http://www.math.uni-bielefeld.de/birep/la2/

1. Seien $B_1, B_2 \in GL(n, K)$. Es ist

$$f(B_1B_2) = A^{-1}B_1B_2A = A^{-1}B_1A^{-1}AB_2A = f(B_1)f(B_2).$$

- 2. Richtig ist nur (4).
- **3.** Sei v Eigenvektor von AB mit Eigenwert $\lambda \neq 0$. Aus $ABv = \lambda v$ folgt $BA(Bv) = \lambda Bv$. Wäre Bv = 0, so auch $\lambda v = ABv = 0$, also $\lambda = 0$, dies haben wir ausgeschlossen. Also ist Bv ein Eigenvektor von BA mit Eigenwert λ .
- **4.** Richtig sind die Aussagen (2) und (4).
- 5. Zum Beispiel $u = -T^2 + 1$ und v = T, denn h = T + 1 und

$$(-T^2+1)(T^3+T^2+T+1)+T(T^4+T^3)=T+1.$$

(Um u, v zu finden, verwendet man den Euklidischen Algorithmus.)

6. Sei $v \in V$. Es ist v = p(v) + (-p(v) + v). Natürlich ist $p(v) \in p(V)$, und wegen $p(-p(v) + v) = -p^2(v) + p(v) = -p(v) + p(v) = 0$ ist $-p(v) + v \in \text{Kern}(p)$.

Anderer Beweis: Das Minimalpolynom von p ist ein Teiler von $T^2 - T = T(T-1)$, also ist p diagonalisierbar und es gilt $V = \text{Eig}(p;1) \oplus \text{Eig}(p;0)$. Immer gilt Eig(p;0) = Kern(p), und $\text{Eig}(p,1) \subseteq p(V)$, also folgt $V = \text{Eig}(p;1) + \text{Eig}(p;0) \subseteq \text{Kern}(p) + p(V)$ und natürlich gilt auch $\text{Kern}(p) + p(V) \subseteq V$.

7.

$$\begin{bmatrix} 0 & 1 & 0 & & \\ & 0 & 0 & & \\ & & 0 & & \\ & & & 1 & \\ & & & & -1 \end{bmatrix}$$

(Es ist $\chi_A = T^3(T+1)(T-1)$, also gibt es die drei Nullstellen 0, 1, -1 wobei 0 eine dreifache Nullstelle ist. Das Minimalpolynom zeigt, dass (2, 1) die Partition zum Eigenwert 0 ist.)

- **8.** Da f nilpotent ist, ist f ähnlich zu einer Matrix der Form J(p) für eine Partition $p = (p_1, \ldots, p_t)$. Da der Kern von f eindimensional ist, ist t = 1, also wird f durch den Jordanblock J(p) beschrieben, insbesondere ist $f^{n-1} \neq 0$. Wähle $v \in V$ mit $f^{n-1}(v) \neq 0$.
- 9. Zum Beispiel:

$$\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

(Gesucht sind drei Matrizen der Form $\begin{bmatrix} a & 1-a \\ c & 1-c \end{bmatrix}$, die verschieden von der Einheitsmatrix sind; die drei hier notierten erhält man für $(a,c)=(0,0),\ (1,1),\ (0,1).$)

- **10.** Richtig sind (1) und (2).
- 11. Wäre das Polynom nicht irreduzibel, so hätte es eine Nullstelle. Aber weder 0 noch 1 ist eine Nullstelle (und dies sind die einzigen Elemente von \mathbb{F}_2).
- **12.** Beweis: Natürlich gilt $U \supseteq U_1 + (U \cap U_2)$. Zu zeigen ist also $U \subseteq U_1 + (U \cap U_2)$. Sei $u \in U$. Schreibe $u = u_1 + u_2$ mit $u_i \in U_1, u_2 \in U_2$. Es ist $u_2 = u u_1$. Nach Voraussetzung ist $u \in U$. Wegen $U_1 \subseteq U$ ist auch $u_1 \in U$, also ist $u_2 = u u_1 \in U$. Demnach ist $u = u_1 + u_1 \in U_1 + (U \cap U_2)$.
- **13.** Es ist

$$A = \frac{1}{2}(A + A^t) + \frac{1}{2}(A - A^t),$$

und offensichtlich ist die Matrix $\frac{1}{2}(A+A^t)$ symmetrisch, die Matrix $\frac{1}{2}(A-A^t)$ schiefsymmetrisch.

14. $b=-i,\ a=\frac{1}{2}\sqrt{2}\omega$ mit $|\omega|=1$, also zum Beispiel:

$$\frac{1}{2}\sqrt{2}\begin{bmatrix}1 & -i\\ i & -1\end{bmatrix}, \quad \frac{1}{2}\sqrt{2}\begin{bmatrix}-1 & i\\ -i & 1\end{bmatrix}, \quad \frac{1}{2}\sqrt{2}\begin{bmatrix}i & 1\\ -1 & -i\end{bmatrix}, \quad \frac{1}{2}\sqrt{2}\begin{bmatrix}-i & -1\\ 1 & i\end{bmatrix}$$

(hier ist $\omega = 1, -1, i, -i$).

15. Zum Beispiel $v = [1 \ 0 \ -1]^t$.