http://www.mathematik.uni-bielefeld.de/birep/algzahl/

2.1. Sei d quadratfreie, ganz-rationale Zahl, verschieden von 0,1. Sei $K=\mathbb{Q}[\sqrt{d}]$ und \mathcal{O}_K der Ring der ganzen algebraischen Zahlen in K.

Definiere $N = N_K : K \to \mathbb{Q}$ durch $N(a + b\sqrt{d}) = a^2 - db^2$. Zeige:

- (a) N liefert einen Gruppen-Homomorphismus $K^* \to \mathbb{Q}^*$.
- (b) Ist $\alpha \in \mathcal{O}_K$, so ist $N(\alpha) \in \mathbb{Z}$.
- (c) Gibt es $\alpha \in K$ mit $N(\alpha) \in \mathbb{Z}$, aber $\alpha \notin \mathcal{O}_K$?
 - **2.2.** Sei $K = \mathbb{Q}[\sqrt{-5}]$, also $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$ (warum?).
- (a) Zeige: die Zahl 6 besitzt die folgenden beiden Faktorisierungen

$$g = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

- (b) Die Zahlen 2, 3, $1 + \sqrt{-5}$ und $1 \sqrt{-5}$ sind irreduzibel in \mathcal{O}_K . Hinweis: Verwende die Norm-Abbildung N_K : Jede Faktorisierung von $\alpha \in \mathcal{O}_K$ liefert eine Faktorisierung von $N(\alpha)$ in \mathbb{Z} .
- (c) Folgere: Die genannten Elemente 2, 3, $1 + \sqrt{-5}$ und $1 \sqrt{-5}$ sind zwar irreduzibel, aber keine Primelemente.
- (d) Gesucht sind Elemente $x, y \in \mathcal{O}_K$ mit folgender Eigenschaft: jeder gemeinsame Teiler von x, y ist eine Einheit, es gibt aber keine Elemente $x', y' \in \mathcal{O}_K$ mit xx' + yy' = 1.
- **2.3.** Sei K der gleiche Körper wie in Aufgabe 2.2. Betrachte die folgenden Ideale von $R = \mathcal{O}_K$:

$$I = (3, 4 + \sqrt{-5}), \quad I' = (3, 4 - \sqrt{-5}), \quad J = (7, 4 + \sqrt{-5}), \quad J' = (7, 4 - \sqrt{-5}).$$

Zeige: Diese Ideale sind Primideale und es gilt:

$$II' = (3), \quad JJ' = (7), \quad IJ = (4 + \sqrt{-5}), \quad I'J' = (4 - \sqrt{-5}).$$

2.4. Sei $K=\mathbb{Q}[\sqrt{d}]$ mit d=2,3,5,6,7,10. Gesucht sind jeweils Einheiten α in \mathcal{O}_K mit $\alpha\neq\pm1$.