3. Homomorphisms.

3.1. Definition, some properties.

If M, M’ are representations of the quiver Q, a homomorphism f: M — M’ is of the
form f = (f;), with linear maps f,: M, — M. for all € Qo such that the following
diagrams for every arrow a: x — y commute

M, —f M

va | Rz

M, —T M

To repeat: one has such a diagram for every arrow « of the quiver; the vertical data on
the left are part of M, those on the right are part of M’, the horizontal maps are those
which combine to form f.

Of course, given a representation M, there is always the identity homomorphism
1pr: M — M with (1), the identity map of M. Also, for any pair M, M’ of represen-
tations, there is the zero homomorphism 0: M — M’ (with 0,: M, — M, being the zero
map).

Examples. Consider the three representations
0—=k), (k—0), (lx:k—k)

of the quiver @ of type As, and let us determine whether there are
non-zero homomorphisms M — M’ or not. Of course, If M = (0 —
k) and M’ = (k — 0), there cannot be a non-zero homomorphism
f: M — M’ since f = (f1,f2) and for f;: My — M and for
fa: My — M there only exist the zero maps. Now let M = (0 — k)
and M’ = (1: k — k), and look for pairs f = (f1, f2) with fi: M; —
M7 and fo: My — MJ. For f; the only possibility is the zero map,
whereas for fo: k — k we may try to take any scalar multiplication,
say take the multiplication by ¢ € k (as a map k — k). But of course,
we have to check whether the following diagram is commutative:

0 —— &k

|

it always is, thus there are non-zero homomorphisms (0 — k) —
(1: k — k). (Note that when drawing this square, as well as the fol-
lowing ones, we follow the convention mentioned above: the vertical
maps are those of the form M, M/, whereas the horizontal ones are
those of the form f; and f3.) On the other hand, if we are looking
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for homomorphisms (1: £ — k) — (0 — k), we have to deal with

the diagram
k—— 0

L

k —— k
and here it turns out that the diagram commutes only in case ¢ = 0,
thus there is no non-zero homomorphism (1: k — k) — (0 — k).

In a similar way, one deals with homomorphisms between (k — 0)
and (1: k£ — k). The only homomorphism (k — 0) — (1: k — k)
is the zero homomorphism, since the following diagram on the left
commutes only for ¢ = 0.

E——— k E——— k
L b ]
0 —— &k k —— 0

On the other hand, the above diagram on the right commutes for all
¢, thus any ¢ € k defines a homomorphism (1: k — k) — (k — 0).

Summarizing these considerations, we see that we can order the in-
decomposable representations of ()

0—k), (lx:k—k), (k=0

so that non-invertible homomorphisms go from left to right.

If M, M’ M" are representations of the quiver Q, and f: M — M’', g: M’ — M"
are homomorphisms, then the definition (gf), = ¢.f. yields a homomorphism gf =
((9f)e)e: M — M", the composition of these homomorphisms. Note that the compo-
sition is both associative and bilinear.

Let M, N be representations of the quiver ). Let Hom(M, N') be the set of homomor-
phisms f: M — N. This set Hom(M, N) is a k-space with respect to the following addition
and scalar multiplication: Let f = (f;). and f’ = (f.). be homomorphisms M — N and
c € k, we define f+ f', ¢f: M — N by (f+ f')e = fo+ f. and (cf). = cf.. (Here, one
has to check that f + f’ as well as ¢f are again homomorphisms; also one has to check
that with this definition of addition and scalar multiplication, the vector space axioms are
satisfied.) In particular, the zero homomorphism M — N is the zero element of the vector
space Hom (M, N). It should be stressed that for finite-dimensional representations M, N,
also Hom(M, N) is a finite-dimensional k-space.

If M,M’, N, N are representations of the quiver @, and f: M — M’ is a homomor-
phism, then the composition yields a k-linear map

Hom(f, N): Hom(M', N) — Hom(M, N),
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it is defined by Hom(f, N)(h) = hf for h € Hom(M’, N). Similarly, if g: N — N’ is a
homomorphism, then the composition yields a k-linear map

Hom(M, g): Hom(M, N) — Hom(M, N'),
it is defined by Hom(f, N)(h) = gh for h € Hom(M, N).

Let f: M — M’ be a homomorphism. We say that f is a monomorphism, or an
epimorphism, or an isomorphism, provided all the maps f, are injective, or surjective, or
bijective, respectively. Note that if f: M — M’ is an isomorphism, then f~1: M' — M
defined by (f~1), = (f.) ! is again a homomorphism, and of course also an isomorphism.
(Proof: Let a: z — y be an arrow of Q. It follows from M, f,. = f,M, that M,(f.)"! =
(f,)'M.. This is what is needed in order that ((f;)~!), is a homomorphism.) If an
isomorphism f: M — M’ exists, then M, M’ are said to be isomorphic.

Note that the composition of two monomorphisms, epimorphisms, isomorphisms is
again a monomorphism, epimorphism, isomorphism, respectively. The following is quite
easy to check: A homomorphism f: M — M’ is an isomorphism if and only if there is a
homomorphism g: M' — M such that gf = 1y and fg = 1.

Let us also record the following observations: If f: M — M’ is a homomorphism
such that all the maps f, for € Qo are inclusion maps, then M’ is a subrepresentation
of M and f is called the corresponding inclusion map. Of course, an inclusion map is a
monomorphism. Also recall that given a subrepresentation M’ of a representation M, then
we form the factor representation M” = M /M’ and there are the canonical projection maps
qr: My — (M/M"), = M, they combine to a homomorphism ¢: M — M" = M/M'. Of
course, ¢ is an epimorphism.

If f: M — M’ is a homomorphism of representations of @, then its kernel Ker(f)
is the subrepresentation of M with (Ker(f)), = Ker(f,), and the image Im(f) is the
subrepresentation of M’ with (Im(f)), = Im(f,). Finally, define M’/Im(f) to be the

cokernel of f. Also note: Given a monomorphism u: M — M’ then M is isomorphic to
the image of u. If ¢: M — M’ is an epimorphism, then M’ is isomorphic to M/ Ker(q).

If M, M’ , N, N’ are representations of (), then there are canonical identifications:

Hom(M, N & N') = Hom(M, N) & Hom(M, N'),
Hom(M & M', N) = Hom(M, N) ® Hom(M’, N).

3.2. Endomorphism rings.

Let @ be a quiver and M a representation of (). A homomorphism f: M — M
is called an endomorphism of M. In case f is invertible, one calls it an automorphism.
The set End(M) of all endomorphisms of M is a ring, even a k-algebra, it is called the
endomorphism ring of M. (Since End(M) = Hom (M, M), it is a k-space, the composition
of endomorphisms yields an associative multiplication which is bilinear, thus satisfies the
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distributivity laws. The identity map 1 = 1, is the unit element of the ring End(M). If
¢ € k, the scalar multiple ¢ - 1 is the scalar multiplication on M (sending a € M to ca);
these scalar multiples ¢ -1 commute with all endomorphisms, thus the map k& — End(M)
which sends ¢ to ¢-1 is a ring homomorphism from k into the center of End(M), in this way,
End(M) is a k-algebra.) In case M # 0, the ring homomorphism k& — End(M) defined by
¢ +— c- 1 is injective; we may consider this as an embedding of k into End(M ). Of course,
if M is a finite-dimensional representation, then End(M) is a finite-dimensional k-algebra.

Let us stress that the endomorphism ring End(M) of a representation M is usually
non-commutative (as one knows already from the case of the quiver A;; the representations
of this quiver are just vector spaces, and the endomorphism ring of a vector space V is
commutative only in case the dimension of V' is at most 1).

Of special interest are the idempotents in End(M). Recall that an element e of a
ring is called an idempotent provided e = e; the elements 0 and 1 of End(M) are always
idempotents, and it is interesting to know whether there are additional idempotents.

Lemma. Given any representation M of a quiver Q, there is a bijection between the
set of idempotents in End(M) and the direct decompositions M = M’ @ M", where the
idempotent e corresponds to the direct decomposition M = Im(e) @ Ker(e), and conversely,

the direct decomposition M = M’ @& M" corresponds to the canonical projection of M onto
M' (with kernel M").

The canonical projection of M = M’ & M" onto M’ is given by the map which sends
a' 4+ a" (where o' € M’ a” € M") onto a’.

Proof: Many things have to be verified.

Let us start with e an idempotent. We know already that both Im(e) and Ker(e)
are subrepresentations of M, thus we only have to verify we obtain in this way a direct
decomposition. First, Im(e) N Ker(e) = 0; namely, if a’ € Im(e), then o’ is of the form
a’ = e(a) for some a € M; if a’ also belongs to Ker(e), then 0 = e(a’) = e(ea) = (e?)a =
ea = a'. Second, Im(e) + Ker(e) = M; namely, if a € M, then a = e(a) + (1 — ¢)(a) and
e(a) belongs to Im(e), whereas (1 — e)(a) obviously belongs to Ker(e).

Next, start with a direct decomposition M = M’ @ M" and let e be the canonical
projection onto M’. Here one has to verify that this is indeed a homomorphism (it is
the composition of the projection M — M/M" the identification M/M" — M’ and the
embedding M’ — M). In addition, we need to know that e? = e, but this is obvious from
the definition.

If we start with the idempotent e, and consider the direct decomposition M = Im(e)®
Ker(e), then it turns out that the canonical projection of M onto Im(e) is precisely e.
Namely, consider an element a = o’ + a” with ¢’ € Im(e) and a” € Ker(e). Let a’ = e(b)
for some b € M. If we apply e to a = a’ + a”, we obtain e(a) = e(a’) + e(a”) = e(e(d)) =
e(b) = a’ (using that e? = e and that e(a”) = 0).

Conversely, if we start with the direct decomposition M = M’ @ M" and consider the
canonical projection e of M onto M’, then clearly M’ is the image of e, whereas M" is
contained in the kernel of e. It only remains to observe that M” has to be the kernel of e: if
an element a € M belongs to the kernel of a, then write a = a’ +a” witha' € M',a"” € M";
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as we know, a’ € Im(e),a” € Ker(e). Since both a,a” belong to Ker(e), also a’ = a — a”
belongs to Ker(e). Thus a’ € Im(e) N Ker(e) = 0 (this we have shown for any idempotent
e), therefore a = a” € M".

Corollary. Let M be a non-zero representation. Then M is indecomposable if and
only if the only idempotents in End(M) are 0 and 1.

As an example, let us calculate the endomorphism ring in one example. We deal with
the 3-subspace quiver with vertices labeled 0,1,2,3 as shown below on the left, and we
consider the representation M shown on the right.

NN

with A = {(¢,c) | ¢ € k}, or better A ={[’] | c € k}.
Let f = (fo, f1, f2, f3) be an endomorphism, thus fo: k2 — k? is given by a (2 x 2)-
matrix F' with coefficients in k. The commutativity of the diagram

k0O — s ko
ul lu
B2 2

(here, u denotes the inclusion map) implies that F' is an upper triangular matrix, Similarly,
the commutativity of the diagram

0k —2 5 0k

o [
g2 Ly g2

shows that F'is a lower triangular matrix. Thus F' is a diagonal matrix, say F' = [dl d ]

But there is a third commutativity condition:

Ay A
ul lu
K2 T g2

it asserts that F' maps A into A. But F [” = [dl dz] [” = [Z; ] . It follows that di = do,

thus F' is a scalar matrix, say the multiplication by ¢ € k. But then also f1, f2, f3 (being
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restrictions of fj) are the multiplication by ¢, therefore End(M) = k. In particular, we see
that M is indecomposable.

Proposition. Let M, M’ be representations of the quiver Q such that the support
quivers Q(M) and Q(M') are disjoint. Then

End(M @ M') = End(M) x End(M").

Given two rings R, R’ we denote by R x R’ the product; it is defined on the set R x R’
using component wise addition and multiplication.

Proof: In general, we have

n_ End(M) Hom(M’, M)
End(M® M) =\ yoro (M, M7)  End(M?)

Since Q(M) N Q(M') = 0, we have Hom(M', M) = 0 = Hom(M, M').

3.3. Recollection of general results.
Here we should insert some general results from ring and module theory.

The rings which we will consider here are (associative, and not necessarily commuta-
tive) rings with 1. Note that we allow that a ring consists just of one element, this is the
zero-ring (and there it holds that 0 = 1). The zero ring arises naturally as the endomor-
phism ring of the zero representation of a quiver (and similarly as the endomorphism ring
of the zero modules in module theory).

Recall that a ring R is said to be local, provided it is not the zero ring and has a unique
maximal left ideal /. This maximal left ideal is necessarily a two-sided ideal, and contains
every left ideal, it is called the radical of R. Also, R/I is a division ring. Note that a ring
R is local if and only if the set of non-invertible elements is closed under addition, thus
if R is local, also the opposite ring is local (thus R is local if and only if R has a unique
maximal right ideal).

The only idempotents of a local ring are 0 and 1 (but there are many non-local rings
which have only these two idempotents, for example the ring Z of the integers).

Fitting Lemma. An endomorphism of a finite-dimensional indecomposable module
15 either bijective or nilpotent.

Corollary. A finite-dimensional algebra which has only 0,1 as idempotents, is a local
ring with nilpotent radical.

Proof: Just consider the algebra as a module over itself.

Corollary. Let @ be a quiver and M a finite-dimensional indecomposable represen-
tation of Q. Then End(M) is a local ring with nilpotent radical.
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The locality of endomorphism rings of indecomposable objects has strong conse-
quences, the most important one is the uniqueness of direct decompositions, as formulated
in the theorem of Krull-Remak-Schmidt. Since this is usually formulated for module cat-
egories, we will discuss this result when we have identified the category of representations
of a finite quiver ) with the category of finite-dimensional modules over the path algebra

kQ.

3.4. Homomorphisms between thin indecomposable representations.

Proposition. Let M, M’ be thin indecomposable representations of a tree quiver Q.
Then Hom(M, M') is at most one-dimensional.

Proof. Let f = (fz)z: M — M’ be a homomorphism. Clearly f, # 0 implies that =
belongs to Q(M)NQ(M’) (this holds true for general quivers). We assume that @ is a tree,
and that M, M’ are indecomposable representations. Thus Q(M), Q(M’) are again trees
and if Q(M)NQ(M') # 0, then Q(M)NQ(M') is a tree. If there is an arrow a:  — y in
Q(M) N Q(M'), then we see that f, = f, :

fz fa

M, —=— M E—1= s k
| [
My fy M?; k fy k‘

Note that the proof shows: If M, M’ are thin indecomposable representations of a
tree quiver Q and f: M — M’ is a non-zero homomorphism, then Q(M) N Q(M’) is a
connected subquiver of QQ and the image of f is the thin representation with support quiver
QM) N Q(M').

In general, it is not difficult to decide whether Hom(M, M) is zero or 1-dimensional,
Let us write down the rule in a special case:

The case of a linearly ordered A, -quiver.

We consider a linearly ordered quiver ) of type A,,, say with the following vertices:
1—2+—34— - +—n—-1+—n

For every pair of integers 7,j with 1 < i < j < n, we define a representation [i,j] with
[i,7]. = k if i < 2z < j and [i,j], = 0 otherwise, and such that [i, j], is the identity
map whenever possible. We know that we obtain in this way all the indecomposable
representations of (), one from each isomorphism class.

Proposition.

o ki i<t <<y
Hom([s, 5], [¢", 7']) = { 0 otherwise

Y
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and the image of any non-zero homomorphism [i, j] — [i', j'] is just [¢/, j].
Ifi =14 <j<j', then any non-zero homomorphism [i,j| — [i', '] is a monomorphism.
Ifi <i' < j=j', then any non-zero homomorphism [i,j| — [i’, '] is an epimorphism.

Proof: Note that the considerations to be done will be the same as those in the special
case Ay discussed in 3.1. Let f: [i, 5] — [/, 5]
We distinguish several cases. First, assume that j <4’

i J

,L'/

In this case Q([¢, 5]) N Q([¢’, j']) = 0. Similarly, if 7/ < 4, then Q([i,j]) N Q([7',5']) = 0. In
both cases we have Hom([, j], [/, j']) = 0.
From now on, we assume that ¢/ < j and 7 < j'.

Let ¢/ < 7, thus we deal with

/

@ .

and both i < j, j'. In particular, i € Q([7, j])NQ([¢’, j']). Let us consider the arrow i—1 < i:

| | b
[i,7li-1 —— [, j'li-1 0 —— k

we see that we must have f; = 0. But if f, = 0 for some z in the intersection of the support
quivers, then f = 0.

Let j' < j, thus we deal with

[ SN

and both 4,7 < j'. In particular, 7/ € Q([i,7]) N Q([¢,j’]). Let us consider the arrow
Ny

(4, ljr41 — [, 7] 741 k—— 0

| | 3| |

(4, 715 - [, '] k - k
3t 3!

we see that we must have f;; = 0, and again it follows that f = 0. Thus, in all cases
discussed so far, Hom([, j], [¢/, j']) = 0.
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It remains to consider the case i’ < i < j' < j.

i J

,L'/

/

In this case we claim that there is a non-zero map f: [i,j] — [i’,j'], or even better that
[

there is an epimorphism g: [i, j] — [¢, j] and a monomorphism h: [i, j] — [/, j']

i J

2’/

/

so that we can take for f the composition f = hg. In order to define such maps f, g, h, just
take f, = g, = hy = 1 for i’ < x < j and zero otherwise (of course, one has to check that
the diagrams in question commute). It follows that in this last case, Hom([i, j], [/, j']) is
non-zero (and one-dimensional).

Example: n = 4. We consider the quiver @) of type A4
l1+—2+—3+—4

with the indecomposable representations [z, j] with 1 < i < j < 4. The following picture
arranges these representations in a triangle.

[1,1] v [2,2] oo [3,3] v [4,4]

N SN S NS

[1,2] oo [2,3] oo 3, 4]

N SN S

[1,3] AAAAAAAAAAA [274]

The arrows [i,j] — [i,7 + 1] (drawn in southeast direction) indicate the existence of a
so-called “irreducible” monomorphism, the arrows [i,j] — [i + 1,j] (drawn in northeast
direction) indicate the existence of a so-called “irreducible” epimorphism. Note that all
the paths in southeast direction indicate the existence of corresponding monomorphisms,
the paths in northeast direction indicate the existence of corresponding epimorphisms. As
we know, any non-zero homomorphism [i, j|] — [i’,j’] has as image an indecomposable
representation, namely [i, j], and there is a corresponding concatenation of a northeast
path followed by a southeast path (for example, any non-zero homomorphism [1, 3] — [3, 4]
has a factorization [1, 3] — [2,3] — [3,3] — [3,4]).
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Thus, we deal with a visualization of the category A of indecompos-
able representations of @), it is called the “Auslander-Reiten quiver”
of the category of representations of (). We also should mention the
meaning of the dotted lines: they indicate “relations”: In the upper
line, they indicate that the composition of maps corresponding to
a southeast arrow and the next northeast arrow is zero. The lower
dotted lines mark the commutativity of the corresponding squares.
Actually, this Auslander-Reiten quiver (with its vertices, arrows and
dotted lines) provides a presentation of the category A. by genera-
tors and relation.

Such an Auslander-Reiten quiver is not just a quiver, but a so-called
translation quiver; the translation is indicated by the dotted lines.
Any translation quiver may be considered as a 2-dimensional simpli-
cial complex. In our case, the triangles can be seen quite well, all
are bounded by a northeast arrow, a southeast arrow and a dotted
line. In our example, these (small) triangles fit together to form a
large triangle.

Again we see that we can order the indecomposable representations in such a way,
that non-invertible homomorphisms go in one direction (here from left to right.
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