U} \subseteq \mathscr{A}$, we set: $\langle \mathcal{U} \rangle_0 = 0, \langle \mathcal{U} \rangle_1 = \mathcal{U}$, for $n \ge 2$: $\langle \mathcal{U} \rangle_n := \mathcal{U} \diamond \mathcal{U} \diamond \cdots \diamond \mathcal{U}$ (*n*-factors) and

$$\langle \mathfrak{U} \rangle_{\infty} = \bigcup_{n \ge 0} \langle \mathfrak{U} \rangle_n$$

Remark 1.1. (i) Clearly the operation \diamond is associative.

(ii) Let $\mathfrak{X}_i, 1 \leq i \leq n$, be full subcategories of \mathscr{A} . Then clearly $\mathfrak{X}_1 \diamond \mathfrak{X}_2 \diamond \cdots \diamond \mathfrak{X}_n$ coincides with the full subcategory $\mathsf{Filt}(\mathfrak{X}_1, \cdots, \mathfrak{X}_n)$ of \mathscr{A} consisting of direct summands of objects A which admit a filtration

$$0 = A_0 \subseteq A_1 \subseteq A_2 \subseteq \dots \subseteq A_{n-1} \subseteq A_n = A$$

such that $A_k/A_{k-1} \in \mathfrak{X}_k, 1 \leq k \leq n$. Hence: $\mathsf{Filt}(\mathfrak{X}_1, \mathfrak{X}_2, \cdots, \mathfrak{X}_n) = \mathfrak{X}_1 \diamond \mathfrak{X}_2 \diamond \cdots \diamond \mathfrak{X}_n$.

Date: April 14, 2008.

Definition 1.2. Let \mathcal{X} be a full subcategory of \mathscr{A} . A map $f : A \to B$ in \mathscr{A} is called \mathcal{X} -phantom if the induced map $\mathscr{A}(X, f)$ is zero, i.e. $\mathscr{A}(X, f) = 0$, $\forall X \in \mathcal{X}$. If \mathcal{X} consists of a single object $T: \mathcal{X} = \{T\}$, then an \mathcal{X} -phantom map is called a T-ghost. The set of all \mathcal{X} -phantom maps $A \to B$ is denoted by $\mathsf{Ph}_{\mathcal{X}}(A, B)$ and the set of T-ghost maps is denoted by $\mathsf{Gh}_T(A, B)$.

Note that $\mathsf{Ph}_{\mathfrak{X}}(A, B) = \bigcap_{T \in \mathfrak{X}} \mathsf{Gh}_{T}(A, B).$

An ideal \mathfrak{I} of an additive category \mathscr{A} is an additive subfunctor of $\mathscr{A}(-,-)$. An ideal of \mathscr{A} can be described as a collection $\mathfrak{I}(A, B)$ of maps in $\mathscr{A}, \forall A, B \in \mathscr{A}$, such that for any $f, g: A \to B$ in \mathfrak{I} , the map $\alpha \circ (f+g) \circ \beta : X \to Y$ lies in \mathfrak{I} for all maps $\alpha : X \to A$ and $\beta : B \to Y$ in \mathscr{A} . For $n \ge 1$, the *n*th-power \mathfrak{I}^n of an ideal \mathfrak{I} consists of the collection of all maps $\mathfrak{I}^n(A, B)$ in \mathscr{A} which can be written as a composition of n maps in \mathfrak{I} . Clearly \mathfrak{I}^n is an ideal of \mathscr{A} . An important example of an ideal in \mathscr{A} is the Jacobson radical $\operatorname{Rad}(\mathscr{A})$: for any objects $A, B \in \mathscr{A}$, the subgroup $\operatorname{Rad}(A, B)$ of $\mathscr{A}(A, B)$ consists of all maps $f: A \to B$ such that $1_A - f \circ g: A \to A$ is invertible, for any map $g: B \to A$.

Now let \mathscr{A} be abelian and $T \in \mathscr{A}$. Setting $\mathsf{Gh}_T(\mathscr{A}) = \bigcup_{A,B \in \mathscr{A}} \mathsf{Gh}_T(A,B)$ we obtain an ideal of \mathscr{A} . Inductively, $\forall n \ge 1$, we obtain an ideal $\mathsf{Gh}_T^n(\mathscr{A})$ and in particular for any object $A \in \mathscr{A}$ and any $n \ge 1$, we have the left ideal $\mathsf{Gh}_T^n(A, -)$ and the right ideal $\mathsf{Gh}_T^n(-, A)$.

Lemma 1.3 (Abelian Ghost Lemma). Let A be an abelian category and T, X are objects of \mathscr{A} .

- (i) If $X \in \langle \mathsf{Fac} T \rangle_n$, then $\mathsf{Gh}^n_T(X, -) = 0$.
- (ii) If $\operatorname{add} T$ is contravariantly finite in \mathscr{A} , then the following are equivalent:
 - (a) $\operatorname{Gh}_T^n(X, -) = 0.$
 - (b) $X \in \langle \mathsf{Fac} T \rangle_n$.

Proof. (i) The assertion is clear if $X \in \langle \operatorname{Fac} T \rangle$. Assume that $X \in \langle \operatorname{Fac} T \rangle_2$ and let $0 \to X_0 \xrightarrow{\alpha} X \xrightarrow{\beta} X_1 \to 0$ be exact, where the X_i lie in $\operatorname{Fac} T$, i.e. there exists epics $e_0: T_0 \twoheadrightarrow X_0$ and $e_1: T_1 \twoheadrightarrow X_1$, where the T_i lie in $\operatorname{add} T$. Let $f_0: X \to A$ and $\beta: A \to B$ be T-ghosts. Since the composition $e_0 \circ \alpha \circ f_0 = 0$, we have $\alpha \circ f_0 = 0$ and therefore there exists a map $\rho: T_1 \to A$ such that $\beta \circ \rho = f_0$. Then $e_1 \circ f_0 \circ f_1 = e_1 \circ \beta \circ \rho \circ f_1$. However $e_1 \circ \rho \circ f_1 = 0$ since $e_1 \circ \rho \circ f_1$ is T-ghost (because f_1 is T-ghost) and T_1 lies in $\operatorname{add} T$. Hence $\rho \circ f_1 = 0$ and therefore $f_0 \circ f_1 = 0$, i.e. $\operatorname{Gh}^2_T(X, -) = 0$. Then the assertion follows by induction.

(ii) Assume now that add T is contravariantly finite. It suffices to show that (a) implies (b). If $Gh_T(X, -) = 0$, then let $T_X \xrightarrow{f_X} X \xrightarrow{g} A \to 0$ be exact, where f_X is a right add T-approximation of X and $g = \operatorname{coker} f_X$. Then clearly g is T-ghost, hence g = 0 and therefore f_X is epic, i.e. $X \in \mathsf{Fac}\,T$. Now let $\mathsf{Gh}_T^2(X, -) = 0$, and let as above $T_X \xrightarrow{f_X} X \xrightarrow{g} A \to 0$ be exact, where f_X is a right add T-approximation of X and $g = \operatorname{coker} f_X$. Consider an exact sequence $T_A \xrightarrow{f_A} A \xrightarrow{h} B \to 0$, where f_A is a right add T-approximation of A and $h = \operatorname{coker} f_A$. Then the composition $g \circ h$ is T-ghost out of X and therefore $g \circ h = 0$. Since g is epic, we have h = 0 and therefore f_A is epic, i.e. $A \in \operatorname{Fac} T$. If $C = \operatorname{Im} f_X$, then $C \in \operatorname{Fac} T$ and the short exact sequence $0 \to C \to X \to A \to 0$ shows that $X \in \langle \mathsf{Fac} T \rangle_2$. Assume now that $\mathsf{Gh}_T^3(X, -) = 0$, and let as above $T_X \xrightarrow{f_X} X \xrightarrow{g_0} A \to 0$ be exact, where f_X is a right add T-approximation of X and $g_0 = \operatorname{coker} f_X$. Consider an exact sequence $T_A \xrightarrow{f_A} A \xrightarrow{g_1} B \to 0$, where f_A is a right add T-approximation of A and $g_1 = \operatorname{coker} f_A$. Finally consider an exact sequence $T_B \xrightarrow{f_B} A \xrightarrow{g_2} C \to 0$, where f_B is a right add T-approximation of B and $g_2 = \operatorname{coker} f_B$. Then the composition $g_0 \circ g_1 \circ g_2$ is T-ghost out of X and therefore $g_0 \circ g_1 \circ g_2 = 0$. Since $g_0 \circ g_1$ is epic, we have $g_3 = 0$ and therefore f_B is epic, i.e. $B \in \mathsf{Fac} T$. If $D = \mathsf{Im} f_A$, then $D \in \mathsf{Fac} T$ and the short exact sequence $0 \to D \to A \to B \to 0$ shows that $A \in \langle \mathsf{Fac} T \rangle_2$. If $C = \mathsf{Im} f_X$, then C in $\mathsf{Fac} T$ and the short exact sequence $0 \to C \to X \to A \to 0$ shows that $X \in \langle \mathsf{Fac} T \rangle \diamond \langle \mathsf{Fac} T \rangle_2 = \langle \mathsf{Fac} T \rangle_3$. Continuing in this way by induction we have the assertion. \square

Remark 1.4. If \mathscr{A} has all set-indexed coproducts, then we denote by Add T the full subcategory of \mathscr{A} consisting of all direct summands of set-indexed coproducts of copies of T. The category Add T is always contravariantly finite in \mathscr{A} . In this case we always have:

 $X \in \langle \mathsf{Fac} \operatorname{\mathsf{Add}} T \rangle_n$ if and only if $\operatorname{\mathsf{Gh}}^n_T(X, -) = 0$

The above observations suggests the following notion which possibly is of some use.

Definition 1.5. The (extension) dimension dim \mathscr{A} of an abelian category \mathscr{A} is defined as follows:

 $\dim \mathscr{A} := \min\{n \ge 0 \mid \exists T \in \mathscr{A} : \mathscr{A} = \langle \mathsf{add} T \rangle_{n+1} \}$

Example 1.6. Let Λ be an Artin algebra. The Loewy length of Λ is denoted by $\ell\ell\Lambda$.

- (i) Λ is representation finite $\Leftrightarrow \dim \mathsf{mod} \Lambda = 0$.
- (ii) dim mod- $\Lambda \leq \ell \ell \Lambda 1$.
 - Indeed we have $\operatorname{\mathsf{mod}}\nolimits \Lambda = \langle \Lambda / \mathbf{r} \rangle_{\ell \ell \Lambda}$.

Corollary 1.7. Let \mathscr{A} be an abelian category and T an object of \mathscr{A} .

- (i) If add T is contravariantly finite in \mathscr{A} , then: $\mathscr{A} = \langle \mathsf{Fac} T \rangle_n$ if and only $\mathsf{Gh}^n_T(A, -) = 0$, $\forall A \in \mathscr{A}$.
- (ii) If there exist objects X, A in \mathscr{A} such that $\mathsf{Gh}_T^n(X, A) \neq 0$, then $X \notin \langle \mathsf{Fac} T \rangle_n$. In particular $X \notin \langle T \rangle_n$.
- (iii) If dim $\mathscr{A} = d$ and let $T \in \mathscr{A}$ be such that $\mathscr{A} = \langle T \rangle_{d+1}$. Then $\mathsf{Gh}_T^{d+1}(\mathscr{A}) = 0$.

The Abelian Ghost Lemma 1.3 can be generalized as follows.

Proposition 1.8. Let \mathscr{A} and \mathscr{B} be abelian categories.

(i) Let

 $H_1 \xrightarrow{\alpha_1} H_2 \xrightarrow{\alpha_2} H_3 \longrightarrow \cdots \longrightarrow H_{n-1} \xrightarrow{\alpha_{n-1}} H_n$

be a chain of natural maps between left exact contravariant functors $H_i: \mathscr{A}^{\mathsf{op}} \longrightarrow \mathscr{B}$.

(ii) Let $F_i: \mathscr{C}_i \to \mathscr{A}$ be covariant functors, where \mathscr{C}_i are additive categories, $1 \leq i \leq n-1$.

Assume that $\alpha_i F_i = 0, \forall i, i.e. \ \alpha_i F_i(X_i) = 0, \forall i = 1, 2, \cdots, n-1, \forall X_i \in \mathscr{C}_i.$

Then the composition $\alpha_1 \circ \alpha_2 \circ \cdots \circ \alpha_{n-1}$ vanishes on Filt $(\operatorname{Fac}(\operatorname{Im} F_1), \operatorname{Fac}(\operatorname{Im} F_2), \cdots, \operatorname{Fac}(\operatorname{Im} F_{n-1})) = \operatorname{Fac}(\operatorname{Im} F_1) \diamond \operatorname{Fac}(\operatorname{Im} F_2) \diamond \cdots \diamond \operatorname{Fac}(\operatorname{Im} F_{n-1})$. In particular $\alpha_1 \circ \alpha_2 \circ \cdots \circ \alpha_{n-1}$ vanishes on $\operatorname{Im} F_1 \diamond \operatorname{Im} F_2 \diamond \cdots \diamond \operatorname{Im} F_{n-1}$.

For instance in the above proposition we may choose $\mathscr{B} = \mathscr{A}b$ and $H_i = \mathscr{A}(-, A_i)$, for some objects $A_i \in \mathscr{A}$, and also $F_i : \mathfrak{X}_i \hookrightarrow \mathscr{A}$ to be the inclusions of full subcategories \mathfrak{X}_i of \mathscr{A} .

Corollary 1.9. Let \mathscr{A} be an abelian category and let

$$A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \longrightarrow \cdots \longrightarrow A_{n-1} \xrightarrow{f_{n-1}} A_n$$

be a chain of maps between objects of \mathscr{A} . Let \mathfrak{X}_i be full subcategories of \mathscr{A} , $i = 1, \dots, n-1$, such that $\mathscr{A}(\mathfrak{X}_i, f_i) = 0$, $\forall i$. If $A \in \mathscr{A}$ is such that $\mathscr{A}(A, f_1 \circ f_2 \circ \cdots \circ f_{n-1}) \neq 0$, then $A \notin \mathsf{Filt}(\mathfrak{X}_1, \mathfrak{X}_2, \dots, \mathfrak{X}_n)$.

In particular let \mathfrak{X} be a full subcategory of \mathscr{A} such that $\mathscr{A}(\mathfrak{X}, f_i) = 0$, $\forall i$. If $A \in \mathscr{A}$ is such that $\mathscr{A}(A, \alpha_1 \circ \alpha_2 \circ \cdots \circ \alpha_{n-1}) \neq 0$, then $A \notin \langle \mathfrak{X} \rangle_{n-1}$.

2. A GHOST LEMMA FOR TRIANGULATED CATEGORIES

Let \mathcal{T} be a triangulated category with suspension functor Σ .

For any collections $\mathcal U$ and $\mathcal V$ of objects of $\mathcal T$, we use the following notations:

- (i) $\langle \mathcal{U} \rangle := \mathsf{add} \{ \Sigma^n U \mid n \in \mathbb{Z}, U \in \mathcal{U} \}.$
- (ii) $\mathcal{U} \star \mathcal{V} := \mathsf{add} \{ A \in T \mid \exists \text{ triangle} : U \to A \to V \to \Sigma U, \text{ where } U \in \langle \mathcal{U} \rangle \text{ and } V \in \langle \mathcal{V} \rangle \}.$
- (iii) Inductively we define $\mathcal{U}_1 \star \mathcal{U}_2 \star \cdots \star \mathcal{U}_n$, $\forall n \ge 1$, for subcategories \mathcal{U}_i of \mathcal{T} .
- (iv) For any $\mathcal{U} \subseteq \mathscr{A}$, we set: $\langle \mathcal{U} \rangle_0 = 0$, $\langle \mathcal{U} \rangle_1 = \mathcal{U}$, for $n \ge 2$: $\langle \mathcal{U} \rangle_n := \mathcal{U} \diamond \mathcal{U} \diamond \cdots \diamond \mathcal{U}$ (*n*-factors) and

$$\langle \mathfrak{U} \rangle_{\infty} = \bigcup_{n \ge 0} \langle \mathfrak{U} \rangle_n$$

i.e. $\langle \mathfrak{U} \rangle_2 := \langle \langle \mathfrak{U} \rangle \star \langle \mathfrak{U} \rangle \rangle$ and $\langle \mathfrak{U} \rangle_n := \langle \langle \mathfrak{U} \rangle_{n-1} \star \langle \mathfrak{U} \rangle \rangle$, $\forall n \ge 3$.

The objects of $\langle \mathcal{U} \rangle_n$ are the objects of \mathcal{T} with \mathcal{U} -length at least n. Note that $\langle \mathcal{U} \rangle_{\infty}$ coincides with the thick subcategory of \mathcal{T} generated by \mathcal{U} .

Definition 2.1. Let $T \in \mathcal{T}$. A map $f : A \to B$ in \mathcal{T} is called *T*-ghost if the induced map

$$\operatorname{Hom}_{\mathfrak{T}}(T,\Sigma^n f):\operatorname{Hom}_{\mathfrak{T}}(T,\Sigma^n A)\to\operatorname{Hom}_{\mathfrak{T}}(T,\Sigma^n B)$$

is zero, $\forall n \in \mathbb{Z}$.

We denote by $\mathsf{Gh}_T(A, B)$ the collection of all T-ghost maps between A and B and

$$\mathsf{Gh}_T(\mathfrak{T}) := \bigcup_{A,B\in\mathfrak{T}} \mathsf{Gh}_T(A,B)$$

Clearly $\mathsf{Gh}_T(\mathfrak{T})$ is an ideal of \mathfrak{T} , called the *T*-ghost ideal of \mathfrak{T} . Therefore we may define:

(i) For any object $A \in \mathcal{T}$, the left ideal $\mathsf{Gh}_{\mathcal{T}}(A, -)$ which is the additive subfunctor

$$B \mapsto \operatorname{Gh}_T(,-)(B) = \operatorname{Gh}_T(A,B)$$

of $\operatorname{Hom}_{\mathfrak{T}}(A, -)$.

(ii) The power $\mathsf{Gh}_T^n(A, -)$, $\forall n \ge 1$, which, for any object $B \in \mathfrak{T}$, consists all maps $A \to B$ which can be written as compositions of n T-ghost maps.

From now on we fix an object $T \in \mathcal{T}$.

Lemma 2.2 (Triangulated Ghost Lemma). Let \mathfrak{T} be a triangulated category and let T, X be objects of \mathfrak{T} . (i) If $X \in \langle T \rangle_n$, then $\mathsf{Gh}^n_T(X, -) = 0$. (ii) If ⟨T⟩ is contravariantly finite in 𝔅, then the following are equivalent:
(a) X ∈ ⟨T⟩_n.
(b) Ghⁿ_T(X, -) = 0.

Proof. (i) We use induction on the *T*-length of *X*. If $X \in \langle T \rangle$, then clearly for any object $A \in \mathcal{T}$ any *T*-ghost map $X \to A$ is zero. Assume that X lies in $\langle T \rangle_2$ and let

$$T_0 \xrightarrow{\alpha} X \xrightarrow{\beta} T_1 \xrightarrow{\gamma} \Sigma T_0$$

be a triangle in \mathcal{T} where the T_i lie in $\langle T \rangle$. Let $f_1 : X \to A$ and $f_2 : A \to B$ be *T*-ghost maps. Then the composition $\alpha \circ f_1 : T_0 \to A$ is *T*-ghost and therefore $\alpha \circ f_1 = 0$. Hence there exists a map $\rho : T_1 \to A$ such that $f_1 = \beta \circ \rho$. Then the composition $f_1 \circ f_2 = \beta \circ \rho \circ f_2$ is *T*-ghost, since f_2 is *T*-ghost, and therefore $f_1 \circ f_2 = 0$. This clearly implies that if X lies in $\langle T \rangle_2$, then $\mathsf{Gh}^n_T(X, -) = 0$. Now the assertion follows directly by induction.

(ii) Assume now that $\langle T \rangle$ is contravariantly finite in \mathcal{T} . It suffices to show that (b) implies (a). Let $X \in \mathsf{Gh}_T^n(X,-) = 0$. If n = 1, the assertion is trivial. Assume that n = 2, i.e. $\mathsf{Gh}_T^2(X,-) = 0$. Since $\langle T \rangle$ is contravariantly finite in \mathcal{T} , there are triangles

$$\Omega_T^2 X \xrightarrow{g_1} T_1 \xrightarrow{f_1} \Omega_T X \xrightarrow{h_1} \Sigma \Omega_T^2 A \quad \text{and} \quad \Omega_T X \xrightarrow{g_0} T_0 \xrightarrow{f_0} X \xrightarrow{h_0} \Sigma \Omega_T X$$

Then the maps h_0 and h_1 are T-ghosts and then so is Σh_1 . It follows that the composition $h_0 \circ \Sigma h_1 : X \to \Sigma^2 \Omega_T^2 X$ is zero. Consider the octahedral axiom for the composition $0 = h_0 \circ \Sigma h_1$. Then the cone A of $0 = h_0 \circ \Sigma h_1$ is a direct sum of $\Sigma^2 \Omega_T^2 X$ and ΣX , and there exists a triangle $\Sigma T_0 \to A \to \Sigma^2 T_1 \to \Sigma^2 T_0$. It follows that ΣX , and therefore the object X, is an extension of ΣT_0 and $\Sigma^2 T_1$. Hence X lies in $\langle T \rangle_2$. Then the assertion follows by induction.

Example 2.3. Let Λ be a ring. Typical examples of ghost maps in the derived category $\mathbf{D}(\mathsf{Mod}-\Lambda)$ arise from extensions of modules: elements of $\mathsf{Ext}^n(Y,X)$ give rise to maps in $\mathsf{Gh}^n_\Lambda(Y,\Sigma^nX)$. Indeed Let if $X \to A \to Y$ is an element of $\mathsf{Ext}^1_\Lambda(Y,X)$. Then the map $Y \to \Sigma X$ in the derived category is Λ -ghost. In fact we have $\mathsf{Ext}^1_\Lambda(Y,X) \cong \mathsf{Gh}_\Lambda(Y,\Sigma X)$. If $X \to A \to B \to Y$ is an element of $\mathsf{Ext}^2_\Lambda(Y,X)$ and $Z = \mathsf{Im}(A \to B)$, then in the derived category we have Λ -ghost maps $Y \to \Sigma Z$ and $Z \to \Sigma X$. Hence we have a ghost map $Y \to \Sigma^2 X = Y \to \Sigma Z \to \Sigma^2 X$ which lies in $\mathsf{Gh}^n_\Lambda(Y,\Sigma^2 X)$.

Example 2.4. Let \mathscr{A} be an abelian category with enough projectives. For simplicity we assume that \mathscr{A} admits a projective generator P. Then for any object $A \in \mathscr{A}$ the following are equivalent:

- (i) $\mathsf{Gh}_{P}^{n+1}(A, -) = 0.$
- (ii) $\operatorname{pd} A \leq n$.
- (iii) $A \in \langle P \rangle_{n+1}$.

In this example we denote the suspension in $\mathbf{D}^{b}(\mathscr{A})$ be [1]. Let $\cdots \to P^{2} \to P^{1} \to P^{0} \to A \to 0$ be a projective resolution of A. It is build from extensions:

$$\Omega(A) \rightarrowtail P^0 \twoheadrightarrow A, \quad \Omega^2 A \rightarrowtail P^1 \twoheadrightarrow \Omega(A), \quad \Omega^3 A \rightarrowtail P^2 \twoheadrightarrow \Omega^2(A), \quad \cdots$$

The above extensions give rise to triangles in $\mathbf{D}^{b}(\mathscr{A})$:

$$\Omega(A) \to P^0 \to A \to \Omega(A)[1], \quad \Omega^2 A \to P^1 \to \Omega(A) \to \Omega^2(A)[1], \quad \Omega^3 A \to P^2 \to \Omega^2(A) \to \Omega^3(A)[1], \quad \cdots \quad (2.1)$$

Clearly the maps $\Omega^n(A) \to \Omega^{n+1}(A)[1]$ are P-ghosts and therefore we have a sequence of P-ghost maps:

$$A \to \Omega(A)[1] \to \Omega^2(A)[2] \to \Omega^3(A)[3] \to \cdots$$

(i) \Rightarrow (ii) Assume that $\operatorname{Gh}_{P}^{n+1}(A, -) = 0$. For n = 0, the assertion is trivial, since then the *P*-ghost map $A \to \Omega(A)[1]$ is zero hence the triangle $\Omega(A) \to P^0 \to A \to \Omega(A)[1]$ splits and therefore *A* is projective. If n = 1, then the composition $A \to \Omega(A)[1] \to \Omega^2(A)[2]$ of *P*-ghost maps is zero. This implies, from the first triangle in (2.1), that the map $\Omega(A)[1] \to \Omega^2(A)[2]$ factors through the map $\Omega(A)[1] \to P^0[1]$ say via a map $P^0[1] \to \Omega^2(A)[2]$. However this map corresponds to an extension in $\operatorname{Ext}^1(P^0, \Omega^2(A)) = 0$. Hence the map $\Omega(A)[1] \to \Omega^2(A)[2]$, or equivalently the map $\Omega(A) \to \Omega^2(A)[1]$, is zero. It follows that the second triangle in (2.1) splits and therefore $\Omega(A)$ is projective as a direct summand of P^1 , i.e. $\operatorname{pd} A \leq 1$. Continuing in this way, we deduce that if $\operatorname{Gh}_P^{n+1}(A, -) = 0$, then $\operatorname{pd} A \leq n$.

(ii) \Rightarrow (iii) \Rightarrow (i) Assume that $\operatorname{pd} A \leq n$. If n = 0, then the assertion is clear. If n = 1, then the projective resolution $P^1 \rightarrow P^0 \rightarrow A$ induces a triangle $P^1 \rightarrow P^0 \rightarrow A \rightarrow P^1[1]$ in $\mathbf{D}^b(\mathscr{A})$. Hence $A \in \langle P \rangle_2$. By induction it follows that if $\operatorname{pd} A \leq n$, then $A \in \langle P \rangle_{n+1}$. The implication (iii) \Rightarrow (i) follows from the Ghost Lemma.

It follows that for any $A \in \mathscr{A}$:

$$\mathsf{pd}\,A \ = \ \min\left\{n \ge 0 \,|\, \mathsf{Gh}_P^{n+1}(A, -) = 0\right\} \ = \ \min\left\{n \ge 0 \,|\, A \in \langle P \rangle_{n+1}\right\}$$

Note that the ghost ideal can be very large, even for familiar abelian categories. For instance since $\mathsf{Ext}^{\mathbb{Z}}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z}) \cong \mathbb{R}$, it follows that $\mathsf{Ext}^{\mathbb{I}}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z}) = \mathsf{Gh}_{\mathbb{Z}}(\mathbb{Q},\Sigma\mathbb{Z}) = \mathbb{R}$. However in this case $\mathsf{Gh}^{\mathbb{Z}}_{\mathbb{Z}}(\mathbf{D}(\mathsf{Mod-}\mathbb{Z})) = 0$.

Remark 2.5. Let \mathcal{T} be a triangulated category with all (set-indexed) coproducts. Then for any object T in \mathcal{T} , the full subcategory $\langle T \rangle^{\oplus} := \mathsf{Add}\{\Sigma^n T \mid n \in \mathbb{Z}\}$ is contravariantly finite in \mathfrak{T} .

In this case $\langle T \rangle_n^{\oplus}$ consists of the direct summands of objects obtained by *n*-fold extensions of arbitrary direct sums of shifts of copies of T. The triangulated ghost lemma in this setting reads as follows:

Infinite Triangulated Ghost Lemma: Let T be a triangulated category with all set-indexed coproducts. $\text{Then for any object } X \in \mathfrak{T} \text{:} \quad X \in \langle T \rangle^{\oplus}_n \ \Leftrightarrow \ \mathsf{Gh}^n_T(X,-) = 0.$

Moreover let $\mathfrak{X}_1, \mathfrak{X}_2, \dots, \mathfrak{X}_{n-1}$ be full subcategories of \mathfrak{T} , each closed under shifts and consisting of compact objects. If A is a compact object, not lying in $\mathfrak{X}_1 \star \mathfrak{X}_2 \star \cdots \star \mathfrak{X}_{n-1}$, then there exists a chain $A \xrightarrow{\alpha_1} X_1 \to \cdots \to X_n$ $X_{n-1} \xrightarrow{\alpha_n} X_n$ of maps between objects in \mathfrak{T} , such that each $\mathfrak{T}(\mathfrak{X}_i, \alpha_i) = 0$ and the composition $\alpha_1 \circ \alpha_2 \circ \cdots \circ \alpha_n \neq 0$.

In particular if X and T are compact, then: $X \in \langle T \rangle_n \iff \mathsf{Gh}^n_T(X, -) = 0.$

Corollary 2.6. Let T be an object of \mathfrak{T} such that $\langle T \rangle$ is contravariantly finite in \mathfrak{T} . Then the following are equivalent:

(i) There exists d≥ 0: T = ⟨T⟩_{d+1} (and d is minimal with this property).
(ii) There exists d≥ 0: Gh^{d+1}_d(T) = 0 (and d is minimal with this property).

Definition 2.7. The **dimension** dim T of T is defined as follows:

$$\dim \mathfrak{T} := \min \left\{ n \ge 0 \mid \exists T \in \mathfrak{T} : \langle T \rangle_{n+1} = \mathfrak{T} \right\}$$

It follows that if dim $\mathcal{T} = d$ and $T \in \mathcal{T}$ is such that $\mathcal{T} = \langle T \rangle_n$, then $\mathsf{Gh}_T^{d+1}(\mathcal{T}) = 0$.

Corollary 2.8. Let T be an object of \mathfrak{T} and let $\mathsf{Thick}(T)$ be the thick subcategory of \mathfrak{T} generated by T. Then for any $X \in \mathsf{Thick}(T)$, the left ideal $\mathsf{Gh}_T(X,-)$ is nilpotent. In particular if T is a classical generator of \mathfrak{T} , then the left ideal $\operatorname{Gh}_T(X, -)$ is nilpotent for any object $X \in \mathfrak{T}$.

Recall that an object T of T is a generator of T if $\mathcal{T}(T, \Sigma^n A) = 0$ implies that A = 0. The object T is called a classical generator of \mathcal{T} if the thick subcategory generated by T coincides with \mathcal{T} , i.e. $\mathcal{T} = \langle T \rangle_{\infty}$.

Remark 2.9. Let T be an object of \mathcal{T} . It is easy to see that the following are equivalent:

- (i) T is a generator of \mathcal{T} .
- (ii) The ideal of T-ghost maps is contained in the Jacobson radical $\mathsf{Rad}(\mathcal{T})$ of \mathcal{T} .

Let T be a generator of \mathfrak{T} and assume that $\langle T \rangle$ is contravariantly finite in \mathfrak{T} . If any object of \mathfrak{T} has semiprimary endomorphism ring, then by using the ghost Lemma it is easy to see that T is a classical generator.

Example 2.10. (The original Ghost Lemma, see [J.L. KELLY: Chain maps inducing zero homology maps, Proc. Camb. Phil. Soc. 61 (1965), 847-854.])

Let Λ be a ring and let $T = \Lambda$ considered, as a complex concentrated in degree zero, in the homotopy category $\mathbf{K}(\mathsf{Mod}-\Lambda)$. Then the ideal of Λ -ghosts are the maps of complexes $f^{\bullet}: A^{\bullet} \to B^{\bullet}$ such that its cohomology $\mathsf{H}^n(f^{\bullet}): \mathsf{H}^n(A^{\bullet}) \to \mathsf{H}^n(B^{\bullet})$ is the zero map, $\forall n \in \mathbb{Z}$. Kelly's original result says that if X^{\bullet} is a complex of projectives such that for each $k \in \mathbb{Z}$, the modules $\mathsf{B}^k(X^{\bullet})$ and $\mathsf{H}^k(X^{\bullet})$ have projective dimension less than n. Then any composition $X^{\bullet} \to A_1^{\bullet} \to \cdots \to A_n^{\bullet}$ of maps in $\mathbf{K}(\mathsf{Mod}-\Lambda)$, each inducing the zero map in cohomology, is zero. This follows from the fact that such a complex A^{\bullet} is, in the homotopy category, an n-fold extension of the category of complexes of projectives with zero differential. Of course the last category equals $\langle \Lambda \rangle^{\oplus} = \langle \mathsf{Add} \Lambda \rangle \subseteq \mathbf{K}(\mathsf{Mod} \cdot \Lambda)$. Then apply the Infinite Triangulated Ghost Lemma above. On the other hand, by Corollaty 2.6, for any perfect complex $A^{\bullet} \in \mathbf{K}^{b}(\mathcal{P}_{\Lambda})$, i.e. a bounded complex with finitely generated projective components, the ideal $\mathsf{Gh}_{\Lambda}(A^{\bullet}, -)$ is nilpotent. The above trivially hold true for any abelian category with enough projectives. This is the case originally considered by Kelly.

Example 2.11. Let \mathscr{A} be an abelian category with exact coproducts and enough projectives. Let P be a projective generator of \mathscr{A} . For any complex $X^{\bullet} \in \mathbf{D}(\mathscr{A})$, define its *P*-ghost dimension $\mathsf{gh.dim}_{P}X^{\bullet}$, resp. *P*extension dimension ext.dim_PX[•], to be the nilpotency index of the left ideal of P-ghost maps out of X[•] (or ∞ if the ideal is not nilpotent), resp. the minimum $n \ge 0$ such that X^{\bullet} lies in $\langle P \rangle_{n+1}^{\oplus}$ ((or ∞) if no such n exists). Then for the associated P-ghost dimension $\operatorname{\mathsf{gh.dim}}_P\mathscr{A}$ and P-extension dimension $\operatorname{\mathsf{ext.dim}}_P\mathscr{A}$ of \mathscr{A} we have: gl. dim $\mathscr{A} = \mathsf{gh.dim}_P \mathscr{A} = \mathsf{ext.dim}_P \mathscr{A}$.

We denote by $\hat{\mathcal{U}} = \mathsf{Sub} \mathsf{Fac}(\mathcal{U})$ the full subcategory of subquotients of \mathcal{U} . Note that $\hat{\mathcal{U}} = \mathsf{Sub} \mathsf{Fac}(\mathcal{U}) = \mathsf{Fac} \mathsf{Sub}(\mathcal{U})$, and $\hat{\mathcal{U}}$ is an exact abelian subcategory of \mathscr{A} .

The following is a triangulated analogue of Proposition 1.8.

Proposition 2.12. Let \mathcal{T} be a triangulated category and let

(i)

$$H_1 \xrightarrow{\alpha_1} H_2 \xrightarrow{\alpha_2} H_3 \longrightarrow \cdots \longrightarrow H_{n-1} \xrightarrow{\alpha_{n-1}} H_n$$
 (*)

be a chain of natural maps between cohomological functors $H_i: \mathbb{T}^{op} \longrightarrow \mathscr{B}$, where \mathscr{B} is abelian.

(ii) $F_1, F_2, \dots, F_{n-1} : \mathscr{C} \to \mathfrak{T}$ be covariant functors, where \mathscr{C} is any additive category.

Assume that $\alpha_i F_i = 0$, $\forall i$. If \mathfrak{X}_i denotes the closure of each full subcategory $\operatorname{Im} F_i$ under the suspension functor, then the composition $\alpha_1 \circ \alpha_2 \circ \cdots \circ \alpha_{n-1}$ vanishes on $\mathfrak{X}_1 \star \mathfrak{X}_2 \star \cdots \star \mathfrak{X}_{n-1}$.

Proof. (sketch) Let $\mathscr{A}(\mathfrak{T})$ be the category of coherent functors $\mathfrak{T}^{\mathsf{op}} \to \mathscr{A}b$. It is well-known that $\mathscr{A}(\mathfrak{T})$ is a Frobenius abelian category and the Yoneda embedding $\mathsf{Y}: \mathfrak{T} \hookrightarrow \mathscr{A}(\mathfrak{T}), A \to \mathfrak{T}(-, A)$ is a homomological functor which is universal in the following sense: any cohomological functor $H: \mathfrak{T} \to \mathscr{B}$ to an abelian category \mathscr{B} admits a unique exact extension $H^*: \mathscr{A}(\mathfrak{T}) \to \mathscr{B}$ such that $H^* \circ \mathsf{Y} = H$. It follows that the chain of cohomological functors (*) induces a chain of exact functors $\mathscr{A}(\mathfrak{T})^{\mathsf{op}} \to \mathscr{B}$:

$$H_1^* \xrightarrow{\alpha_1^*} H_2^* \xrightarrow{\alpha_2^*} H_3^* \longrightarrow \cdots \longrightarrow H_{n-1}^* \xrightarrow{\alpha_{n-1}^*} H_n^*$$
(**)

Then the assertion follows from the Abelian Ghost Lemma stated in Proposition 1.8 and the following three observations:

1: The composition $\alpha_1^* \circ \alpha_2^* \circ \cdots \circ \alpha_{n-1}^*$ vanishes on $\widehat{Y(\mathfrak{X}_1)} \diamond \widehat{Y(\mathfrak{X}_2)} \diamond \cdots \diamond \widehat{Y(\mathfrak{X}_{n-1})}$. 2: $Y(\mathfrak{X}_1 \star \mathfrak{X}_2 \star \cdots \star \mathfrak{X}_{n-1}) \subseteq \widehat{Y(\mathfrak{X}_1)} \diamond \widehat{Y(\mathfrak{X}_2)} \diamond \cdots \diamond \widehat{Y(\mathfrak{X}_{n-1})}$. 3: $(\alpha_1^* \circ \alpha_2^* \circ \cdots \circ \alpha_{n-1}^*)|_{Y(\mathfrak{X}_1 \star \mathfrak{X}_2 \star \cdots \star \mathfrak{X}_{n-1})} = (\alpha_1 \circ \alpha_2 \circ \cdots \circ \alpha_{n-1})|_{\mathfrak{X}_1 \star \mathfrak{X}_2 \star \cdots \star \mathfrak{X}_{n-1}}$.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOANNINA, 45110 IOANNINA, GREECE *E-mail address*: abeligia@cc.uoi.gr