
HOMOLOGICAL CONJECTURES

IN REPRESENTATION THEORY

OF FINITE-DIMENSIONAL ALGEBRAS

DIETER HAPPEL

Let A be a finite-dimensional k-algebra over an algebraically closed field k. We
denote by modA the category of finitely generated left A-modules. For an A-module

AX we denote by pdA X (resp. idA X) the projective (resp. injective) dimension
of X . With D = Homk(−, k) we denote the standard duality with respect to the
ground field. Then AD(AA) is an injective cogenerator for modA. To formulate
some of the homological conjectures we need some more notation. Let AI ⊂ mod A
be the full subcategory containing the finitely generated injective A-modules. Let
Kb(AI) be the homotopy category of bounded complexes over AI. Let Db(A) be
the derived category of bounded complexes over modA. We consider Kb(AI) as a
full subcategory of Db(A).

We define Kb(AI)⊥ = {X ∈ Db(A) | Hom(I, X) = 0 for all I ∈ Kb(AI)}.
The following is the well-known hierarchy of some of the homological conjectures:

(1) Auslander Conjecture: Let AX be an A-module. There exists an integer

n such that if Exti
A(X, Y ) = 0 for i sufficiently large, then ExtiA(X, Y ) = 0

for i ≥ n.
(2) Finitistic Dimension Conjecture: fd(A) = sup{pdA X | pdA X < ∞}

is finite.
(3) Vanishing Conjecture: Kb(AI)⊥ = 0
(4) Nunke Condition: For an A-module AX there is i ≥ 0 such that

Exti
A(AD(AA),A X) 6= 0.

(5) Generalized Nakayama Conjecture: For a simple module AS there is

i ≥ 0 such that Exti
A(AD(AA), AS) 6= 0.

(6) Nakayama Conjecture: If in a minimal injective resolution of AA

0 → AA → I0 → I1 → · · ·

all Ij are projective, then A is a selfinjective algebra.

Note that there is a similar hierarchy of dual conjectures. But it is not clear
that if A satisfies one of the conjectures (1) up to (5), then A satisfies the dual
conjecture.

In the first section we briefly recall the well-known relationship between these
conjectures. In the second section we report about some of the recent investiga-
tions on these conjectures. In the third section we will announce some reduction
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techniques using triangulated categories. For the proofs we refer to the references
given.

1. Elementary remarks

Let us also introduce

fd′(A) = sup{idA X | idA X < ∞}

It is easy to construct examples such that fd(A) 6= fd′(A). In fact consider the
family of algebras An for n ∈ N given as the quiver algebra of

1 2
αn

oo 3
αn−1

oo

αn−2
oo · · · n − 1

α3
oo n

α2
oo α1

ee

bound by α2
1 = α1α2 = · · · = αn−1αn = 0. Then it is easy to see that fd(A) = n−1

and fd′(A) = 0.
Recall the following fact.

Lemma. Let A be a finite-dimensional algebra. Then fd(A) = 0 if and only if

HomA(D(AA), S) 6= 0 for all simple A-modules S.

Proof. In fact, let S be a simple A-module with HomA(D(AA), S) = 0, then
pdA τ−S = 1, where τ− denotes the Auslander-Reiten translation [AR2]. Con-
versely assume that fd(A) > 0. Then there is a module Y with pdA Y = 1, hence
HomA(D(AA), τY ) = 0. Thus there exists a simple S with HomA(D(AA), S) =
0.

Let us recall the relationship of the conjectures mentioned above. It is shown
in [H4] that (2) implies (3) and that (3) implies (4). The implication (4) to (5) is
clear, and that (5) implies (6) was observed in [AR1]. The following relationship
between (1) and (2) is due to Auslander [A2]. For the convenience of the reader we
provide a proof. By Aop we denote the opposite algebra.

Proposition. Let A be a finite-dimensional algebra. If the Auslander conjecture

holds for the enveloping algebra Ae = A ⊗k Aop, then the finitistic dimension con-

jecture holds for A.

Proof. This follows from the following identity for Hochschild-cohomolgy (see for
example [CE], IX, 4.4). Let X, Y be A-modules. Then

Hi(A, Homk(X, Y )) ≃ Exti
A(X, Y )

where Hi(A, AMA) = ExtiAe(A, M) for a bimodule M . Let X be an A-module
with pdA X < ∞ and Y an arbitrary A-module. The identities above show that
then ExtiAe(A, Homk(X, Y )) = 0 for i sufficiently large. By assumption there is

n such that if Exti
Ae(A, Homk(X, Y )) = 0 for i sufficiently large then we know

that Exti
Ae(A, Homk(X, Y )) = 0 for i ≥ n. We infer that pdA X ≤ n. Thus

fd(A) ≤ n.

The following is a most probably incomplete list of references for the early treat-
ment of these and related questions [A1], [AB1], [AB2], [AR1], [B1], [B2], [J1], [J2],
[Na], [Nu], [Mu], [Se], [Sm], [T1], [T2].

There exist also conjectures dealing with infinite-dimensional modules, see [B1],
[ZH4]. We refer to [ZH3] and [ZH4] for some recent interesting developments.
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2. Special classes of algebras

In recent years some of the conjectures above have been verified for particular
classes of finite-dimensional algebras.

2.1 Monomial algebras. The results given here are obtained in [GKK] and [IZ].

Let
−→
∆ be a finite quiver and let k

−→
∆ be the path algebra of

−→
∆ over k. Let I

be an ideal in k
−→
∆ generated by paths of length at least two and containing all

paths of length s for some integer s. Then A = k
−→
∆/I is called a monomial algebra.

It has been shown in [GHZ] that projective resolutions of monomial algebras are
rather well-behaved. This can also be seen by the following remarkable property of
monomial algebras (compare [ZH2] or [ZH4]). If w is a path in

−→
∆ we denote by w̄

the residue class in A. Clearly there are only finitely many w such that w̄ 6= 0. We
denote by M(w) = Aw̄ the A-module generated by w̄.

Proposition. Let A be a monomial algebra and f : P → Q a map between projec-

tive A-modules. Then Ker f =
⊕

w M(w).

The following was shown in [GKK] and [IZ].

Theorem. Let A be a monomial algebra. Then fd(A) < ∞.

In 2.3 we will give some remarks about the proof in [IZ]. For further investiga-
tions on homological properties of monomial algebras we refer to [ZH2].

2.2 Algebras with vanishing conditions. We follow the articles of [GZH] (see
also [FS] and [ZH1]) and [DH].

For a finite-dimensional algebra A we denote by J the Jacobson radical of A.

Theorem. Let A be a finite-dimensional algebra with J3 = 0 then fd(A) < ∞.

The main idea of the proof in [GZH] is that the projective resolutions of modules
of Loewy-length two can be controlled by a linear map which can be shown to be
nilpotent.

Methods of linear algebra are also used in the next result from [DH].

Theorem. Let A be a finite-dimensional algebra such that there is an integer s
with J2s+1 = 0 and A/Js representation-finite. Then the generalized Nakayama

conjecture holds for A.

We point out that variations of the proof can be used to verify the generalized
Nakayama conjecture for other classes of algebras satisfying suitable conditions.
For details we refer to [DH].

2.3 Finiteness conditions. It is trivial that all these conjectures hold for a
representation-finite (i.e. there are only finitely many indecomposable modules up
to isomorphism) algebra. There are some concepts which generalize this.

Let AX be an A-module and let

0 → X → I0
µo
−→ I1

µ1

−→ I2 · · ·

be a minimal injective resolution. Set Ω−iX = Kerµi for 0 ≤ i < ∞. A module AX
is called cosyzygy-finite or ultimately closed (compare [J1]) if {Ω−iX, i ≥ 0} ⊆ addY
for an A-module Y , where addY is the additive category of direct sums of direct
summands of Y . We refer to [CF] for some related notions. The following result is
due to [IZ].
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Proposition. Let A be a finite-dimensional algebra such that A/J is cosyzygy-

finite, then fd(A) < ∞.

Proof. Let S be a simple A-module. Since S is cosyzygy-finite there is an integer
rS such that Ω−rS S ∈ add(

⊕

i<rS
Ω−iS). Choose rS minimal with this property

and let r = max {rS | S simple}. Note that for a simple module S which satisfies
idA S = s < ∞ we have that r > s. If fd(A) = ∞ there is an A-module X with
∞ > pdA X = t + 1 > r. So there is a simple S with Extt+1

A (X, S) 6= 0. But then
idA S = ∞ by the remark above.

Now Extt+1
A (X, S) ≃ Ext1A(X, Ω−tS) shows that there is an indecomposable

direct summand Yt of Ω−tS such that Ext1A(X, Yt) 6= 0. By the choice r there is an
integer m < r such that Yt is a direct summand of Ω−mS. But then Yt is a direct
summand of Ω−sS for infinitely many s. Thus 0 6= Ext1A(X, Ω−sS) ≃ ExtsA(X, S)
for infinitely many s, in contrast to pdA X < ∞.

The proof of the result in 2.1 is then obtained by showing that for a monomial
algebra A the simple modules are cosyzygy-finite (see 2.1).

We point out that a similar proof shows that fd(A) < ∞ if AA is cosyzygy-finite.
It is easy to construct examples where the simples do not have this property. In

fact, let A = k[x, y]/(x2, y2). Then the unique simple A-module S is not cosyzygy-
finite.

A quite different approach was taken in [AR3] (see also [AR4]) while using the
concept of contravariantly finite subcategories as introduced in [AS1] and [AS2].
We recall the relevant notions. Let D be a full subcategory of modA. It is always
assumed to be closed under direct sums, direct summands and isomorphisms. The
subcategory D is called contravariantly finite in modA if every X ∈ mod A has a
right D-approximation, i.e. there is a morphism FX → X with FX ∈ D such that
the induced morphism HomA(D, FX) → HomA(D, X) is surjective for all D ∈ D.

If the A-module X admits a right D-approximation, then X clearly admits a
minimal right D-approximation (i.e. a right approximation of minimal length).

The subcategory D is called resolving if D is closed under extensions, kernels of
surjective maps and contains AA. Note that for a contravariantly finite subcategory
which is resolving every right approximation is surjective [AR3].

Theorem. For a contravariantly finite resolving subcategory D the objects in D
consist of the summands of modules which have a filtration with composition factors

the minimal right-approximations of the simple modules.

An easy but important observation is that the subcategory

P(A) = {AX | pdA X < ∞}

is a resolving subcategory.

Corollary. If P(A) is contravariantly finite, then fd(A) < ∞.

There are examples of algebras A such that P(A) is not contravariantly finite
[ITS].

A different sort of finiteness condition can be obtained as follows. Consider the
following subcategory S of mod A.

S = {AX | pdA X < ∞, each proper submodule U satisfies pdA U = ∞}

Proposition. If the length of the indecomposable modules in S is bounded, then

fd(A) < ∞.
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Proof. We sketch the proof using some ideas from [Sc]. Clearly it is enough to show
that the projective dimension of modules in S is bounded. For a given integer r
we consider the algebraic variety Mr(A) of A-modules of length r. Consider the
subset Pt ⊆ Mr(A) formed by those modules X which satisfy pdA X ≤ t. As
in [Sc] it follows that Pt is an open subset in the Zariski-topology. So we obtain
an ascending chain of open subsets P0 ⊆ P1 ⊆ P2 ⊆ · · · which has to become
stationary, since Mr(A) is finite-dimensional. So there exists tr with pdA X ≤ tr
for all AX ∈ Mr(A).

By assumption there is an integer m such that the length of indecomposable
modules in S is bounded by m. Hence fd(A) ≤ max {rt | 1 ≤ t ≤ m}, which shows
the assertion.

2.4 Bounds for the finitistic dimension. An interesting question is to obtain
good bounds for the finitistic dimension. In the cases discussed above this problem
was solved. Let us list the corresponding results.

Let A be a monomial algebra. Consider the following set W of paths in
−→
∆.

W = {w | w̄ 6= 0, pdA M(w) < ∞}

Let r = max {pdA M(w) | w ∈ W} if W is non-empty and r = −1 if W is empty.
The result in 2.1 clearly has the following application.

Corollary. Let A be a monomial algebra. Then fd(A) ≤ r + 2.

We refer to [ZH4] for a slightly different definition of W to obtain a sharper
bound.

In [GZH] the following bound for fd(A) was found for an algebra A with J3 = 0.
For this let S1, . . . , Sn be a complete set of simple A-modules. We may assume
that there is m such that pdA Si = ∞ for 1 ≤ i ≤ m and that pdA Si < ∞ for
m < i ≤ n. Let d = max {pdA Si | m < i ≤ n}.

Proposition. Let A be a finite-dimensional algebra with vanishing radical cube.

Then fd(A) ≤ 2m + d + 1.

In the situation of 2.3 the theorem gives the following bound for fd(A) if P(A) is
contravariantly finite. Again let S1, . . . , Sn be a complete set of simple A-modules.
Let Fi ∈ P(A) be the minimal right P(A)-approximation of Si.

Corollary. If P(A) is a contravariantly finite subcategory. Then fd(A) ≤ max{pdA Fi |
1 ≤ i ≤ n}.

3. Reduction techniques

The following is a summary of results in [H3], [H4] and [H6].
For the convenience of the reader we recall some of the terminology for complexes

which we have to use.
Let a be an arbitrary additive subcategory of modA.
A complex X• = (X i, di

X)i∈Z over a is a collection of objects X i from a and
morphisms di = di

X : X i → X i+1 such that didi+1 = 0. A complex X• = (X i, di
X)

is bounded below if X i = 0 for all but finitely many i < 0. It is called bounded above

if X i = 0 for all but finitely many i > 0. It is bounded if it is bounded below and
bounded above. It is said to have bounded cohomology if Hi(X•) = 0 for all but
finitely many i ∈ Z , where by definition Hi(X•) = Ker di

X/ Im di−1
X . Denote by

C(a) the category of complexes over a, by C−,b(a) (resp.C+,b(a), resp. Cb(a)) the
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full subcategories of complexes bounded above with bounded cohomology (resp.
bounded below with bounded cohomology, resp. bounded above and below).

If X• = (X i, di
X)i∈Z and Y • = (Y i, di

Y )i∈Z are two complexes, a morphism
f• : X• → Y • is a sequence of morphisms f i : X i → Y i of a such that

di
Xf i+1 = f idi

Y

for all i ∈ Z. The translation functor is defined by

(X•[1])i = X i+1 , (dX[1])
i = −(dX)i+1 .

The mapping cone Cf• of a morphism f• : X• → Y • is the complex

Cf• = ((X•[1])i ⊕ Y i, di
Cf

)

with ’differential’

di
Cf

=

(

−di+1
X f i+1

0 di
Y

)

.

We denote by K−,b(a), K+,b(a) and Kb(a) the homotopy categories of the cate-
gories of complexes introduced above. Note that all these categories are triangulated
categories in the sense of [V].

Recall that two morphisms f•, g• : X• → Y • are called homotopic, if there exist
morphisms hi : X i → Y i−1 such that f i − gi = di

Xhi+1 + hidi−1
Y for all i ∈ Z.

We have denoted by AP (resp. AI) the full subcategory of modA formed by
the projective (resp. injective) A-modules. Then we identify the derived category
Db(A) of bounded complexes over modA with K−,b(AP) or with K+,b(AI). In case
A has finite global dimension this yields the identification of Db(A) with Kb(AP)
or with Kb(AI), since the natural embedding of Kb(AP) into K−,b(AP) is an
equivalence in this case. We identify the derived category D−(A) of complexes
bounded above over modA with K−(AP) and we identify the derived category
D+(A) of complexes bounded below over modA with K+(AI). For a more detailed
analysis of the derived category we refer to [G],[Gr] and [V].

3.1 Auslander-Reiten triangles. In [H1] we introduced the notion of an Auslander-
Reiten triangle in a triangulated category. We first recall the relevant definitions.

Let C be a triangulated category such that HomC(X, Y ) is a finite-dimensional
k-vector space for all X, Y ∈ C and assume that the endomorphism ring of an
indecomposable object is local. This assumption ensures that C is a Krull-Schmidt
category. We denote by X [1] the value of the translation functor on the object X
of C.

A triangle X
u
−→ Y

v
−→ Z

w
−→ X [1] in C is called an Auslander-Reiten triangle if

the following conditions are satisfied:

(AR1) X, Z are indecomposable,
(AR2) w 6= 0,
(AR3) If f : W → Z is not a retraction, then there exists f ′ : W → Y such that

f ′v = f .

We will say that C has Auslander-Reiten triangles if for all indecomposable objects
Z ∈ C there exists a triangle satisfying the conditions above.

Recall that a translation quiver
−→
Γ = (Γ0, Γ1, τ) is given by a (locally finite)

quiver (Γ0, Γ1) (Γ0 denotes the vertex set, Γ1 denotes the set of arrows) together
with an injective map τ : Γ′

0 → Γ0 defined on a subset Γ′
0 ⊆ Γ0 such that for any

z ∈ Γ′
0, and any y ∈ Γ0 the number of arrows from y to z is equal to the number
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of arrows from τz to y. The map τ is called the translation. If Γ′
0 = Γ0 and τ is a

bijection we say that
−→
Γ is a stable translation quiver.

If the triangulated category C has Auslander-Reiten triangles then
−→
Γ (C) has the

structure of a translation quiver (see [H2]).
We refer to [H1] and [H2] for some properties of Auslander-Reiten triangles.

Theorem. Let A be a finite-dimensional k-algebra. Then the following are equiv-

alent.

(i) pdA D(AA) < ∞
(ii) Kb(AP) has Auslander-Reiten triangles.

We recall that the finitistic dimension conjecture implies the following for a
finite-dimensional algebra A (see [AR3] or [H4]).

(∗) idA A < ∞ if pdA D(AA) < ∞.

The theorem and its dual now imply.

Corollary. Let A be a finite dimensional algebra such that pdA D(AA) < ∞. If

the translation τ on
−→
Γ (Kb(AP)) is surjective, then idA A < ∞.

We refer to 3.2 for problems related to (∗).

3.2 Tilting invariance. A module T ∈ mod A is called a (generalized) tilting

module if the following conditions are satisfied:

(i) pdA T < ∞

(ii) Exti
A(T, T ) = 0 for all i > 0

(iii) There is a long exact sequence 0 → AA → T0 → · · · → Tm → 0 with
Tj ∈ addT .

A module AT satisfying the properties (i) and (ii) is called a partial tilting mod-
ule.

We refer to [H1],[H2] and [Mi] for an outline of tilting theory in this case and to
[Ri1], [Ri2] and [Ri3] for the general notion of derived equivalence.

If T is a tilting module and B = EndA T . Then it is known that gl.dimA < ∞
if and only if gl.dimB < ∞. The next result is a generalization of this.

Theorem. Let A be a finite-dimensional algebra and T a tilting module. Let B =
EndA T . Then fd(A) < ∞ if and only if fd(B) < ∞.

We now come back to the property (∗) in 3.1.
If AM is an A-module we may decompose AM = ⊕s

i=1M
ni

i with Mi indecom-
posable, Mi 6≃ Mj for i 6= j and ni > 0. In this case we denote the number s of
non-isomorphic indecomposable direct summands of M by δ(M).

It is easy to see that if AT is a tilting module, then δ(T ) = rkK0(A) = n, where
K0(A) is the Grothendieck group of A.

It is not known that a partial tilting module which satisfies δ(T ) = rkK0(A) = n
is a tilting module, unless pdA T ≤ 1 by a result in [Bo]. It is shown in [RS] that
this holds if A is representation-finite.

Note that (∗) is a special case of this problem.
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3.3 Recollement. Let C, C′ and C′′ be triangulated categories. Following [BBD]
(see also [GV]) a recollement of C relative to C′ and C′′ is given by

C′
i∗

i!

// C

i∗
oo

i!
oo

j!

j∗
// C′′

j!

oo

j∗
oo

such that

(RI) (i∗, i∗), (i!, i
!), (j!, j

!) and (j∗, j∗) are adjoint pairs of exact functors and that
i∗ = i!, j! = j∗

(RII) j∗i∗ = 0
(RIII) i∗i∗ ≃ id, id ≃ i!i!, j∗j∗ ≃ id and id ≃ j!j!
(RIV) For X ∈ C there are triangles

j!j
!X → X → i∗i

∗X → j!j
!X [1]

i!i
!X → X → j∗j

∗X → i!i
!X [1].

(The morphisms in (RIII) and (RIV) are the adjunction morphisms.)
We refer to [BBD] for properties of recollements and to [Kö] for necessary and

sufficient conditions that D−(A) has a recollement relative to D−(A′) and D−(A′′)
for some finite-dimensional algebras A, A′, A′′.

In particular we mention the following result from [Kö]. If D−(A) has a recolle-
ment relative to D−(A′) and D−(A′′) for some finite-dimensional algebras A, A′, A′′

and one of the algebras A, A′, A′′ has finite global dimension then Db(A) has a rec-
ollement relative to Db(A′) and Db(A′′).

Theorem. Let A be a finite-dimensional algebra and assume that Db(A) has a

recollement relative to Db(A′) and Db(A′′) for some finite-dimensional algebras

A′, A′′. Then fd(A) < ∞ if and only if fd(A′) < ∞ and fd(A′′) < ∞.

We point out that the theorem above generalizes a theorem in [W].
We give two examples in which this theorem may be applied. We stress that

there exist proofs of these results avoiding the use of triangulated categories.
Let A′, A′′ be finite-dimensional algebras and let A′MA′′ be a bimodule. Consider

the triangular matrix algebra A of the form

A =

(

A′ M
0 A′′

)

with multiplication
(

a′ m
0 a′′

) (

b′ m′

0 b′′

)

=

(

a′b′ a′m′ + mb′′

0 a′′b′′

)

where a′, b′ ∈ A′, m, m′ ∈ M and a′′, b′′ ∈ A′′.
Then D−(A) has a recollement relative to D−(A′) and D−(A′′).
Assume that A′ or A′′ has finite global dimension. Then Db(A) has a recollement

relative to Db(A′) and Db(A′′). In particular, fd(A) < ∞ if fd(A′) < ∞ and
fd(A′′) < ∞.

In the next example we will use the concept of perpendicular categories as in-
troduced in [GL], see also [H5].
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Let X ∈ modA with pdA X ≤ 1. We define the right perpendicular category X⊥

to be the full subcategory of modA whose objects Z satisfy

HomA(X, Z) = 0 = Ext1A(X, Z).

It is straightforward to see that X⊥ is an abelian category, which is closed under
extensions and that the inclusion functor X⊥ →֒ mod A is exact. The next result
states some useful properties of X⊥ under additional assumptions. For the proof
we refer to [GL] or [H5].

Theorem. Let X ∈ mod A such that pdA X ≤ 1 and Ext1A(X, X) = 0, then there

exists AQ ∈ X⊥ such that X⊥ ≃ mod A0, with A0 = EndA Q. If X is indecompos-

able, then rk K0(A0) = rkK0(A) − 1.

Now assume that A admits a simple A-module S with pdA S = 1. Then D−(A)
has a recollement relative to D−(A′) and D−(A′′), where A′ = EndA Q for a pro-
jective generator AQ of S⊥ and A′′ = k. Since gl.dim k = 0 we infer that Db(A)
has a recollement relative to Db(A′) and Db(A′′). In particular, fd(A) < ∞ if
fd(A′) < ∞.

3.4 Grothendieck groups. The generalized Nakayama conjecture is related to
a problem about Grothendieck groups of triangulated categories. First we need a
reformulation of the generalized Nakayama conjecture which is due to [AR1].

(5’): Let AM be a generator for modA with Exti
A(M, M) = 0 for all i > 0, then

AM is projective.
The following is shown in [AR1]. The generalized Nakayama conjecture holds

for all finite-dimensional algebras if and only if the conjecture (5’) holds for all
finite-dimensional algebras.

Let us indicate one direction. We assume that (5’) holds for all finite-dimensional
algebras with rkK0(A) = n − 1 and we claim that the generalized Nakayama
conjecture holds for all finite-dimensional algebras with rkK0(A) = n. In fact, let
A be an algebra with rkK0(A) = n and let

· · · → P2 → P1 → P0 → D(AA) → 0

be a minimal projective resolution of D(AA). Assume that there is a simple A-
module S with Exti

A(D(AA), S) = 0 for all i. Let P (S) be the projective cover of
S. Then P (S) is not a direct summand of Pi for all i. Let AA = P ⊕ P (S)r such
that P (S) is not a summand of P . Let B = EndA P . Then it follows from [Ri1]
that we have a full exact embedding of triangulated categories D−(B) → D−(A).
By the choice of P we infer that Kb(AI) is contained in D−(B). Using the obvious
identifications we may consider D(AA) as B-module. But δ(D(AA)) = n and
ExtiB(D(AA), D(AA)) = 0 for all i > 0 yields a contradiction to (5’).

We recall now the definition of the Grothendieck group of a triangulated category
[Gr]. For this let C be a triangulated category. Let F be the free abelian group on
the isomorphism classes of objects in C. The isomorphism class of an object X ∈ C
is denoted by [X ]. Let F ′ be the subgroup of F generated by [X ] + [Z] − [Y ] for
all triangles X → Y → Z → X [1] in C. Then by definition the Grothendieck group

of C is K0(C) = F/F ′.
Let F : C′ → C be an exact functor of triangulated categories. Then there is an

induced map K0(F ) : K0(C
′) → K0(C).

For example consider the embedding of Kb(AP) into Db(A). Then the induced
map on the level of Grothendieck groups turns out to be the Cartan map (see [B3]
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for a definition). In particular we see that K0(F ) need not to be injective, if F is
an embedding. We also state the following.

Proposition. Let µ : Db(A) → D−(A) be the canonical embedding. Then K0(µ) =
0.

It was shown in [Gr] that K0(D
b(A)) ≃ K0(A), which is isomorphic to Z

n, with
n = δ(AA).

Following [V] we call a full triangulated subcategory C′ of a triangulated subcat-
egory C an épaisse subcategory, if C′ is closed under direct summands. We consider
the following condition:

(5”): Let C be an épaisse subcategory of Db(A) such that K0(A) is finitely
generated. Then rkK0(C) ≤ n.

Remark. If (5”) holds then the generalized Nakayama conjecture holds.

Proof. By the mentioned result of [AR1] it is enough to verify condition (5’). Let

AM be a generator which satisfies ExtiA(M, M) = 0 for all i > 0. Then it is easy to
see that we obtain a full embedding Kb(addM) → Db(A) (compare [H1]). So we
may consider Kb(addM) as an épaisse subcategory of Db(A). A straightforward
calculation shows that K0(K

b(addM)) ≃ Z
δ(M). So δ(M) ≤ n by (5”). Since M is

a generator we know that AA is a direct summand of M , hence M is projective.

Note that the proof actually shows that for an arbitrary A-module M which
satisfies Exti

A(M, M) = 0 for all i > 0 the number δ(M) ≤ n in case (5”) holds.
It is easy to construct counterexamples to the condition (5”) if we leave out the

assumptions that C is épaisse or that K0(C) is finitely generated. For instance let A
be a finite-dimensional tame hereditary algebra and let C = Db(R) be the derived
category of the abelian subcategory R ⊂ mod A of regular A-modules. Clearly C is
an épaisse subcategory of Db(A), but K0(C) is not finitely generated. We thank H.
Lenzing for this example, which led to a reformulation of a more optimistic version
of (5”).
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