Symmetrische Polynome mit Koeffizienten in einem kommutativen Ring.

Definition: Ein Polynom $h \in R[T_1, ..., T_n]$ heißt symmetrisch, wenn für jede Permutation π der Menge $\{1, ..., n\}$ die folgende Gleichung gilt:

$$h(T_{\pi(1)}, \dots, T_{\pi(n)}) = h(T_1, \dots, T_n)$$

Das heißt: schreiben wir $h(T_1, \ldots, T_n)$ als Linearkombination der Monome $T_1^{e_1} \cdots T_n^{e_n}$ mit Koeffizienten $c_{e_1, \cdots, e_n} \in R$, so muss gelten:

$$c_{e_1,\dots,e_n} = c_{e_{\pi(1)},\dots,e_{\pi(n)}},$$

für alle Permutationen π .

Satz. Seien $R \subseteq S$ kommutative Ringe, seien $\alpha_1, \ldots, \alpha_n \in S$ und sei $f = \prod_{i=1}^n (X - \alpha_i)$ ein Polynom mit Koeffizienten in R. Sei $h \in R[T_1, \ldots, T_n]$ symmetrisches Polynom in n Variablen mit Koeffizienten in R. Dann ist $h(\alpha_1, \ldots, \alpha_n) \in R$.

Beweis: Dies liegt daran, dass sich jedes symmetrische Polynom in $R[T_1, \ldots, T_n]$ als Polynom in den elementarsymmetrischen Polynomen $\sigma_1, \ldots, \sigma_n$ mit Koeffizienten in R schreiben lässt; dies sind die elementarsymmetrischen Polynome:

$$s_1(T_1, \dots, T_n) = \sum_{i < j} T_i,$$

$$s_2(T_2, \dots, T_n) = \sum_{i < j} T_i T_j$$

$$s_3(T_2, \dots, T_n) = \sum_{i < j < k} T_i T_j T_k$$

$$\vdots$$

$$s_n(T_2, \dots, T_n) = T_1 T_2 \cdots T_n$$

Die Auswertung der elementarsymmetrischen Polynome sind aber bis auf Vorzeichen die Koeffizienten des gegebenen Polynoms, da im Polynomring mit den Variablen T_1, \ldots, T_n, X gilt:

$$\prod_{i=1}^{n} (X - T_i) = X^n + \sum_{i=1}^{n} (-1)^i \sigma_i(T_1, \dots, T_n) X^{n-i}.$$