
6. Dynkin quivers, Euclidean quivers, wild quivers.

This last section is more sketchy, its aim is, on the one hand, to provide a short
survey concerning the difference between the Dynkin quivers, the Euclidean quivers and
the remaining ones, but also, on the other hand, to draw the attention to some important
techniques not covered in the lectures (but note that some of the definitions are not given
and several proofs are missing).

6.1. The theorems of Gabriel and Kac.

A finite dimensional algebra is said to be representation-finite provided there are only
finitely many isomorphism classes of indecomposable representations. The starting result
for the representation theory of quivers was Gabriel’s theorem:

Theorem (Gabriel). (a) A connected quiver is representation finite if and only if

it is a Dynkin quiver.

The number of the indecomposable representations for the different Dynkin types is
as follows:

An Dn E6 E7 E8

1
2n(n+ 1) n(n− 1) 36 69 120

note that the numbers do not depend on the orientation! Actually, as observed by Tits,
there is a bijection between the indecomposable representations and the positive roots of
the corresponding simple complex Lie algebra g. This bijection is furnished by the dimen-
sion vector dim (it will be introduced in section 6.2). Recall that the (finite-dimensional)
simple complex Lie algebras have been classified by Cartan, they are labeled by the Dynkin
diagrams (including also the types Bn,Cn,F4,G2, which do not play a role when dealing
with representations of quivers).

(b) If Q is a Dynkin quiver and g is the corresponding simple complex Lie algebra,

then dim yields a bijection between the set of isomorphism classes of indecomposable rep-

resentations of Q and the set of positive roots of g.

Again, this is an assertion which shows that some invariants for quiver representations
do not depend on the orientation of the quiver, namely here the dimension vectors of the
indecomposable representations. One special representation of the Dynkin quiver Q should
be mentioned: there is a unique indecomposable representation of maximal dimension, it
corresponds to the unique maximal root. For example, for type E8, the dimension vector
of the maximal indecomposable representation is

3
2 4 6 5 4 3 2

In our list of the Dynkin diagrams we have added on the right side the corresponding maxi-
mal root. It plays an important role (not only in Lie theory, but also) in the representation
theory of quivers.
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Gabriel’s theorem was extended to arbitrary finite quivers by Kac. Given any quiver
Q without loops (or better just its underlying graph Q), there is a corresponding (usually
infinite-dimensional) complex Lie algebra g, the Kac-Moody Lie algebra of type Q, as
well as a corresponding root system; here the roots are divided into two classes: the real
roots and the imaginary roots (in the special case of dealing with a Dynkin quiver, the
Kac-Moody Lie algebra of type Q is just the finite-dimensional simple Lie algebra of type
Q, and there are no imaginary roots). Kac has shown:

Theorem (Kac). If Q is a finite quiver without loops and g the corresponding Kac-

Moody Lie algebra, then dim yields a surjective map from the set of isomorphism classes

of indecomposable representations of Q onto the set of positive roots of g.
If r is a positive real root of g, then dim−1(r) is a single isomorphism class. If r

is a positive imaginary root, and k is infinite, then dim−1(r) consists if infinitely many

isomorphism classes.

Actually, there is a corresponding result also for quivers with loops, but one needs to
define the corresponding Lie algebras, or, at least, the corresponding root systems.

6.2. The Euler form.

The exact sequence

0 −→ Hom(M,N) −→
⊕

x

Homk(Mx, Nx)
Ξ
−→

⊕

a

Homk(Mt(α), Nh(α)) −→ Ext1(M,N) −→ 0

shows that the dimension difference

dimk Hom(M,N)− dimk Ext
1(M,N)

only depends on the dimensions of the various vector spaces Mx, Nx.
In order to formulate this properly, let us consider the free abelian group ZQ0 with

basis Q0, its elements will be written in the form d = (dx)x with integers dx for all x ∈ Q0.
If M is a representation of Q, then we may consider the element dimM = (dimk Mx)x as
such an element, it is called the dimension vector of M

We define on ZQ0 a bilinear form depending on the quiver Q as follows: If d, d′ ∈ ZQ0,
let

〈d, d′〉 =
∑

x∈Q0

dxd
′

x −
∑

α∈Q1

dt(α)d
′

h(α);

we are also interested in the corresponding quadratic form

q(d) = 〈d, d〉.

Proposition. If M,M ′ are representations of Q, then

〈dimM,dimM ′〉 = dimHom(M,M ′)− dimExt1(M,M ′).
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Corollary 1. If M is an exceptional representation of Q with End(M) = k, then
q(dimM) = 1.

Remark: The condition End(M) = k is actually always satisfied. We
know already that End(M) is a division ring, see section 5.4. Thus,
in case k is algebraically closed, it follows directly that End(M) = k.
However, also in general one can show that End(M) = k for any
exceptional representation of a quiver.

Corollary 2. If M is a representation with End(M) a division ring and Ext1(M,M) 6=
0, then q(dimM) ≤ 0.

Proof. Let D = End(M)op. Since Ext1(M,M) is a non-zero D-D-bimodule, the
k-dimension of Ext1(M,M) is at least dimk D, thus

q(dimM) = dimk D − dimk Ext
1(M,M) ≤ 0.

In case we deal with a quiver without cyclic paths, the group ZQ0

can be identified with the Grothendieck group K0(mod kQ) of finite-
dimension representations of Q modulo all exact sequences. Namely,
according to the Jordan-Hölder theorem, the Grothendieck group
K0(mod kQ) is the free abelian group with basis the set of isomor-
phism classes of simple kQ-modules. But if Q has no cyclic paths,
then we know that the simple representations are of the form S(x),
with x ∈ Q0, thus we may identify the basis vector of ZQ0 with in-
dex x ∈ Q0 with the isomorphism class of S(x). If we do so, then for
every representation M of the quiver, its dimension vector dimM
has as coordinate with index x just the Jordan-Hölder multiplicity
of S(x) in M .

6.3. The quadratic form of a quiver.

We have introduced in 6.2 a quadratic form q = qQ on the free abelian group ZQ0.
By definition,

q(d) =
∑

x∈Q0

d2x −
∑

α∈Q1

dt(α)dh(α).

Note that in contrast to the bilinear form 〈−,−〉, this quadratic form only depends on the
underlying graph Q of Q, and not on the orientation of the edges.

Proposition. Let Q be a finite connected quiver and q the corresponding quadratic

form.

(a) If Q is a Dynkin quiver, then q is positive definite,

(b) If Q is a Euclidean quiver, then q is positive semi-definite with radical of rank 1.semi

(c) If Q is neither a Dynkin quiver nor a Euclidean quiver, then q is indefinite.
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Proof. This is standard knowledge, say in Lie theory: the first assertions are used in
order to classify the finite-dimensional semi-simple Lie algebras, see any such book. An
elementary (and very nice) reference is the Bernstein-Gelfand-Ponomarev paper.

Here is an outline of the main steps: In the Dynkin case, one may consider the
quadratic forms case by case. A good procedure seems to be to consider first the cases An,
and then trees with a unique branching vertex c such that c has precisely three neighbors
(we may call such a graph a star with 3 arms).

Thus, let us start with the case An, with n ≥ 1:

• • • •............................................................................................. .............................................................................................. . . . . . .

1 2 n−1 n

We may rewrite the quadratic form as follows:

q(d) =
∑n−1

i=1

i
2(i+1)

(
i+1
i
di − di+1

)2

+
(
1− n−1

2n

)
d2n.

Since q(d) is written as a linear combination of squares with positive coefficients, it follows
that q is positive semi-definite. But q is even positive definite, since the n linear forms
i+1
i
di − di+1 (with 1 ≤ 1 ≤ n− 1) and dn are linearly independent.
Now we look at a star with three arms; such a graph may be obtained by starting

with three graphs of type An where n = p1, p2, p3 and identifying the vertices say on the
right to get one vertex c = p1 = (p2)

′ = (p3)
′′, here is a picture:

•

•

•

•

•

•

•

•

•

•

•

•

•

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.................................................................................................................................
........
........
........
.......
........
........
........
........
........
........
........
.......
........
.......

. . . . . . . .

. . . . . . . .

. . . . . . . .

c

1 2 p1−2 p1−1

1′ 2′ (p2−2)′ (p2−1)′

1′′ 2′′ (p3−2)′′ (p3−1)′′

Using our knowledge about the graphs of type An, we may rewrite the quadratic form for
our star as

q(d) =
∑p1−1

i=1

i
2(i+1)

(
i+1
i
di − di+1

)2

+
∑p2−1

i=1

i
2(i+1)

(
i+1
i
di′ − d(i+1)′

)2

+
∑p3−1

i=1

i
2(i+1)

(
i+1
i
di′′ − d(i+1)′′

)2

+
(
1−

p1−1

2p1
−

p2−1

2p2
−

p3−1

2p3

)
d2c .

We see that we deal with a linear combination of squares, and the decisive coefficient is
the coefficient

λ = 1−
p1−1

2p1
−

p2−1

2p2
−

p3−1

2p3
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of d2c , which can be positive, zero or negative (depending on the numbers p1, p2, p3), whereas
all the other coefficients are of the form i

2(i+1)
, thus positive. Now

λ = 1−
p1−1

2p1
−

p2−1

2p2
−

p3−1

2p3

=
2p1p2p3 − (p1 − 1)p2p3 − (p2 − 1)p1p3 − (p3 − 1)p1p2

2p1p2p3

=
−p1p2p3 + p2p3 + p1p3 + p1p2

2p1p2p3

= 1
2

(
−1 + 1

p1

+ 1
p2

+ 1
p3

)

We see that

λ > 0 ⇐⇒ 1
p1

+ 1
p2

+ 1
p3

> 1

λ = 0 ⇐⇒ 1
p1

+ 1
p2

+ 1
p3

= 1

λ < 0 ⇐⇒ 1
p1

+ 1
p2

+ 1
p3

< 1

The following is easy to see:

Lemma. The triples p1 ≤ p2 ≤ p3 with
∑

i
1
pi

> 1 are the following:

(1, p2, p3), (2, 2, p3), (2, 3, 3), (2, 3, 4), (2, 3, 5).

(the corresponding graphs are the Dynkin diagrams Ap2+p3−1,Dp3+2,E6,E7,E8).

There are precisely three triples p1 ≤ p2 ≤ p3 with
∑

i
1
pi

= 1, namely the triples

(3, 3, 3), (2, 4, 4), (2, 3, 6).

(the corresponding graphs are the Euclidean diagrams Ẽ6, Ẽ7, Ẽ8).

The reader may wonder whether the convention which we use here
(and which seems to be widely accepted) is reasonable: For example,
looking at the graph E7, we say that it has an A2-arm, an A3-arm
and an A4-arm, thus we draw the attention to the triple of numbers
(2, 3, 4) and not to (1, 2, 3) which would correspond to the optical
impression of having arms of length 1, 2, and 3. The formulae pre-
sented above, as well as many other ones which express properties of
stars with 3 arms seem to be sufficient justification.

The importance of these triples of numbers was stressed already
by Felix Klein in his book Vorlesungen über das Ikosaeder und die

Auflösung der Gleichungen vom fünften Grade (1884).

Let us turn the attention to the radical of the quadratic form q. By definition, the
radical of a quadratic form q is the set (indeed subgroup) of all elements r with q(d+ r) =
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q(d) for all vectors d. In particular, any vector r in the radical of q satisfies q(r) = 0 (but
we stress that the converse is not true). Now in our case

q(d+ r) = q(d) + q(r) + 〈d, r〉+ 〈r, d〉.

It follows that r belongs to the radical if and only if

〈e(x), r〉+ 〈r, e(x)〉 = 0,

for all vertices x ∈ Q0 (here, e(x) denotes the canonical basis vector in ZQ0, with coeffi-
cients (e(x))x = 1 and (e(x))y = 0 for y 6= x). But clearly:

〈e(x), r〉+ 〈r, e(x)〉 = 2rx −
∑

t(α)=x

rh(α) −
∑

h(α)=x

rt(α).

Thus we see that r belongs to the radical of q provided 2rx is equal to the sum of the

neighboring values ry. For example, if Q = Ẽ8, then there is the following radical vector:

3
2 4 6 5 4 3 2 1

and it generates the radical (as a subgroup of ZQ0). In our list of the Euclidean diagrams
we have added on the right side a vector r which is positive and turns out to generate the
radical. Note that in all cases we see: if we delete a vertex x with rx = 1 (one such vertex
is encircled, but usually there are several such vertices), then the graph which we obtain is
the corresponding Dynkin diagram and the restriction of r is precisely the maximal root
for the Dynkin diagram. This shows quite clearly, that for the study of the Euclidean
diagrams, the maximal root of the corresponding Dynkin diagram plays a decisive role.

6.4. Dynkin quivers.

Proposition. Let Q be a Dynkin quiver and M a representation of Q. If End(M) is
a division ring, then Ext1(M,M) = 0.

Proof: Assume that End(M) is a division ring and that Ext1(M,M) 6= 0. Then,
according to section 6.2, we have q(dimM) ≤ 0. However, q is positive definite, by 6.3.

Proposition. Let Q be a Dynkin quiver and M an indecomposable representation of

Q. Then End(M) is a division ring.

Proof: See for example the Lectures by Crawley-Boevey, section 2.

Corollary. If k is an algebraically closed field and M is an indecomposable represen-

tation of a Dynkin quiver, then q(dimM) = 1.

Note that for a positive definite quadratic form on a finitely generated free abelian
group, there are only finitely many vectors d with q(d) = 1. Thus it follows that a Dynkin
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quiver is of bounded representation type (this means that the indecomposable representa-
tions are of bounded length), and therefore representation-finite (according to Rojter who
proved the first Brauer-Thrall conjecture).

We have not yet shown that actually dim provides (for a Dynkin quiver) a bijection
between the isomorphism classes of the indecomposable representations and the positive
vectors d with q(d) = 1 (for the Dynkin graphs, the vectors d with q(d) = 1 are precisely
the positive roots of the corresponding Lie algebra). It still remains to show: For any
positive root r, there is an indecomposable, and there is up to isomorphism only one.

Definition: We say that a representation M of Q is in general position provided
dimk End(M) ≤ dimk End(M

′) for all representations M ′ with dimM = dimM ′.

Lemma. Assume that M is a representation in general position and let M = M ′⊕M ′′

be a direct decomposition. Then Ext1(M ′,M ′′) = 0.

Proof: This is a direct consequence of Proposition 5.1. Namely, if 0 → M ′ → Y →
M ′′ → 0 is a non-split exact sequence, then

dimk End(Y ) < dimk End(M
′ ⊕M ′′) = dimk End(M),

but of course dimY = dimM.

Thus, if M is in general position and M =
⊕

Mi with indecomposable representations
Mi, then Ext1(Mi,Mj) = 0 for all i 6= j.

Corollary. Let Q be a Dynkin quiver. Let r ∈ ZQ0 with q(r) = 1. Then any

representation M of Q with dimM = r which is in general position is indecomposable and

has endomorphism ring k.

Proof: Let M be a representation of Q with dimM = r which is in general position
and write it as M =

⊕
Mi with indecomposable representations Mi. As we just have seen,

Ext1(Mi,Mj) = 0 for all i 6= j. But we know that we also have Ext1(Mi,Mi) = 0 for all i,
thus Ext1(M,M) = 0. But then

1 = q(dimM) = dimk End(M)

shows that End(M) = k, thus M is indecomposable.

In particular, there exists an indecomposable representation M with dimM the max-
imal root!

6.5. More about the Dynkin quivers.

As is the last section, let us consider again a Dynkin quiver Q. We have seen that in
case k is algebraically closed, then End(M) = k for any indecomposable representation.
This is true for k an arbitrary field, but this needs some further considerations. There are
several possible proofs available, anyone provides further information.
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(a) Knitting the Auslander-Reiten quiver (case by case). If one could show from
the beginning that we deal with a quiver of finite representation type, then it would
be sufficient to know that we deal with a preprojective component (because for M in a
preprojective component, End(M) ≃ End(P ) for some indecomposable projective module,
and if P is an indecomposable projective module and Q has no cyclic paths, then End(P ) =
k).

(b) Use of the Coxeter transformation. Here, one uses only knowledge which
concerns the quadratic form. This method also shows directly that all the indecomposable
modules are determined by the dimension vector.

(c) Use of reflection functors. Here one relates the representations of quivers with
the same underlying graph but may-be different orientation to each other.

(d) Schofield induction. We know that all indecomposables are exceptional, thus
are obtained by Schofield induction from the simple kQ-modules S(x). Inductively, we see
that End(M) = k for all exceptional modules.

6.6. Euclidean quivers.

As for the Dynkin quivers, also for the Euclidean quivers the full classification of all
the indecomposable representations is known and is quite easy to overlook.

The special case of the Kronecker quiver

◦ ◦..........
.............

......................
..........................................................................

.............................................................................................
..............

...........
.

.................... ........

....

....................
............

was investigated already by Weierstrass and then solved by Kronecker in 1890.
The next case which was studied was the 4-subspace quiver D̃4, see Gelfand-Ponomarev,

1970. The solution for arbitrary Euclidean quivers is due to Donovan-Freislich and Nazarova
(1973).
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6.7. Wild quivers.

Let us deal with the following list of graphs.

•.........
.....
.....
.....
......
.......
.......
..........

.....................................................................................................................................................................................
.........
.......
......
......
......
.....
.....
.....
......
.....
.....
.....
.......
.........

.....................................................................................................................
.......
......
.....
.....
.....

L2

• •.........................................................
......
........
...............

.....................................

...................................................
........
......
.

K3

• • • • •

•

................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...........................................................................................................

......
......
......
......
......
......
......
......
......
......
......
......
......
......
..........................................................................

S5

..
..
.......................
..
..

• •..............................................................
.....
.....
......
.......
............

..............................................................................................................
........
......
.....
.....
.....

˜̃
A0

..
..
.......................
..
.. • •• ..............................................................

.....
......
.........

.................................................. ......................................................
........

.....
.....
...

˜̃
A1

..
..
.......................
..
.. • •

•

•

..................................................................
.........

.........
.........

.........
.........

.........
......................................................................................
.........
.........
.........
.........
.........
.........
.....

˜̃
A2

..
..
.......................
..
.. • •

•

•

• ..................................................................
.........

.........
.........

.........
.........

.........
......................................................................................................................................................
.........
.........
.........
.........
.........
.........
.....

˜̃
A3

..
..
.......................
..
..

• •

•

•

•

•

..................................................................
.........

.........
.........

.........
.........

.........
........................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.....

˜̃
A4

..

..
...

....................
..
.. • •

•

•

•

•

• ..................................................................
.........

.........
.........

.........
.........

.........
........................................................................................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.....

˜̃
A5

..
..
...

....................
..
.. • •

•

•

•

•

•

•

..................................................................
.........

.........
.........

.........
.........

.........
..........................................................................................................................................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.....

˜̃
A6

..
..
...

....................
..
..

•

•

•

•

•

•.............................................................................
.........
.........
.........
.........
.........
.........
..............................................................

.........
.........
.........
.........
.........
.........
.........
.........................................................................

˜̃
D4

..
..
.......................
..
.. •

•

• •

•

•

•......................................................................................................................................
.........
.........
.........
.........
.........
.........
..............................................................

.........
.........
.........
.........
.........
.........
.........
..... ....................................................................

˜̃
D5

..

..
.......................
..
.. •

•

• • •

•

•

•...............................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
..............................................................

.........
.........
.........
.........
.........
.........
.........
..... ....................................................................

˜̃
D6

..
..
.......................
..
..

•

•

• • • •

•

•

•........................................................................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
..............................................................

.........
.........
.........
.........
.........
.........
.........
..... ....................................................................

˜̃
D7

..
..
.......................
..
.. •

•

• • • • •

•

•

•.................................................................................................................................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
..............................................................

.........
.........
.........
.........
.........
.........
.........
..... ....................................................................

˜̃
D8

..
..
.......................
..
..

• • • • • •

•

•

..................................................................................................................................................................................................................................................................................................
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....

˜̃
E6

..

..
.......................
..
.. • • • • • • • •

•

....................................................................................................................................................................................................................................................................................................................................................................................................................
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
..˜̃

E7

..
..
.......................
..
..

• • • • • • • • •

•

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
..˜̃

E8

..
..
.......................
..
..
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Note that any of these graphs has at most 10 vertices.

Proposition. These are the minimal graphs with indefinite quadratic form q. Always,
there exists a vector d with positive integer coefficients such that q(d) = −1.

Proof. First, let us show the existence of the vector d. For the graph L2, we take
d = (1), of course q(1) = 12 − 2 = −1. Similarly, for K3, take d = (1, 1), we have
q(d) = 12 + 12 − 3 = −1. The remaining graphs are obtained from a Euclidean graph E
by adding a vertex ω (see the encircled vertex) and an edge connecting ω to say x. For E
there exists a vector d′ with positive integer coefficients such that d′x = 2. Namely, in the
case S5 take for d′ the positive radical generator, whereas in all the other cases take for d′

twice the positive radical generator. Let d be defined by dy = d′y for the vertices y of E
and dω = 1. Then q(d) = q(d′)+ d2ω − dxdω = 0+1− 2 = −1. Thus, always we have found
d such that q(d) = −1, in particular we see that q is indefinite.

It remains to show that any graph Q with indefinite quadratic form contains a sub-
graph in the list. Of course, as a minimal graph with indefinite quadratic form, Q has to
be connected.

If there is a vertex with at least two loops, then L2 is a subgraph. Thus, we can
assume that there is no vertex with more than one loop.

If there is a vertex x with one loop, then there have to be additional vertices, thus

there is vertex ω connected to x, thus
˜̃
A0 is a subgraph. Now we can assume that there

are no loops.

If there are multiple edges, then K3 or
˜̃
A0 has to be a subgraph. Thus we can assume

that there are no multiple edges.
If there is a cycle, then there is an elementary cycle, as well as a vertex x on this cycle

with a neighbor say ω outside the cycle, let us denote the corresponding subgraph by
˜̃
An

provided the cycle consists of n+ 1 vertices (here, ≥ 2):

• •

•

•

•

•

•

•

..................................................................
.........

.........
.........

.........
.........

.........
...............

..................
..................

........................................................................

.............................................................................
..................

...................
...........
.........
.........
.........
.........
.........
.........
.......

˜̃
An

.
.
.
.
.
.
.

For n ≥ 7, the graph
˜̃
An contains

˜̃
E7 as a subgraph, the remaining graphs

˜̃
An with

2 ≤ n ≤ 6 occur in the list. Thus we can assume that Q is a tree.

If there is a vertex with at least 4 neighbors, then S5 or
˜̃
D4 is a subgraph. Thus we

can assume that any vertex has at most three neighbors.
If there are two vertices both having three neighbors, there has to be a subgraph of

the form
˜̃
Dn (with n+ 2 vertices):

•

•

• • • •

•

•

•.............................................................................................................................................. ...................................................................................
.........
.........
.........
.........
.........
.........
..............................................................

.........
.........
.........
.........
.........
.........
.........
..... ....................................................................

˜̃
Dn

. . . . . . . . .
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If n ≥ 9, then
˜̃
Dn contains

˜̃
E7 as a subgraph. The remaining graphs

˜̃
Dn with 5 ≤ n ≤ 8

are in the list.
It remains to deal with the stars with 3 arms, say with arms Ap1

,Ap2
,Ap3

as considered

in section 6.2, where 2 ≤ p1 ≤ p2 ≤ p3. If p1 ≥ 4, or if p1 = 3 and p2 = 3, then
˜̃
E6 has to

be a subgraph. Thus p1 = 2. If p2 ≥ 4, then
˜̃
E7 has to be a subgraph. On the other hand,

if p1 = 2 and p2 = 2, then we deal with a Dynkin diagram of type D, impossible. The
cases p1 = 2, p2 = 3 remain: since the quadratic form is indefinite, we must have p3 ≥ 7,

thus
˜̃
E8 is a subgraph. This completes the proof.

A finite-dimensional k-algebra Λ is called strictly wild, provided there is a full exact
embedding of the category of finite-dimensional representations of the quiver L2 into the
category modΛ. A quiver is said to be strictly wild provided its path algebra is strictly
wild.

Theorem. If Q is a connected quiver which is neither a Dynkin quiver nor a Euclidean

quiver, then Q is strictly wild.

Sketch of proof. We use the process of simplification as outlined in Ringel, Rep-
resentations of K-species and bimodules, J.Algebra 1976. This amounts to the follow-
ing inductive procedure: given any quiver Q in the list, we have to find a finite set
N = {N1, . . . , Nt} of representations of Q such that End(Ni) = k, Hom(Ni, Nj) = 0
for all i 6= j in {1, . . . , t} (such a set may be called a set of orthogonal bricks) such that the
Ext-quiver ∆(N ) of N is already known to be strictly wild (by definition, the Ext-quiver
∆(N ) has t vertices labeled [N1], . . . , [Nt] and the number of arrows [Ni] → [Nj ] is given
by − dimk Ext

1(Ni, Nj)). We may use the Euler form in order to determine this number:
Since End(Ni) = k, we have

dimk Ext
1(Ni, Ni) = −q(dimNi) + 1,

dimk Ext
1(Ni, Nj) = −〈dimNi,dimNj〉 for i 6= j.

We distinguish five cases.

(1) K3. Let Q be a quiver of type K3, let N be any two-dimensional indecomposable
representation of Q and N = {N}. Since q(dimN) = −1, we see that ∆(N ) = L2.

(2)
˜̃
A0, say with subspace arm, thus we consider the quiver

◦ ◦...................................................................

......
......
.......
...........

...........................................................................................................................................
........
......
......
....
...............

............

Q

Let N be the following representation of Q

k2 k..............................................................................................................

.....
......
......
.......
........

...........
.............................................................................................................................................................................................................
..........
.......
.......
......
......
......
...............

............

[
0

1

]
[
0 1

0 0

]

One easily checks that End(N) = k. Also here, let N = {N}. Then dimk Ext
1(N,N) = 2,

thus again ∆(N ) = L2. In case the arm has factor space orientation, we proceed similarly.
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(3)
˜̃
An with n ≥ 1. Let Q be such a quiver, thus Q is obtained form a quiver Q′ of type

Ãn by adding an A2-arm. Let ω be the vertex outside Q′. Let N be any indecomposable
thin representation of Q′ with Ny = k for all vertices y of Q′, and N = {N, S(ω)}. Then

∆(N ) is a quiver of type
˜̃
A0.

(4) The cases
˜̃
Dn and

˜̃
Em with 4 ≤ n ≤ 8 and 6 ≤ m ≤ 8. These quivers are obtained

from a Dynkin quiver Q′ by adding an A3-arm in a vertex x of Q′, say

x y zQ′ ........................................... ...........................................

......................................................................................................................................................................
....................

...............
...........

.........
.......
......
.....
.....
......
.......
........
..........
..............

..................
.................................

..............................................................................................................................................

Let N be the maximal indecomposable representation of Q′ and note that in all cases
dimk Nx = 2. It follows that ∆(N ) is of the following form

[N ] [S(y)] [S(z)]...........................................................................................................
..........
.............

......................
...................................................................

........................................................................................
.............

..........
.

thus of type
˜̃
A1.

(5) S5. Here we deal with a quiver obtained from a Dynkin quiver Q′ by adding two
A2-arms in a vertex x ∈ Q′

0.

x

y

z

Q′ ..........
..........
..........
..........
........

................................................

.....................................................................................................................................................................
.....................

..............
...........

.........
.......
......
.....
.....
......
......
........
..........
.............
.................

............................
.......................................................................................................................................................

In our case S5, the subquiver Q′ is of type D4. Again, we consider the maximal indecom-
posable representation N of Q′ and note that in our case dimk Nx = 2. It follows that
∆(N ) is of the following form

[N ]

[S(y)]

[S(z)]

.................................
.................

.............
...........
.........
........
.......
.......
.......
......
....

......
......
......
.......
.......
.........
..........
...........
.............
..................

.............................

..........................................................................................................................

..........................................................................................................................

thus it contains a subquiver of type
˜̃
A1.
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Appendix

4.7. Review of some known results from the theory of rings and modules.

We want to recall two basic results which concern modules of finite length over any
ring R. The modules to be considered are R-modules.

Let M be a module. A composition series of M is a chain

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mt = M

of submodules (a “filtration” of M) such that all the factors Mi/Mi−1 with 1 ≤ i ≤ t are
simple. The number t is called the length of the composition series.

Jordan-Hölder Theorem. Assume that two composition series of M are given:

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Ms = M,

0 = M ′

0 ⊆ M ′

1 ⊆ M ′

2 ⊆ · · · ⊆ M ′

t = M.

Then s = t and there is a permutation π of the set {1, 2, . . . , s} such that the modules

Mi/Mi−1 and M ′

π(i)/M
′

π(i)−1 are isomorphic, for 1 ≤ i ≤ s.
In addition, for any filtration

0 = M ′′

0 ⊆ M ′′

1 ⊆ M ′′

2 ⊆ · · · ⊆ M ′′

r = M.

with proper inclusions M ′′

i−1 ⊂ M ′′

i for all 1 ≤ i ≤ r, we have r ≤ t.

On the basis of this result, one introduces the following definitions: If M has a compo-
sition of length t, then one calls t the length of M and one calls the factors of a composition
series the composition factors of M . If there is given a composition series

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Ms = M

of M , and S a simple module, then one calls the number of factors Mi/Mi−1 which are
isomorphic to S the Jordan-Hölder multiplicity of S in M .

Theorem of Krull-Remak-Schmidt. Let M be a module of finite length, and

assume that there are given two direct decompositions:

M = M1 ⊕M2 ⊕ · · · ⊕Ms, and M = M ′

1 ⊕M ′

2 ⊕ · · · ⊕M ′

t ,

such that all the modules Mi,M
′

j with 1 ≤ i ≤ s, 1 ≤ j ≤ t are indecomposable. Then s = t
and there is a permutation π of the set {1, 2, . . . , s} such that the modules Mi and M ′

π(i)

for 1 ≤ i ≤ s are isomorphic.

The proof is based on the following Lemma which is of independent interest:

Fitting Lemma. Let M be an indecomposable module of finite length. Then the

endomorphism ring of M is a local ring with nilpotent radical.
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