Triangulated categories without models

Stefan Schwede

joint work with F. Muro and N. Strickland

Mathematisches Institut, Universität Bonn

May 2, 2008 / Bielefeld

Main result

Let $\mathcal{F}(\mathbb{Z}/4)$ denote the category of finitely generated free modules over $\mathbb{Z}/4$.

Theorem

The category $\mathcal{F}(\mathbb{Z}/4)$ has a unique triangulation with the identity shift functor and such that the triangle

$$\mathbb{Z}/4 \xrightarrow{2} \mathbb{Z}/4 \xrightarrow{2} \mathbb{Z}/4 \xrightarrow{2} \mathbb{Z}/4$$

is exact. The triangulated category $\mathcal{F}(\mathbb{Z}/4)$ is neither algebraic nor topological.

 $\mathbb{Z}/4$ can be replaced by any commutative local ring (R,\mathfrak{m}) with $\mathfrak{m}=(2)\neq 0$ and $\mathfrak{m}^2=0$.

Examples: $W_2(k)$ for k a perfect field k of characteristic 2 or the localization of $\mathbb{Z}/4[t]$ at the prime ideal (2).

Contents

Outline of the talk:

- formally define 'algebraic' and 'topological' triangulated categories and
- show by examples that the inclusions

$$\begin{pmatrix} \text{algebraic} \\ \triangle\text{'ed categories} \end{pmatrix} \subset \begin{pmatrix} \text{topological} \\ \triangle\text{'ed categories} \end{pmatrix} \subset (\triangle\text{'ed categories})$$

are strict:

- the Spanier-Whitehead category SW is topological, but not algebraic
- ▶ the category $\mathcal{F}(\mathbb{Z}/4)$ is neither algebraic nor topological.

Algebraic triangulated categories

Definition

A triangulated category is algebraic if it embeds into the homotopy category $\mathcal{K}(A)$ of an additive category A.

Examples

► The category of *k*-vector spaces, for a field *k*, with identity shift functor and exact triangles

the triangles

- $\triangleright \mathcal{D}(R)$ for a ring R (or dg ring, or dg category)
- \triangleright $\mathcal{D}(\text{quasi-coh. }\mathcal{O}_X\text{-mod})$ for a scheme X
- Stmod(L) for a Frobenius ring L
- ▶ $K_{(p)}$ -local stable homotopy category, p odd prime (Franke)

$n \cdot X/n = 0$ for algebraic T

Notation

- T : triangulated category
- n · X : n-fold multiple of identity morphism of X
- \triangleright X/n: cone of $n \cdot X$, part of distinguished triangle

$$X \xrightarrow{n} X \longrightarrow X/n \longrightarrow X[1]$$

Lemma

If T is algebraic, then $n \cdot X/n = 0$.

Proof.

- ▶ Can assume that T = K(A) for an additive category A.
- For a chain complex X, the object X/n is given by $(X/n)_k = X_k \oplus X_{k-1}$, d(x,y) = (dx + ny, -dy).
- ▶ A nullhomotopy $s: (X/n)_k \longrightarrow (X/n)_{k+1}$ of $n \cdot X/n$ is given by s(x,y) = (0,x).

Topological example: Spanier-Whitehead category

In a general triangulated category, we can have $n \cdot X/n \neq 0$ for suitable X and $n \dots$

Definition

The Spanier-Whitehead category SW has

objects: (X, n) with X finite pointed CW-complex, $n \in \mathbb{Z}$ morphisms:

$$\mathcal{SW}((X, n), (Y, m)) = \operatorname{colim}_{k \to \infty} [\Sigma^{k+n} X, \Sigma^{k+m} Y]$$

[-,-]: pointed homotopy classes

$$\Sigma X = \frac{X \times [0,1]}{X \times \{0,1\} \cup \{*\} \times [0,1]}$$
 reduced suspension

Triangulation of Spanier-Whitehead category

SW is triangulated by:

- ▶ shift: $(X, n)[1] = (X, n + 1) \cong (\Sigma X, n)$
- addition:

Triangulation of Spanier-Whitehead category

exact triangles: mapping cone sequences

$$X \xrightarrow{f} Y \xrightarrow{\text{incl.}} Cone(f) \xrightarrow{proj.} \Sigma X$$

mapping cone

Cone(f) =
$$\frac{X \times [0,1] \cup_{X \times \{1\}} Y}{X \times \{0\} \cup \{x_0\} \times [0,1]}$$

mod-n Moore spectra

Definition

The mod-n Moore spectrum S/n is a cone of multiplication by n on the sphere spectrum $S = (S^0, 0)$ in SW.

More concretely:

$$S/n = (S^1 \cup_n D^2, -1)$$

 $S/2 = (\mathbb{R}P^2, -1)$

Proposition

The morphism $2 \cdot S/2$ is nonzero in SW.

Thus the Spanier-Whitehead category is not algebraic.

Proof of $2 \cdot S/2 \neq 0$

Proof by contradiction (folklore).

- ▶ Suppose $2 \cdot S/2 = 0$. Smash the triangle $S \xrightarrow{2 \cdot} S \rightarrow S/2 \rightarrow S[1]$ with S/2 to obtain a splitting $S/2 \wedge S/2 \cong S/2 \oplus S/2[1]$.
- ▶ Use mod-2 Steenrod operations $Sq^i: H^*(X, \mathbb{F}_2) \longrightarrow H^{*+i}(X, \mathbb{F}_2)$ to show that $S/2 \wedge S/2$ is indecomposable:

Factorization of $2 \cdot S/2$

Addendum

Given a distinguished triangle

$$S \xrightarrow{2\cdot} S \xrightarrow{i} S/2 \xrightarrow{q} S[1]$$

then the morphism $2 \cdot S/2$ factors as the composite

where η is the stable homotopy class of the Hopf map $\eta: S^3 \longrightarrow S^2$.

Topological triangulated categories

Definition

A triangulated category is topological if it embeds into the homotopy category of a stable model category.

stable model category: pointed Quillen model category with Σ invertible up to homotopy

Examples

- stable homotopy category of spectra
- Spanier-Whitehead category SW
- equivariant, motivic or localized stable homotopy category
- modules over a ring spectrum
- all algebraic triangulated categories are also topological

The 'exotic' triangulated category

 $\mathcal{F}(\mathbb{Z}/4)$: finitely generated free modules over $\mathbb{Z}/4$

Theorem

The category $\mathcal{F}(\mathbb{Z}/4)$ has a unique triangulation with the identity shift functor and such that the triangle

$$\mathbb{Z}/4 \ \stackrel{2}{\longrightarrow} \ \mathbb{Z}/4 \ \stackrel{2}{\longrightarrow} \ \mathbb{Z}/4 \ \stackrel{2}{\longrightarrow} \ \mathbb{Z}/4$$

is exact. The triangulated category $\mathcal{F}(\mathbb{Z}/4)$ is neither algebraic nor topological.

Exact triangles in $\mathcal{F}(\mathbb{Z}/4)$ allow an intrinsic characterization:

[skip characterization]

Intrinsic characterization of exact triangles

(f,g,h) is an exact triangle in $\mathcal{F}(\mathbb{Z}/4)$ \iff

Here $\sigma: H_*(2\triangle) \longrightarrow H_{*-1}(2\triangle)$ is the boundary homomorphism of the short exact sequence of $\mathbb{Z}/3$ -graded chain complexes

$$0 \rightarrow (2\triangle) \hookrightarrow (\triangle) \stackrel{2}{\rightarrow} (2\triangle) \rightarrow 0$$

where $(2\triangle)$ is the chain complex

$\mathcal{F}(\mathbb{Z}/4)$ is triangulated

The proof that the category $\mathcal{F}(\mathbb{Z}/4)$ is triangulated as above is based on the complete control over the category $\mathcal{F}(\mathbb{Z}/4)$: up to isomorphism, every $f \colon A \longrightarrow B$ in $\mathcal{F}(\mathbb{Z}/4)$ is 'diagonal'

$$f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} : A = W \oplus X \oplus Y \longrightarrow W \oplus X \oplus Z = B.$$

Then f is extended to an exact triangle by the direct sum of

$$X \xrightarrow{2} X \xrightarrow{2} X \xrightarrow{2} X$$

and the contractible triangle

$$W \oplus Y \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}} W \oplus Z \xrightarrow{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}} Y \oplus Z \xrightarrow{\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}} W \oplus Y.$$

Exotic objects

Definition

An object E is exotic if there exists an exact triangle

$$E \xrightarrow{2} E \xrightarrow{2} E \longrightarrow E[1]$$

for some morphism $E \longrightarrow E[1]$.

Remarks

- ► The class of exotic objects is closed under isomorphism, (de-)suspension and is preserved by exact functors.
- ▶ Every object of the triangulated category $\mathcal{F}(\mathbb{Z}/4)$ is exotic.
- ▶ The integer 2 is special: an exact triangle

$$E \xrightarrow{n} E \xrightarrow{n} E \longrightarrow E[1]$$

with $E \neq 0$ forces $n \equiv 2 \pmod{4}$ and $4 \cdot 1_E = 0$.

Hopfian objects

Definition

An object A is hopfian if it admits a Hopf map, i.e., a morphism $\eta: A[1] \longrightarrow A$ which satisfies $2\eta=0$ and such that for some (hence any) exact triangle

$$A \xrightarrow{2} A \xrightarrow{i} C \xrightarrow{q} A[1]$$

we have $i \circ \eta \circ q = 2 \cdot 1_C$.

Remark

The class of hopfian objects is closed under isomorphism, (de-)suspension and preserved by exact functors.

Proposition

Every object of a topological triangulated category is hopfian.

Proof.

In the 'universal example', the sphere spectrum in SW, the class of the Hopf map $\eta: S^3 \longrightarrow S^2$ is a Hopf map.

Exotic versus hopfian objects

Hopfian and exotic objects are orthogonal:

Proposition

If E is exotic and A a hopfian object, then the morphism groups $\mathcal{T}(E,A)$ and $\mathcal{T}(A,E)$ are trivial. Thus every exotic and hopfian object is a zero object.

Corollary

Every exact functor from $\mathcal{F}(\mathbb{Z}/4)$ to a topological triangulated category is trivial. Every exact functor from a topological triangulated category to $\mathcal{F}(\mathbb{Z}/4)$ is trivial.

In particular, the triangulated category $\mathcal{F}(\mathbb{Z}/4)$ has no model.

Summary

- Triangulated categories which 'arise in nature' are topological.
- ▶ In topological triangulated categories, all objects admit Hopf maps.
- ▶ The category $\mathcal{F}(\mathbb{Z}/4)$ has an exotic triangulation.
- ▶ 'Exotic' and 'hopfian' are orthogonal properties, so $\mathcal{F}(\mathbb{Z}/4)$ has no topological model.
- None of this is difficult to prove.

Open questions

Find a p-local triangulated category without a model, for p an odd prime.

Are there rational triangulated categories without model?

Reference:

F. Muro, S. Schwede, N. Strickland, *Triangulated categories without models*. Invent. Math. **170** (2007), 231-241.