http://www.math.uni-bielefeld.de/birep/ez/

1. Bestimme die letzte Ziffer von $2^{10000} + 3^{10000}$ (in der Dezimaldarstellung).

Antwort: 7. (Es ist $2^4 \equiv 6 \mod 10$ und $6^n \equiv 6 \mod 10$ für alle $n \ge 2$. Und es ist $3^4 \equiv 1 \mod 10$.)

2. Zeige: Für jedes n gilt $\mu(n)\mu(n+1)\mu(n+2)\mu(n+3)=0$.

Eine der Zahlen n, n+1, n+2, n+3 ist durch 4 teilbar.

3. Wir betrachten die Farey-Folge $\mathcal{F}_n=\{0=\frac{p_0}{q_0}<\frac{p_1}{q_1}<\cdots<\frac{p_t}{q_t}=1\}$. Zeige: $\sum_{i=1}^t\frac{1}{q_{i-1}q_i}=1.$

Es ist $\frac{p_i}{q_i} - \frac{p_{i-1}}{q_{i-1}} = \frac{1}{q_{i-1}q_i}$, also ist $\sum_{i=1}^t \frac{1}{q_{i-1}q_i} = \frac{p_t}{q_t} - \frac{p_0}{q_0} = 1$ (Teleskop-Summierung).

4. Zeige: Sei $p = 2^t - 1$ eine Primzahl. Dann ist $2^{t-1}p$ vollkommen.

Leitfaden, p.5-3, dies war Übungsaufgabe 7.3. und schon Euklid wusste dies.

5. Zeige: Ist n > 1 und $(n-1)! \equiv -1 \mod n$, so ist n eine Primzahl.

Leitfaden, p.2-18. Dies ist nicht der Satz von Wilson, sondern die Umkehrung!

6. Beweise oder widerlege: Sind f, g zahlentheoretische Funktionen, die stark multiplikativ sind, so ist auch f * g stark multiplikativ.

Falsch, zum Beispiel für f = g = U. Es ist $U * U = \tau$ und $\tau(4) = 3$, $\tau(2) = 2$.

7. Zeige: Ist m ein Teiler von n, so ist $\phi(m)$ ein Teiler von $\phi(n)$.

Es reicht, den Fall n = mp mit p Primzahl zu betrachten. Ist p|m, so ist $\phi(n) = \phi(m)p$, ist p kein Teiler von n, so ist $\phi(n) = \phi(m)(p-1)$.

- 8. Welcher der folgenden Aussagen sind falsch:
- (A) Ist [x,y,z,] ein pythagoräisches Tripel, so ist z Summe zweier Quadratzahlen.
- (B) $\sum_{p \in P} \frac{1}{p^2}$ ist divergent (P die Menge der Primzahlen).
- (C) Seien $m, n \in \mathbb{N}$. Die kanonische Abbildung $\mathbb{Z}/(mn) \to \mathbb{Z}/m \times \mathbb{Z}/n$ ist surjektiv.
- (D) Ist p ungerade Primzahl, so ist $\left(\frac{-1}{p}\right) = (-1)^{(p^2-1)/8}$.

Alle Aussagen sind falsch! (A) wäre richtig, wenn zusätzlich die Primitivität vorausgesetzt würde. Zu (B): sogar $\sum_{n\in\mathbb{N}} \frac{1}{n^2}$ ist konvergent. Zu (C): Surjektivität gilt nur, wenn m,n teilerfremd sind. Zu (D): rechts steht die Formel für $\left(\frac{2}{p}\right)$.

9. Zeige oder widerlege: Sei R kommutativer Ring und $r, s \in R$. Ist $r^2 \neq 0$ und $s^2 \neq 0$, so ist auch $rs \neq 0$.

Falsch. Sei $R = \mathbb{Z}/6$, und $r = \overline{2}$, $s = \overline{3}$.

- **10.** Man gebe alle Primitiv
wurzeln a modulo 7 mit $0 \le a \le 6$ an. (Nur Antwort.)
 3, 5.
- **11.** Sei p > 2 Primzahl. Zeige oder widerlege: Die kleinste natürliche Zahl q mit $\left(\frac{q}{p}\right) = -1$ ist eine Primzahl.

Es ist $\left(\frac{1}{p}\right) = 1$, also ist q > 1. Wäre q = ab mit a < q und b < q, so wäre $-1 = \left(\frac{q}{p}\right) = \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right)$. Dann können die beiden Zahlen $\left(\frac{a}{p}\right)$ und $\left(\frac{b}{p}\right)$ nicht beide zu $\{0,1\}$ gehören.

12. Zeige oder widerlege: Für alle $n \in \mathbb{N}$ gilt $\pi(2^n) \geq n$.

Induktionsbeweis. Für n=1 ist $\pi(2^n)=\pi(2^1)=1\geq 1$. Nach Tschebycheff gibt es für jedes n eine Primzahl p mit $n< p\leq 2n$. Also ist $\pi(2^{n+1})\geq \pi(2^n)+1\geq n+1$.

13. Zeige oder widerlege: Es gibt eine natürliche Zahl b mit $\frac{\sigma(n)}{n} \leq b$ für alle natürlichen Zahlen n.

Falsch, siehe Leitfaden p.5-4: dort stehen gleich zwei Beweise für die Unbeschränktheit von $\frac{\sigma(n)}{n}$.

14. Zeige: Sei G eine endliche Gruppe. Sind $\{1\}$ und G die einzigen Untergruppen von G, so ist die Gruppenordnung eine Primzahl oder 1.

Sei $G \neq \{1\}$. Sei $1 \neq g \in G$. Dann ist $\langle g \rangle \neq \{1\}$, also gleich G, die Gruppe ist also zyklisch. Zu jedem Teiler von |G| besitzt G demnach eine Untergruppe, also ist |G| Primzahl.

15. Zeige für die Riemannsche ζ -Funktion: $\zeta(2) < 2$.

Beweis: Es ist $n^2 > n(n-1)$, also ist $\frac{1}{n^2} < \frac{1}{n(n-1)} = -\frac{1}{n} + \frac{1}{n-1}$ für $n \ge 2$. Also $\zeta(2) = \sum_n \frac{1}{n^2} < 1 + \sum_{n \ge 2} \frac{1}{n^2} = 1 + \sum_{n \ge 2} (-\frac{1}{n} + \frac{1}{n-1}) = 1 + 1$.

16. Man gebe alle Primelemente $z \in \mathbb{Z}[i]$ mit $N(z) \leq 5$ an.

$$a(1+i), a(2+i), a(1+2i)$$
 mit $a = 1, i, -1, -i$.

17. Sei χ Restklassencharakter modulo k, aber nicht der Hauptcharakter. Zeige: Sind $u \leq v$ natürliche Zahlen, so ist $|\sum_{n=u}^{v} \chi(n)| \leq k$.

Leitfaden p.4-6. Die Übungsaufgabe 9.2 lieferte eine Verschärfung.

18. Zeige oder widerlege: Ist m eine Zweierpotenz, so ist $2^m + 1$ eine Primzahl.

Falsch für $m=2^5$. (Es ist $2^{2^5}+1=4294967297=641\times6700417$; man kennt überhaupt nur 5 Fermat-Zahlen, die Primzahlen sind!)