http://www.mathematik.uni-bielefeld.de/birep/biomath/

Aufgaben 9.

1. In der folgenden Tabelle sind die Sonnen-Aufgänge (A) und Sonnen-Untergänge (U) für Bielefeld am 1. und am 15. eines jeden Monats notiert. Man berechne die mittlere Tageslänge für jeden Monat unter Verwendung der Simpson'schen Formel

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \frac{b-a}{6} \left(f(a) + 4f(\frac{b+a}{2}) + f(b) \right)$$

wobei a und b für die jeweiligen Monatsanfänge stehen; als Monatslänge nehme man jeweils 30 Tage.

Monat	A	U	A	U
Januar	8:27 h	16:24 h	8:21 h	16:43 h
Februar	8:01 h	17:11 h	7:37 h	17:37 h
März	7:08 h	18:02 h	6:38 h	18:26 h
April	6:02 h	18:56 h	5:25 h	19:20 h
Mai	4:57 h	19:42 h	4:33 h	20:04 h
Juni	4:12 h	20:28 h	4:05 h	20:39 h
Juli	4:08 h	20:42 h	4:19 h	20:36 h
August	4:43 h	20:13 h	5:04 h	19:49 h
September	5:30 h	19:14 h	5:52 h	18:42 h
Oktober	6:22 h	18:01 h	6:45 h	17:30 h
November	7:14 h	16.57 h	7:39 h	16:34 h
Dezember	8:01 h	16:19 h	8:19 h	16:13 h

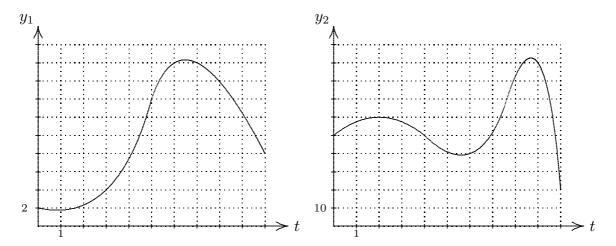
(Sie sollten diese Werte auch mit den von Ihnen für die Aufgabe 2 vom Übungsblatt 3 abgelesenen Werten vergleichen.)

- 2. Mit welcher Geschwindigkeit erreicht ein Turmspringer beim Sprung vom Zehnmeterturm die Wasseroberfläche und wie groß ist seine Durchschnitts-Geschwindigkeit während des Flugs?
- 3. Wir wir wissen, beschreibt die folgende Funktion

$$h(t) = 23 \cdot \sin\left(\frac{2\pi}{360}(t - 81)\right) + 38$$
$$= 23 \cdot \sin(0,0174(t - 81)) + 38.$$

den täglichen Höchststand $h(t)^{\circ}$ der Sonne für Bielefeld. Berechne den Mittelwert der Höchststände im April. (Dabei hat das Jahr 360 Tage, jeder Monat habe 30 Tage).

4. Gegeben seien die beiden folgenden Funktionen f(t), g(t) mit $0 \le t \le 10$ (durch f(t) und g(t) werde zum Beispiel der Bestand zweiter Populationen jeweils zum Zeitpunkt t beschrieben).



Beachte, dass hier die beiden y-Achsen mit y_1, y_2 bezeichnet sind (dies hilft für das Weitere). Um den Zusammenhang zwischen den beiden Entwicklungen besser überschauen zu können, nimmt man sich manchmal ein weiteres Koordinatensystem mit zwei Achsen, die nun y_1, y_2 heißen, und zeichnet dort die Punkte (f(t), g(t)) mit $0 \le t \le 10$ als Kurve ein; zur Verdeutlichung bezeichnet man für geeignete Werte t = i (etwa i = 0, 2, 4, 6, 8, 10) den jeweiligen Punkt (f(i), g(i)) mit i. (Man erhält auf diese Weise eine parametrisierte Kurve in der Ebene.)

