TORSIONLESS MODULES

APOSTOLOS BELIGIANNIS

1. The category of torsionless modules

Let Λ be an Artin algebra and mod- Λ be the category of finitely generated right Λ -modules. We denote by <u>mod- Λ </u> the stable category of mod- Λ modulo projectives and by <u>mod- Λ </u> the stable category of mod- Λ modulo injectives. We denote by \mathcal{P}_{Λ} , resp. \mathcal{I}_{Λ} , the category of finitely generated projective, resp. injective, Λ -modules.

Let $\mathsf{Sub}(\Lambda)$ be the full subcategory of mod - Λ consisting of the submodules of the projectives and let $\mathsf{Fac}(\mathrm{D}\Lambda)$ be the full subcategory of mod - Λ consisting of the factors of the injectives.

Observation 1: There are adjoint pairs

 $(\Sigma_{\mathbf{P}}, \Omega) \ : \ \underline{\mathsf{mod}}\text{-}\Lambda \ \leftrightarrows \ \underline{\mathsf{mod}}\text{-}\Lambda \ \ \ \ \underline{\mathsf{mod}}\text{-}\Lambda \ \ \ \ \underline{\mathsf{mod}}\text{-}\Lambda \ \ \ \underline{\mathsf{mod}}\text{-}\Lambda$

where Ω is the usual syzygy functor and Σ is the usual cosyzygy functor.

Indeed $\Sigma_{\mathbf{P}}(\underline{A})$ and $\Omega_{\mathbf{I}}(\overline{A})$ are defined by the exact sequences:

$$A \xrightarrow{f^{*}} P_0^A \to \Sigma_{\mathbf{P}}(A) \to 0 \quad \text{and} \quad 0 \to \Omega_{\mathbf{I}}(A) \to I_A^0 \xrightarrow{f_A} A$$

where f^A is the minimal left \mathcal{P}_{Λ} -approximation of A and f_A is the minimal right \mathcal{I}_{Λ} -approximation of A. The above approximations exist since \mathcal{P}_{Λ} and \mathcal{I}_{Λ} are of finite type and can be described explicitly.

Indeed an easy computation shows that

$$\Sigma_{\mathbf{P}} = \mathrm{Tr}\Omega\mathrm{Tr}$$
 and $\Omega_{\mathbf{I}} = \mathrm{DTr}\Omega\mathrm{Tr}\mathrm{D}$

where D is the usual duality.

Observation 2: Clearly $\mathsf{Im}(f^A) = \Omega \Sigma_{\mathbf{P}}(A)$ and $\mathsf{Im}(f_A) = \Sigma \Omega_{\mathbf{I}}(A)$. Moreover:

(i) $\Omega(\underline{\mathsf{mod}}-\Lambda)$ is a reflective subcategory of $\underline{\mathsf{mod}}-\Lambda$ with reflection the map $\underline{A} \to \Omega \Sigma_{\mathbf{P}}(\underline{A})$. In particular \underline{A} lies in $\Omega(\underline{\mathsf{mod}}-\Lambda)$ iff the map $\underline{A} \to \Omega \Sigma_{\mathbf{P}}(\underline{A})$ is invertible.

Note that we may choose the map $A \to \Omega \Sigma_{\mathbf{P}}(A)$ to be epic in mod- Λ and then the map

$$A \twoheadrightarrow \Omega \Sigma_{\mathbf{P}}(A)$$

is a left $\Omega(\mathsf{mod}-\Lambda)$ -approximation of A.

(ii) $\Sigma(\overline{\mathsf{mod}}-\Lambda)$ is a coreflective subcategory of $\overline{\mathsf{mod}}-\Lambda$ with coreflection the map $\Sigma\Omega_{\mathbf{I}}(\overline{A}) \to \overline{A}$. In particular \overline{A} lies in $\Sigma(\overline{\mathsf{mod}}-\Lambda)$ iff the map $\Sigma\Omega_{\mathbf{I}}(\overline{A}) \to \overline{A}$ is invertible.

Note that we may choose the map $\Sigma\Omega_{\mathbf{I}}(A) \to A$ to be monic in mod- Λ and then the map

$$\Sigma\Omega_{\mathbf{I}}(A) \ \rightarrowtail \ A \tag{1.1}$$

is a right $\Sigma(\mathsf{mod}-\Lambda)$ -approximation of A.

Observation 3: The functors and $\Omega \text{Tr} : \underline{\mathsf{mod}} \cdot \Lambda \to \underline{\mathsf{mod}} \cdot \Lambda^{\mathsf{op}}$ and $\Omega \text{Tr} : \underline{\mathsf{mod}} \cdot \Lambda^{\mathsf{op}} \to \underline{\mathsf{mod}} \cdot \Lambda^{\mathsf{op}}$ induce a duality:

$$\Omega \mathrm{Tr} : \Omega(\mathsf{mod}\text{-}\Lambda)^{\mathsf{op}} \xrightarrow{\approx} \Omega(\mathsf{mod}\text{-}\Lambda^{\mathsf{op}})$$

with quasi-inverse the functor $\Omega \text{Tr} : \Omega(\underline{\text{mod}} \cdot \Lambda^{\text{op}})^{\text{op}} \to \Omega(\underline{\text{mod}} \cdot \Lambda)$. Indeed this follows from **Observation 2**(i):

<u>A</u> lies in $\Omega(\underline{\mathsf{mod}} - \Lambda)$ or $\Omega(\underline{\mathsf{mod}} - \Lambda^{\mathsf{op}})$ iff the map $\underline{A} \to \Omega \Sigma_{\mathbf{P}}(\underline{A})$ is invertible iff the map $\underline{A} \to \Omega \mathrm{Tr}\Omega \mathrm{Tr}(\underline{A})$ is invertible.

The duality Ω Tr is the functor η constructed in [1].

Observation 4: Since clearly $\underline{\mathsf{Sub}}(\Lambda) = \Omega(\underline{\mathsf{mod}} \cdot \Lambda)$ and $\overline{\mathsf{Fac}}(D(\Lambda)) = \Sigma(\overline{\mathsf{mod}} \cdot \Lambda)$, composing the above duality with D, we obtain an equivalence:

$$D\Omega Tr : \operatorname{Sub}(\Lambda) \xrightarrow{\approx} \operatorname{Fac}(D(\Lambda))$$

with quasi-inverse the functor ΩTrD .

Let A be in mod-A and consider the following exact sequences

$$0 \longrightarrow A \longrightarrow I \longrightarrow \Sigma(A) \longrightarrow 0 \text{ and } 0 \longrightarrow \Omega(I) \longrightarrow P \longrightarrow I \longrightarrow 0$$

where $A \to I$ is the injective envelope of A and $P \to I$ is the projective cover of I. The above exact sequences induce the following exact sequence:

 $0 \ \longrightarrow \ \Omega(I) \ \longrightarrow \Omega\Sigma(A) \ \longrightarrow \ A \ \longrightarrow \ 0$

Date: April 14, 2008.

and it is easy to see that the epimorphism

$$\Omega\Sigma(A) \twoheadrightarrow A$$

is a right $\Omega(\mathsf{mod}-\Lambda) = \mathsf{Sub}(\Lambda)$ -approximation of A.

Now consider the full subcategory

$$\mathsf{Sub}(\Lambda) \oplus \mathsf{Fac}(\mathsf{D}(\Lambda)) := \mathsf{add} \{ X \oplus Y \in \mathsf{mod}\text{-}\Lambda \mid X \in \mathsf{Sub}(\Lambda), Y \in \mathsf{Fac}(\mathsf{D}(\Lambda) \} \}$$

which is a generating and cogenerating subcategory of $\text{mod-}\Lambda$. Also consider the pull-back of the maps (1.1) and (1.2):

$$\begin{array}{cccc} 0 & \longrightarrow & \Omega(I) & \longrightarrow & X & \longrightarrow & \Sigma\Omega_{\mathbf{I}}(A) & \longrightarrow & 0 \\ & & & & & \downarrow & & \downarrow \\ 0 & \longrightarrow & \Omega(I) & \longrightarrow & \Omega\Sigma(A) & \longrightarrow & A & \longrightarrow & 0 \end{array}$$

Then the map $X \to \Omega \Sigma(A)$ is a monomorphism and there is induced a short exact sequence

$$0 \longrightarrow X \longrightarrow \Omega\Sigma(A) \oplus \Sigma\Omega_{\mathbf{I}}(A) \longrightarrow A \longrightarrow 0$$
(1.3)

By using the above pull-back diagram it is easy to see that the map $\Omega\Sigma(A) \oplus \Sigma\Omega_{\mathbf{I}}(A) \longrightarrow A$ is a right $\mathsf{Sub}(\Lambda) \oplus \mathsf{Fac}(\mathsf{D}(\Lambda))$ -approximation of A and $X \in \mathsf{Sub}(\Lambda) \subseteq \mathsf{Sub}(\Lambda) \oplus \mathsf{Fac}(\mathsf{D}(\Lambda))$.

It follows that $\mathsf{Sub}(\Lambda) \oplus \mathsf{Fac}(\mathsf{D}(\Lambda))$ is contravariantly finite in mod- Λ . This implies that the category

$\mathsf{mod}\text{-}[\mathsf{Sub}(\Lambda) \oplus \mathsf{Fac}(\mathrm{D}(\Lambda))]$

of coherent functors $[\mathsf{Sub}(\Lambda) \oplus \mathsf{Fac}(\mathsf{D}(\Lambda))]^{\mathsf{op}} \longrightarrow \mathscr{A}b$ is abelian. Consider the restricted Yoneda functor

$$\mathsf{Y} : \mathsf{mod}\text{-}\Lambda \longrightarrow \mathsf{mod}\text{-}[\mathsf{Sub}(\Lambda) \oplus \mathsf{Fac}(\mathsf{D}(\Lambda))], \quad \mathsf{Y}(A) = \mathsf{Hom}_{\Lambda}(-,A)|_{\mathsf{Sub}(\Lambda) \oplus \mathsf{Fac}(\mathsf{D}(\Lambda))}$$

Clearly any coherent functor $F : [\mathsf{Sub}(\Lambda) \oplus \mathsf{Fac}(\mathsf{D}(\Lambda))]^{\mathsf{op}} \longrightarrow \mathscr{A}b$ admits a presentation

$$0 \longrightarrow \mathsf{Y}(A) \longrightarrow \mathsf{Y}(X_1) \longrightarrow \mathsf{Y}(X_0) \longrightarrow F \longrightarrow 0$$

where the X_i lie in $\mathsf{Sub}(\Lambda) \oplus \mathsf{Fac}(\mathsf{D}(\Lambda))$. On the other hand (1.3) induces an exact sequence

$$0 \longrightarrow \mathsf{Y}(X) \longrightarrow \mathsf{Y}(\Omega\Sigma(A) \oplus \Sigma\Omega_{\mathbf{I}}(A)) \longrightarrow \mathsf{Y}(A) \longrightarrow 0$$

which implies that $pdY(A) \leq 1$. Putting things together we infer that in general:

gl. dim mod-[Sub(Λ) \oplus Fac(D(Λ))] ≤ 3

Of course if $\mathsf{Sub}(\Lambda)$ is of finite type, i.e. $\mathsf{Sub}(\Lambda) = \mathsf{add} X$ for some module X, or equivalently $\mathsf{Fac}(\mathsf{D}(\Lambda))$ is of finite type, i.e. $\mathsf{Fac}(\mathsf{D}(\Lambda)) = \mathsf{add} Y$ for some module Y, where we may choose $Y = \Sigma \mathsf{DTr} X$, then $\mathsf{Sub}(\Lambda) \oplus \mathsf{Fac}(\mathsf{D}(\Lambda)) = \mathsf{add}(X \oplus Y)$, the module $X \oplus Y$ is a generator-cogenerator and mod - $[\mathsf{Sub}(\Lambda) \oplus \mathsf{Fac}(\mathsf{D}(\Lambda))] \approx \mathsf{mod}$ - $\mathsf{End}_{\Lambda}(X \oplus Y)$.

It follows that gl. dim $\operatorname{End}_{\Lambda}(X \oplus Y) \leq 3$ and then: rep.dim $\Lambda \leq 3$.

2. Problems

Recall that for an Artin algebra Λ , the full subcategory $\mathsf{CM}(\Lambda)$ of Cohen-Macaulay modules, consists of all modules A such that $A \cong \mathsf{Im}(P^{-1} \to P^0)$ for an infinite acyclic complex $\cdots \to P^{-1} \to P^0 \to P^1 \to \cdots$ of finitely generated projectives which remains exact after the application of the functor $\mathsf{Hom}_{\Lambda}(-\Lambda)$. An Artin algebra Λ is said to be of *finite Cohen-Macaulay type*, if $\mathsf{CM}(\Lambda)$ is of finite type.

Recall that Λ is called *Gorenstein*, if $id \Lambda_{\Lambda} = id_{\Lambda}\Lambda = d < \infty$. For such algebras we have $\Omega^{d}(\mathsf{mod}-\Lambda) = \mathsf{CM}(\Lambda)$. If Λ is of finite global dimension d, then Λ is Gorenstein and $\Omega^{d}(\mathsf{mod}-\Lambda) = \mathsf{CM}(\mathsf{mod}-\Lambda) = \mathcal{P}_{\Lambda}$. If Λ is self-injective, then Λ is Gorenstein and $\Omega^{0}(\mathsf{mod}-\Lambda) = \mathsf{CM}(\mathsf{mod}-\Lambda) = \mathsf{CM}(\mathsf{mod}-\Lambda) = \mathsf{CM}(\mathsf{mod}-\Lambda)$.

Remark 2.1. If Λ is a 1-Gorenstein algebra of finite Cohen-Macaulay type, then rep.dim $\Lambda \leq 3$ since in this case $CM(\Lambda) = Sub(\Lambda)$. Now the results of [1] suggest to look at the following problems which generalizes the torsionless finite situation.

- (I) If $\Omega^d (\text{mod}-\Lambda)$, for $d \ge 1$, is of finite type, is rep.dim $\Lambda \le d + 2$?
 - If the answer to (\mathbf{I}) is yes, then it would follow that:
 - (i) If gl. dim $\Lambda = d < \infty$, then rep.dim $\Lambda \leq$ gl. dim $\Lambda + 2$.
 - (ii) More generally if Λ is d-Gorenstein of finite Cohen-Macaulay type, then rep.dim $\Lambda \leq d+2$.
- (II) If the category of *d*-torsion-free modules in the sense of Auslander (i.e. modules *A* admitting an axact sequence $0 \rightarrow A \rightarrow P^0 \rightarrow P^1 \rightarrow \cdots \rightarrow P^d$, where the P^i are projective, such that the sequence $\operatorname{Hom}_{\Lambda}(P^d, \Lambda) \rightarrow \cdots \rightarrow \operatorname{Hom}_{\Lambda}(P^1, \Lambda) \rightarrow \operatorname{Hom}_{\Lambda}(P^0, \Lambda) \rightarrow \operatorname{Hom}_{\Lambda}(A, \Lambda) \rightarrow 0$ is exact), is of finite type, is rep.dim $\Lambda \leq d + 2$?

References

[1] C.M. RINGEL, The torsionless modules of an Artin algebra, preprint, (2008).

Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece $E\text{-}mail\ address:\ \texttt{abeligia@cc.uoi.gr}$

(1.2)