
5. Extensions.

Given representationsM,N of a quiver, we want to introduce a vector space Ext1(M,N)
which measures the possible extensions. Here, by an extension of R-modules (where R is
a ring, for example the path algebra of a quiver) one means a short exact sequence

0 −→ N
f
−→ Y

g
−→M −→ 0.

Note that such an exact sequence just means that f : N → Y is an injective homomorphism
and g a cokernel of f , thus g is up to isomorphism uniquely determined by f , but the
information given by f itself is (up to the isomorphism f : N → f(N)) just the inclusion
f(N) ⊆ Y. Let me repeat this as a slogan:

SLOGAN: To consider extensions means nothing else then to study
submodules of modules (to be precise: we do not mean the study
of a submodule as a module in its own right, but the study of the
embedding of the submodule into the given module).

A typical question is the following: Given a submodule N of Y , is
it a direct summand? Formulated in the language of “extensions”,
this is the question whether the sequence 0 −→ N −→ Y −→ M −→ 0
splits or not.

The sections 5.1 - 5.3 deal with modules in general. Here, we start with a ring R, all
modules are R-modules.

5.1. Split extension.

If N,M are modules and σ : N → M , and ρ : M → N are maps with ρσ = 1N ,
then σ is said to be a split monomorphism (with retraction ρ), and ρ is said to be a split
epimorphism (with section σ).

Lemma. Let

0 −→ N
f
−→ Y

g
−→M −→ 0.

be an exact sequence. The following conditions are equivalent:
(1) f is a split monomorphism.
(1′) g is a split epimorphism.
(1′′) There is a submodule Y ′ such that f(N)⊕ Y ′ = Y.

Proof should be well-known. For example, if (1) holds, thus there is ρ : Y → N with
ρf = 1N . Let Y ′ = Ker(ρ). In order to see Y = f(N) ⊕ Y ′, take y ∈ Y and write is as
f = fρ(y) + (y− fρ(y)); here fρ(y) ∈ f(N) and (y− fρ(y)) ∈ Y ′. Also, If y ∈ f(N)∩ Y ′,
then y = f(x) for some x ∈ N , thus 0 = ρ(y) = ρf(x) = x, and therefore y = f(x) = 0.
Thus (1′′′) holds. If (1′′′) holds, then g|Y ′ : Y ′ → M is an isomorphism, thus take for σ
the composition of (g|Y ′)−1 with the inclusion map Y ′ → Y ; this yields (1′′).

Proposition. Let R be a k-algebra, and let

0 −→ N
f
−→ Y

g
−→M −→ 0.
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be an exact sequence, where N,M (thus also Y ) are finite-dimensional k-modules. The
following conditions are equivalent:
(1) f is a split monomorphism.
(2) Y is isomorphic to N ⊕M .
(3) dimk End(Y ) = dimk End(N ⊕M).
(3′) dimk End(Y ) ≥ dimk End(N ⊕M).

Proof: Trivially, (1) =⇒ (2) =⇒ (3) =⇒ (3′). Thus, let us assume (3′). We may
assume that f is an inclusion map, thus N ⊆ Y and that M = Y/N with g the projection
map. Let η : End(M) → Hom(N,M) be defined by η(φ) = gφf and let E be the kernel of
η, thus

dimk End(Y ) ≤ dimk E + dimk Hom(N,M).

Note that
E = {φ ∈ End(Y ) | φ(N) ⊆ N.}.

Define η′ : E → End(N)⊕End(M) by η′(φ) = (φ|N, φ), where φ is the endomorphism
of M = Y/N induced by φ. Let E′ be the kernel of η′. Then

E′ = {φ ∈ End(Y ) | φ(N) = 0, φ(M) ⊆ N},

thus E′ is isomorphic as the vector space to Hom(M,N) (here, φ : M → N corresponds to
fψg). We see:

dimk E ≤ dimk E
′ + dimk End(N) + dimk End(M)

= dimk Hom(M,N) + dimk End(N) + dimk End(M).

Here is a picture which shows the filtration of End(Y ) we are dealing with, as well as the
information on the corresponding factors which we have obtained:
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⊆ End(N)⊕ End(M)
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Altogether we see that

dimk End(Y ) ≤ dimk E + dimk Hom(N,M)

≤ dimk Hom(M,N) + dimk End(N) + dimk End(M) + dimk Hom(N,M)

= dimk End(N ⊕M) ≤ dimk End(Y ).

This shows that all the inequality signs have to be equality signs, in particular, the map
η′ : E → End(N) ⊕ End(M) has to be surjective, thus (1N , 0N ) = η′(φ) for some φ ∈ E.
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But η′(φ) = (1N , 0N ) means that φ|N = 1N and φ(Y ) ⊆ N. Since φ(Y ) ⊆ N , we can write
φ = fρ for some ρ : Y → N . Then f = φf = fρf , thus, since f is injective, 1N = ρf. This
shows that f is a split monomorphism.

Of special interest seems to be the implication (2) =⇒ (1). Whereas
the converse implication is trivial, this one is not. In this context,
it seems worthwhile to draw the attention to the weaker conditions
that N is a direct summand of Y , or that M is a direct summand of
Y . Such sequences 0 → N → N ⊕ Y ′ →M → 0 and 0 → N →M ⊕
Y ′′ → M → 0 are sometimes called Riedtmann-Schofield sequences
and if such a sequence exists, one says that M is a degeneration of
Y ′ (or that N is a degeneration of Y ′′, respectively), see for example
Ringel: The ladder construction of Prüfer modules.

As mentioned above, given representationsM,N of a quiver, we are going to introduce
a vector space Ext1(M,N) which measures the possible extensions. Actually, we are
mainly interested to know whether Ext1(M,N) = 0 or not. This can be reformulated
quite easily: The formulation Ext1(M,N) = 0 means just the following: Given a module
Y with submodule N such that Y/N is isomorphic to M , then the embedding N → Y is
splits: There is a submodule Y ′ of Y with N ⊕ Y ′ = Y.

It was Kaplansky who stressed that it sometimes may be sufficient
to work with the condition Ext1(M,N) = 0 without introducing the
groups Ext1 .

If M is a module with Ext1(M,M) = 0, then M is said to have no self-extensions.
An indecomposable module without self-extensions is called an exceptional module. The
kQ-modules which we are interested in, are mainly the exceptional kQ-modules.

Warning. This terminology is in some sense irritating. For example,
for a Dynkin quiver, all the indecomposables are exceptional, thus
to be exceptional is nothing special! One of the reasons for the
naming comes from commutative ring theory, where it is very unusual
to deal with a module without self-extensions. This has influenced
people dealing with vector bundles, since they usually coming from
commutative ring theory. Thus, the first appearance of the word
“exceptional” in the sense as mentioned here, was in the realm of
vector bundles, here we should mention the school of Rudakov. It was
shifted to quiver representation by Crawley-Boevey, since it turned
out that there were several parallel results.

5.2. Equivalence classes of short exact sequences.

Definition: Let ǫ = (0 −→ X
f
−→ Y

g
−→ Z −→ 0) and ǫ′ = (0 −→ X

f ′

−→ Y ′
g′

−→ Z −→ 0)
be exact sequences (with identical first and last modules). These extensions are called
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equivalent provided there is a commutative diagram of the form

0 −−−−→ X
f

−−−−→ Y
g

−−−−→ Z −−−−→ 0
∥

∥

∥





y
h

∥

∥

∥

0 −−−−→ X
f ′

−−−−→ Y ′
g′

−−−−→ Z −−−−→ 0.

Note that, if such a diagram exists, then the map h is necessarily an isomorphism.

Proof: First, let us show that h is injective. Thus, take y ∈ Y with h(y) = 0. Then
g(y) = g′h(y) = 0, thus there is x ∈ X with f(x) = y. Then f ′(x) = hf(x) = h(y) = 0,
and, since f ′ is injective, x = 0, thus y = f(x) = 0.

Second, in order to see that h is surjective, start with y′ ∈ Y ′. There is y ∈ Y with
g(y) = g′(y′), since g is surjective. Now

g′(y′ − h(y)) = g′(y)− g′h(y) = g′(y)− g(y) = 0,

thus y′−h(y) = f ′(x) for some x′ ∈ X ′. Then y′ = h(y)+f ′(x) = h(y)+hf(x) = h(y+f(x))
shows that y is in the image of h.

As a consequence, it is obvious that the relation for short exact sequences to be
equivalent is really an equivalence relation: if ǫ, ǫ′ (in this order) are equivalent, say using
the map h, then also ǫ′, ǫ are equivalent, use h−1; if in addition also ǫ′, ǫ′′ are equivalent,
say using the map h′, then ǫ, ǫ′′ are equivalent: use h′h.

The set of equivalence classes of exact sequences ǫ = (0 −→ X
f
−→ Y

g
−→ Z −→ 0) with

X,Z being fixed will be denoted by Ext1(Z,X).

We have introduced here Ext1(Z,X) just as a set (or as a set with
a distinguished element, namely the equivalence class of split exact
sequences). Usually, one defines on Ext1(Z,X) an addition, the so-
called Baer addition, so that Ext1(Z,X) becomes an abelian group.
In case one deals with a k-algebra R, the set Ext1(Z,X) should be
endowed even with the structure of a k-space. We avoid this at the
moment, but later we will identify the set Ext1 (in the case where
R is the path algebra of a quiver) with a k-space, and this k-space
structure of Ext1(Z,X) is the usual one.

When we speak about the set of equivalence classes, we have to
worry whether there may be set-theoretical difficulties. Fortunately,
in the usual categories we are working with, say the category of
modules over a ring R, the class of modules which are isomorphic
to a fixed one may not be a set (but just a class), however the class
of isomorphism classes of modules with fixed cardinality is a set,
as is the class of equivalence classes of exact sequences of the form

0 −→ X
f
−→ Y

g
−→ Z −→ 0 with X,Z both being fixed.
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We have seen that if the sequences ǫ = (0 −→ X
f
−→ Y

g
−→ Z −→ 0)

and ǫ′ = (0 −→ X
f ′

−→ Y ′
g′

−→ Z −→ 0) are equivalent, then Y, Y ′ are
isomorphic, but not every isomorphism h : Y → Y ′ will not provide a
commutative diagram as required for the equivalence — the easiest
example to have in mind is the following (here we assume that R
is a k-algebra): assume that h : Y → Y ′ is an isomorphism which
provides a a commutative diagram as required, and let c 6= 0 be an
element of k, then also ch : Y → Y ′ is an isomorphism, but it will
not provide such a commutative diagram unless X = 0 = Z.

5.3. Construction of extensions using projective modules.

Proposition. Assume that there is given a surjective map p : P → Z with P projec-
tive, let ΩZ be the kernel of p, thus we deal with the exact sequence

ǫ : 0 −→ ΩZ
u
−→ P −→ Z −→ 0.

Then any short exact sequence ending in Z is induced from the sequence ǫ.

This means that given a short exact sequence 0 −→ X −→ Y −→ Z −→ 0, there is a map
φ : ΩZ → X and a commutative diagram

0 −−−−→ ΩZ
u

−−−−→ P −−−−→ Z −−−−→ 0

φ





y





y
φ′

∥

∥

∥

0 −−−−→ X −−−−→ Y −−−−→ Z −−−−→ 0 .

Note that up to equivalence of short exact sequences, the upper sequence and the map
φ together determine the lower exact sequence uniquely: Namely for such a commutative
diagram, the left square

ΩZ
u

−−−−→ P

φ





y





y
φ′

X −−−−→ Y,

is a pushout diagram, thus up to isomorphism Y is of the form

Y = P ⊕X/{(−u(a), φ(a) | a ∈ ΩZ}.

The proposition asserts that there is a surjective map

δ : Hom(ΩZ,X) → Ext1(Z,X),

and the kernel of this map are the morphisms ΩZ → X which factor through u : ΩZ → P.
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These assertions are usually formulated in terms of the long exact
sequence which one obtains when we apply the functor Hom(−, X)
to the exact sequence

0 −→ ΩZ
u
−→ P −→ Z −→ 0 (ǫ).

Namely, we obtain the exact sequence

0 −→ Hom(Z,X) −→ Hom(P,X)
Hom(u,X)
−−−−−−→ Hom(ΩZ,X)

δ
−→ Ext1(Z,X) −→ 0

The map δ is called the connecting homomorphism, it attaches to
φ : ΩZ → X the exact sequence induced from ǫ by φ.

Let us return to quivers and their representations.

5.4. Realization of extensions of quiver representations by quiver data.

Let Q be a quiver. Given representations M,N of Q, let

D(M,N) =
⊕

α∈Q1

Homk(Mt(α), Nh(α)).

This is the set whose elements we will use in order to construct short exact sequences
starting with N and ending in M . For any e = (eα)α in D(M,N), we may consider the
representation W (M,N, e) as follows:

W (M,N, e)x = Nx ⊕Mx, W (M,N, e)α =

[

Nα eα
0 Mα

]

Note that N is a submodule of Y =W (M,N, e) and the corresponding factor module Y/N
can be identified with M ; thus, there is the following short exact sequence

ǫ(M,N, e) =






0 −→ N

[

1

0

]

−−−→W (M,N, e)
[ 0 1 ]
−−−→M −→ 0






.

Lemma. If Y is a representation of Q with a subrepresentation N and M = Y/N ,
with inclusion map u : N → P and projection map p : Y →M , then there is a commutative
diagram

0 −−−−→ N

[

1

0

]

−−−−→ W (M,N, e)
[ 0 1 ]

−−−−→ M −−−−→ 0
∥

∥

∥





y
φ

∥

∥

∥

0 −−−−→ N
u

−−−−→ Y
p

−−−−→ M −−−−→ 0
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Proof: For any vertex x, choose a submodule Cx such that Nx ⊕ Cx = Yx. Using
the map p, we actually may identify Cx with Mx, thus we assume Nx ⊕Mx = Yx. Let
α : x → y be an arrow. Note that Yα(Mx) ⊆ Ny, thus we may consider the restriction of
Yα to Mx and denote it by eα : Mx → Ny. Using these identifications, we see that the
identity map

φx =

[

1 0
0 1

]

: W (M,N, e)x = Nx ⊕Mx −→ Nx ⊕Mx = Yx

yields an isomorphism (even an identification) φ = (φx)x : W (M,N, e) → Y. Of course,
this is the required isomorphism which we need in the Lemma.

We say that an abelian category such as a module category is hereditary provided
the following condition is satisfied: If M is a module with a submodule N and there
is an embedding M/N → M ′ for some module M ′, then there exists a module Y with
submodule M , such that there is an isomorphism Y/N → M ′ which is the identity on
M/N (by assumption, M/N is both a submodule of Y/N as well as of M ′).
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Let us stress, for those familiar with Ext2 or at least with Ext1, that
this definition of heredity coincides with the usual one, namely with
the condition that globally Ext2 = 0, or, equivalently, that for any
monomorphism u and any object N , the induced map Ext1(N, u) is
surjective. What we did, is that we have reformulated the surjectivity
assertion, by saying that for any exact sequence ǫ, which we can
assume to be of the form 0 → N → M → M/N → 0 (with an
inclusion map N → M), and for any embedding u : M/N → M ′,
there exists an exact sequence ǫ′ = (0 → N → Y →M ′ → 0) which
induces ǫ, thus ǫ = Ext1(N, u)(ǫ′).

Theorem. The category Rep(Q, k) is hereditary.

Proof: We assume that we have given three representations, say M (1),M (2),M (3),
and extensions

W (M (1),M (2), e) and W (M (2),M (3), e′).

Then the required representations are those of the form


M (1)
x ⊕M (2)

x ⊕M (3)
x ,





M (1) ex ∗
M (2) e′x

M (3)







 ,
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where ∗ is arbitrary.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

...

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

...

...............

...............

...............

...............

...............

...............

M (2)

M (3)

M (1)

M (2)

..............................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

...

...............

...............

...............

...............

...............

...............

...............

M (1)

M (2)

M (3)

M (1)

M (2)

.....................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Remark. Any Serre subcategory of a hereditary category is hereditary, thus the
category of nilpotent representations is also hereditary.

Reformulation. If e : X → I is an epimorphism, m : I → Y is a monomorphism,
then there is a monomorphism m′ : X → J and an epimorphism e′ : J → Y such that the
sequence

0 −→ X

[

m′

e

]

−−−−→ I ⊕ J

[

−e′

m

]

−−−−→ Y −→ 0

is exact.

Proof: Choose J with submodule X such that J/m(I) = Y , let m′ : X → J the
inclusion map and e′ : J → Y the projection.

Lemma. If X, Y are indecomposable objects of finite length in a hereditary category,
and Ext1(Y,X) = 0, then any non-zero morphism X → Y is a monomorphism or an
epimorphism.

Proof. Let f : X → Y be a non-zero morphism which is neither a monomorphism nor
an epimorphism, let I be the image of f . Then there is an exact sequence

0 −→ X −→ I ⊕ J −→ Y −→ 0.

But this sequence cannot split, since otherwise X ⊕ Y is isomorphic to I ⊕ Y , but I 6= 0
and an indecomposable direct summand I ′ of I has length smaller than the length of X or
Y , thus cannot be isomorphic to X of Y , contrary to the Krull-Remak-Schmidt theorem.

Corollary. If M is an exceptional object of finite length in a hereditary category, then
End(M) is a division ring.

Proof: If f : M → M is non-invertible, then it is neither a monomorphism nor an
epimorphism. The previous result shows that f = 0.

5.5. Modules without self-extensions.

We are interested in the exceptional modules or, more generally, in modules without
self-extensions.
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Proposition 1. Let M,N be representations of the quiver Q. Let α : x → y be
an arrow of the quiver. Assume that Mα has a non-trivial kernel, and that Nα has a
non-trivial cokernel. Then Ext1(M,N) 6= 0.

Proof. Write Mx = Ker(Mα)⊕ C for some subspace C, and take a non-zero element
b ∈My which does not belong to Im(Nα). Let eα : Mx → Ny be defined as follows: it shall
be zero on C and it shall map Ker(Mα) surjectively onto 〈b〉 (such a linear map exists,
sine we assume that Ker(Mα) is non-zero. For the remaining arrows β of the quiver, let
eβ = 0. We consider W =W (M,N, e), in particular

Wα =

[

Mα eα
Nα

]

: Mx ⊕Nx −→My ⊕Ny.

Clearly, the image of Wα is Im(Mα)⊕ (ImNα)+ 〈b〉, and the latter plus sign concerns also
a direct sum inside Ny. Therefore Wα has rank equal to rankMα + rankNα + 1. But this
shows that W =W (M,N, e) cannot be isomorphic to M ⊕N , thus Ext1(M,N) 6= 0.

Corollary. Let M be a representation of a quiver Q without self-extensions. Then,
for any arrow α, the map Mα has maximal rank.

(We recall that a vector space map V → V ′ is said to have maximal rank, provided
its rank is as large as possible, namely min{dimk V, dimk V

′}, or, equivalently, provided
the map is a monomorphism or an epimorphism.)

Proposition 2. Let M be a module without self-extensions. Let w be a path with
wM = 0. Let α be an arrow with t(α = h(w) and αwM = 0. Then Mh(α) = 0.

Proof: Write Mx = wM ⊕C for some subspace C, and choose some non-zero element
b ∈My. Let eα : Mx → Ny be defined as follows: it shall be zero on C and it shall map wM
surjectively onto 〈b〉. For the remaining arrows β of the quiver, let eβ = 0. We consider
W =W (M,M, e) and the extension

0 →M →W (M,M, e) →M → 0.

This sequence does not split. Now assume that αwM = 0, then also αw(M ⊕M) = 0.
However, by construction, αwW (M,M, e) = 〈b〉 6= 0 and therefore W (M,M, e) is not
isomorphic to M ⊕ M. But this implies Ext1(M,M) 6= 0, contrary to the assumption.
This contradiction shows that we must have αwM 6= 0.

Corollary. Let M be a nilpotent module without self-extensions. Then the support
quiver Q(M) does not have cyclic paths.

Proof: Assume that there is a cyclic path v in the support quiver. SinceM is nilpotent,
there is some t with vtM = 0. Let vt = αs · · ·α1 Choose m ≥ 0 maximal with wM 6=
0, where w = αm · · ·α1. Then m < s and αwM = 0 for α = αm+1. According to
the Proposition, Mh(α) = 0. But then α does not belong to the support quiver of Q, a
contradiction.

It is not too difficult to show that the support quiver of no module
without self-extensions has cyclic paths.
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5.6. The standard guide.

Given representations M,N of the quiver Q and an element e ∈ D(M,N), we have
constructed a representation W (M,N, e), or better even, an extension

ǫ(M,N, e) =






0 −→ N

[

1

0

]

−−−→W (M,N, e)
[ 0 1 ]
−−−→M −→ 0







and we know that we obtain in this way all extensions. One may ask when are two such
extensions equivalent.

For example, if we start with the quiver of tape A2 and consider
M = N the two-dimensional indecomposable representation, then
obviously all the extensions ǫ(M,N, e) are equivalent.

If M,N are representations, we consider the following linear map which we call the
standard guide ΞMN for M and N :

ΞMN :
⊕

x

Homk(Mx, Nx) −→
⊕

a

Homk(Mt(α), Nh(α)) = D(M,N),

defined by
(ΞMN (f))α = Nαft(α) − fh(α)Mα.

where f = (fx)x with k-linear maps fx : Mx → Nx. First, let us note:

Proposition. The kernel of ΞMN is Hom(M,N).

Now let us look at the cokernel. Note that if e = (eα)α is an element of the target
D(M,N) of ΞMN , then there is defined the representation W (M,N, e) and the extension
ǫ(M,N, e).

Theorem. The map e 7→ ǫ(e) yields a bijection

Cok(ΞMN ) −→ Ext1(M,N).

Under this bijection, the zero element e = 0 is sent to the split exact sequence.

Proof: The last sentence is trivial. Thus, let us prove the first sentence. We have
to understand what it means that the exact sequences ǫ(M,N, e) and ǫ(M,N, e′) are
equivalent: there has to exist a map h : W (M,N, e) →W (M,N, e′) such that the following
diagram commutes:

0 −−−−→ N

[

1

0

]

−−−−→ W (M,N, e)
[ 0 1 ]

−−−−→ M −−−−→ 0
∥

∥

∥





y
h

∥

∥

∥

0 −−−−→ N −−−−→
[

1

0

]

W (M,N, e′) −−−−→
[ 0 1 ]

M −−−−→ 0

10



For such a map h = (hx)x, the maps hx : W (M,N, e)x → W (M,N, e′)x have to be of the
form

hx =

[

1 fx
0 1

]

: hx : W (M,N, e)x = Nx ⊕Mx → Nx ⊕Mx =W (M,N, e′)x,

with fx : Mx → Nx. Now for every arrow α : x → y, we must have hyWα = W ′

αhx, or,
written in matrices:

[

1 fy
1

] [

Nα eα
Mα

]

=

[

Nα e′α
Mα

] [

1 fx
Mα

]

,

thus

e′α − e′α = Nαfx − fyMα = Ξ(f)α.

Of course, also conversely, if e′α−e
′

α = Ξ(f)α, then the extensions ǫ(M,N, e) and ǫ(M,N, e′)
are equivalent.

Remark. Since the cokernel is a vector space, we may (and will) consider also
Ext1(M,N) as a vector space.

As we have mentioned, there is a direct way to define an addition (the
Baer addition) and scalar multiplication an the set of equivalence
classes of extensions. If one uses the Baer addition on Ext1(M,N),
one has to show that the bijection established in the Theorem is in
fact a vector space isomorphism. Below we will see that the vector
space operations on Ext1(M,N) as defined here coincide with those
which we obtain when we calculate Ext1(M,N) using a projective
presentation of M , thus with the standard definition.

5.7. The standard resolution of a quiver representation.

The standard guide ΞMN can be obtained from a certain projective presentation of
M , namely the standard presentation, by applying the functor Hom(−, N). In order to
define the standard presentation of M , we define the following two projective modules:

P s(M) =
⊕

x∈Q0

P (x)⊗k Mx,

Ωs(M) =
⊕

α∈Q1

P (h(α))⊗k Mt(α).

The tensor product ⊗k which we use here, means just the following: if V is a vector space
of dimension v, then P (x)⊗k V is the direct sum of v copies of P (x); if we choose a basis
of V , we may think of the copies being indexed by the elements of the basis. Of course,
with P (x) also P (x)⊗k V is projective, for any vector space V .
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The standard resolution of M is given as follows:

0 −→ Ωs(M)
d
−→ P s(M)

p
−→M −→ 0,

where the maps are defined as follows:

p(w ⊗ a) = wa for w ∈ P (x), a ∈Mx,

d(w ⊗ a) = wα⊗ a− w ⊗ αa for w ∈ P (h(α)), a ∈Mt(α).

Proposition 1. The standard resolution of any representation M is an exact se-
quence.

The proof is just a direct calculation, fiddling around with linear combinations of
paths, see the Lecture Notes by Crawley-Boevey.

The use of the tensor product ⊗k has the following advantage: We have seen in section
4.6 that the evaluation map f 7→ fx(ex) yields an isomorphism Hom(P (x), N) → Nx. Of
course, there is also a corresponding isomorphism Homk(k,Nx) → Nx which sends φ : k →
Nx to φ(1), thus we may combine these isomorphisms (or better, the first isomorphism
which the inverse of the second) in order to obtain a canonical isomorphism

Hom(P (x), N) → Homk(k,N).

Using the tensor product ⊗k, this yields an isomorphism

η : Hom(P (x)⊗k V,N) → Homk(V,N)

for any vector space V , we call it the evaluation map.
Consider now representations M,N of the quiver Q and take the standard resolution

of M . If we apply the functor Hom(−, N) to the standard resolution of M , we obtain the
following exact sequence:

0 −→ Hom(M,N) −→ Hom(P s(M), N)
Hom(d,N)
−−−−−−→ Hom(Ωs(M), N) −→ Ext1(M,N) −→ 0.

Let us consider the evaluation maps

η0 : Hom(P s(M), N) −→
⊕

x

Homk(Mx, Nx)

η1 : Hom(Ωs(M), N) −→
⊕

a

Homk(Mt(α), Nh(α))

Here, the index x runs through the set Q0 of the vertices, the index α through the set Q1

of arrows; also, we wrote ⊗ instead of ⊗k.
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Proposition 2. Let M,N be representations of the quiver Q. The standard guide
ΞMN is just Hom(d,N), where u is the standard presentation of M , namely the following
diagram commutes:

Hom(
⊕

x P (x)⊗Mx, N)
Hom(d,N)

Hom(
⊕

α P (h(α))⊗Mt(α), N)

⊕

x Homk(Mx, Nx)
ΞMN ⊕

a Homk(Mt(α), Nh(α))

................................................................................................................ ............

........................................................................................................................................................... ............

..........................................

.....
..
.....
.....
..

..........................................

.....
..
.....
.....
..

η0 η1

Proof. Let f = (fx)x ∈
⊕

x Homk(Mx, Nx). Under the inverse of the middle map η,
we obtain the homomorphism defined by the maps P (x)⊗kMx → Nx with w⊗a 7→ wfx(a)
for w ∈ P (x) and a ∈ Mx, let us call it f

′. Under Hom(d,N), we get the homomorphism
Hom(d,N)(f ′)), let us look at its restriction to P (y)⊗Mx (where t(α) = x, and h(α) = y,
thus α : x → y), it maps ey ⊗ a first (under d) to α ⊗ a − ey ⊗ αa and then under f ′ to
αfx(a)− fy(αa), thus to Nαfx(a)− fyMα(a).

But ΞMN also sends f = (fx)x to the element of D(M,N) whose component indexed
by α : x→ y is Nαfx − fyMα.

Corollary. The maps Hom(d,N) and ΞMN have the same kernel, namely Hom(M,N)
and the same cokernel, namely Ext1(M,N).

0

0

Hom(M,N)

Hom(M,N)

Hom(P s(M), N)
Hom(d,N)

Hom(Ωs(M), N) Ext1(M,N)

Ext1(M,N)

0

0

η0 η1
⊕

x Homk(Mx, Nx)
ΞMN ⊕

aHomk(Mt(α), Nh(α))

.....................................

.....................................

..........................................

.....
..
.....
.....
..

..........................................

.....
..
.....
.....
..

.....................................

.....................................

................................. ............

................................. ............

..................................................... ............

........................................ ............

.................................................................................................... ............

................................................................... ............

............................................................ ............

........................................ ............

........................................ ............

........................................ ............

It seems to be of interest to compare the cokernel maps: we either may start (in the
upper row) with an element φ in Hom(Ωs(M), N) and form the induced exact sequence
with respect to φ, or else (in the lower row) we may take an element e ∈ D(M,N) =
⊕

α(Mt(α), Nh(α) and form the extension ǫ(M,N, e). What we obtain, for η1(φ) = e, are
exact sequences which are equivalent.
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