Einschub (Nachtrag zur LA I): Komplementärbasen.

Sei V ein Vektorraum, U ein Unterraum. Eine Folge (v_1,\ldots,v_t) von Vektoren aus V heißt linear unabhängig modulo U, falls folgendes gilt: sind p_i Skalare in K und ist $\sum_{i=1}^t p_i v_i \in U$, so sind alle $p_i = 0$. Die Folge (v_1,\ldots,v_t) von Vektoren aus V heißt Komplement "arbasis" zu U in V, falls erstens die Folge (v_1,\ldots,v_t) linear unabhängig modulo U ist, und zweitens U zusammen mit den Vektoren v_1,\ldots,v_t den Vektorraum V erzeugt.

- (1) Die Folge (v_1, \ldots, v_t) ist genau dann linear unabhängig modulo U, wenn erstens diese Folge linear unabhängig ist und zweitens $U \cap L(v_1, \ldots, v_t) = 0$ gilt.
- (2) Die Folge $(v_1, ..., v_t)$ ist genau denn eine Komplementärbasis zu U in V, wenn erstens diese Folge linear unabhängig ist, und zweitens $U \oplus L(v_1, ..., v_t) = V$ gilt.
- (3) Sei (u_1, \ldots, u_s) eine Basis von U. Die Folge (v_1, \ldots, v_t) ist genau denn eine Komplementärbasis zu U in V, wenn $(u_1, \ldots, u_m, v_1, \ldots, v_t)$ eine Basis von V ist.
- (4) Sei V endlich-dimensional. Sei U ein Unterraum von V. Eine Folge von Vektoren in V, die linear unabhängig modulo U ist, lässt sich zu einer Komplementärbasis zu U in V ergänzen.
- (5) Sei V endlich-dimensional. Ist (v_1, \ldots, v_t) eine Folge in V, die linear unabhängig modulo U ist, so ist

$$t < \dim V - \dim U$$
.

Ist (v_1, \ldots, v_t) eine Komplementärbasis zu U in V, so ist

$$t = \dim V - \dim U$$
.

Sind Unterräume V_i $(0 \le i \le m)$ von V gegeben und gilt

$$0 = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_{m-1} \subset V_m = V$$

so nennt man dies eine Kette von Unterräumen.

(6) Ist eine Kette

$$0 = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_{m-1} \subset V_m = V$$

von Unterräumen gegeben, und sind $(v_{i,1}, \ldots, v_{i,n_i})$ Folgen von Vektoren in V_i , so gilt: Ist $(v_{i,1}, \ldots, v_{i,n_i})$ eine Komplementärbasis zu V_{i-1} in V_i , für $1 \le i \le m$, so ist die Folge

$$(v_{1,1},\ldots,v_{1,n_1},v_{2,1},\ldots,v_{2,n_2},\ldots,v_{m,1},\ldots,v_{m,n_m})$$

eine Basis von V ist.

Zusatz. Wir haben hier vermieden, den Begriff des Quotientenraums zu verwenden. Natürlich gilt: Ist U ein Unterraum von V, und ist $\pi\colon V\to V/U$ die kanonische Abbildung von V auf den Quotientenraum V/U, so sind die Elemente $v_1,\ldots,v_t\in V$ genau dann linear unabhängig modulo U, wenn $\pi(v_1),\ldots,\pi(v_t)$ linear unabhängig in V/U sind. Und $v_1,\ldots,v_t\in V$ ist genau dann eine Komplementärbasis zu U in V, wenn $\pi(v_1),\ldots,\pi(v_t)$ eine Basis von V/U ist.

4.8. Nilpotente Matrizen, nilpotente Endomorphismen.

4.8.1. Partitionen und Young-Diagramme.

Partition. Sei n eine natürliche Zahl. Eine Partition von n ist eine Folge $p = (p_1, \ldots, p_t)$ von natürlichen Zahlen p_i , so dass gilt $p_1 \geq p_2 \geq \cdots \geq p_t \geq 1$ und $\sum_i p_i = n$. (Manchmal ist es sinnvoll, die Folge p_1, \ldots, p_t durch Nullen fortzusetzen, also $p_i = 0$ für i > t zu schreiben.)

Young-Diagramm. Jeder Partition ordnet man ein sogenanntes Young-Diagramm zu: man betrachtet ein Kästchenmuster mit t Kästchenreihen, linksbündig untereinander gesetzt, wobei die i-te Reihe aus p_i Kästchen besteht. Analog zur Indizierung der Positionen in einer Matrix kann man diese Kästchen durch die Pare (i,j) mit $1 \le j \le p_i$ und $1 \le i \le t$ indizieren, wie setzen also $Y(p) = \{(i,j) \in \mathbb{N}_1 \times \mathbb{N}_1 \mid 1 \le i \le t, \ 1 \le j \le p_i\}$ und nennt dies das Young-Diagramm zu p. Beispiel: Das Young-Diagramm zur Partition p = (5, 4, 4, 2, 1, 1) hat die Form

Noch einmal: Ein Young-Diagram Y ist also eine endliche Teilmenge $Y \subset \mathbb{N}_1 \times \mathbb{N}_1$ mit folgenden beiden Eigenschaften:

- (a) Ist $(i,j) \in Y$ und i > 1, so ist $(i-1,j) \in Y$.
- (b) Ist $(i, j) \in Y$ und j > 1, so ist $(i, j 1) \in Y$.

Ist Y ein Young-Diagramm, und ist p_i die Anzahl der Zahlen j mit $(i,j) \in Y$, so ist $p = (p_1, p_2, ...)$ eine Partition und es ist Y = Y(p).

Duale Partition. Ist Y ein Young-Diagram, so ist $Y' = \{(j,i) \mid (i,j) \in Y\}$ ebenfalls ein Young-Diagramm, man nennt es das duale Young-Diagramm. Ist p die Partition mit Y = Y(p), und Y' = Y(p'), so nennt man p' die zu p duale Partition. Ist p eine Partition, so kann man p' wie folgt bestimmen: Es ist $p'_j = |\{i \mid p_i \geq j\}|$ (denn dies ist im Young-Diagramm gerade die Anzahl der Kästchen in der j-ten Spalte). Mit p ist auch p' eine Partition von p und es gilt p eine Partition von p eine Partition von p und es gilt p eine Partition von p eine

Beispiel: Die zu p = (5, 4, 4, 2, 1, 1) duale Partition ist p' = (6, 4, 3, 3, 1).

Links ist gestrichelt eine Gerade eingezeichnet: man erhält das Young-Diagramm von p' aus dem Young-Diagramms von p durch Spiegelung an dieser Geraden.

Man nennt eine Partition p selbst-dual, wenn p' = p gilt. Zum Beispiel ist p = (3, 1, 1) selbst-duale Partition.

Ist Y ein Young-Diagramm, so wollen wir die Kästchen durchnummerieren, und zwar zeilenweise, von links nach rechts, und von oben nach unten:

(1,1) $(1,2)$ $(1,3)$ $(1,4)$ $(1,5)$	1	2	3	4	5
(2,1) $(2,2)$ $(2,3)$ $(2,4)$	6	7	8	9	
(3,1) $(3,2)$ $(3,3)$ $(3,4)$	10	11	12	13	
(4,1) (4,2)	14	15			•
(5,1)	16		-		
(6,1)	17				

jeder Position (i,j) haben wir auf diese Weise eine Zahl $\nu(i,j)$ zugeordnet, ν ist eine Bijektion zwischen der Menge $\{(i,j) \mid 1 \leq j \leq p_i, \ 1 \leq i \leq t\}$ und $\{1,2,\ldots,n\}$. Natürlich können wir ν durch eine Formel festlegen: es ist $\nu(i,j) = j + \sum_{r < i} p_r$.

4.8.2. Der nilpotente Endomorphismus f_p zur Partition p.

Jeder Partition p von n ordnet man einen Endomorphismus $f_p \colon K^n \to K^n$ wie folgt zu. Man benennt die kanonischen Basisvektoren e_1, \ldots, e_n um, und zwar setzt man $e_{ij} = e_{ij}^{(p)} = e_{\nu(ij)}$. Setze

$$f_p(e_{ij}) = \begin{cases} e_{i,j-1} & j > 1, \\ & \text{falls} \\ 0 & j = 1. \end{cases}$$

Wir ordnen der Partition p auch eine $(n \times n)$ -Matrix J(p) zu (die Jordan-Matrix zur Partition p mit Eigenwert 0), hier als typisches Beispiel der Fall p = (5, 4, 4, 2, 1, 1):

wobei alle weiteren Einträge Nullen sind. Die allgemeine Regel lautet: es ist $J(p) = (a_{ij})_{ij}$ mit $a_{r,r+1} = 1$ für alle r, die nicht von der Form $\sum_{i \leq s} p_i$ sind, und $a_{ij} = 0$ sonst. Entlang der Diagonale sind also entsprechende $(p_i \times p_i)$ -Matrizen aufgereiht.

Natürlich ist J(p) die Matrizendarstellung von f_p bezüglich der kanonischen Basis des K^n .

4.8.3. Satz. Sei p eine Partition. Für jede natürliche Zahl s gilt

$$Kern(f_p^s) = L(e_{ij} \mid 1 \le j \le s).$$

Beweis: Sei $U = L(e_{ij} \mid 1 \leq j \leq s)$ und $g = f_p^s$. Offensichtlich gilt: $U \subseteq \text{Kern } g$ (denn nach Definition ist $f_p^j(e_{ij}) = 0$; ist also $j \leq s$, so ist $g(e_{ij}) = f_p^s(e_{ij}) = f_p^{s-j}f_p^j(e_{ij}) = f_p^{s-j}(0) = 0$).

Es reicht also zu zeigen: $\dim \operatorname{Kern}(g) \leq \dim U$ (denn wäre U ein echter Unterraum von $\operatorname{Kern}(g)$, so wäre $\operatorname{Kern}(g) > \dim U$). Ist $(i,j) \in Y(p)$ und j > s, so ist $e_{i,j-s} \in Y(p)$ and gehört zum Bild von g (denn $g(e_{ij}) = f_p{}^s(e_{ij}) = e_{ij-s}$). Ist also r der Rang von g, so ist

$$r \ge \sum_{j>s} p_j' = n - \sum_{j \le s} p_j'.$$

Die Dimensionsformel für Kern und Bild eines Endomorphismus besagt: dim Kern(g)+r=n, also ist

$$\dim \operatorname{Kern}(g) = n - r \le \sum_{j \le s} p'_j.$$

Damit ist das Lemma bewiesen.

4.8.4. Folgerung 1.

$$\dim \operatorname{Kern}(f_p^s) - \dim \operatorname{Kern}(f_p^{s-1}) = p_s'.$$

Beweis: Lemma 4.8.3 liefert dim $\operatorname{Kern}(f_p^s) = \sum_{j=1}^s p_j'$, daraus folgt die Behauptung.

Folgerung 2. Seien p,q Partitionen von n. Ist $p \neq q$, so sind die Matrizen J(p) und J(q) nicht ähnlich.

Beweis: Angenommen, die Matrizen J(p) und J(q) sind ähnlich. Dann sind auch die Matrizen $J(p)^s$ und $J(q)^s$ für jedes s ähnlich. Sind aber Matrizen A, B ähnlich, so haben die Kerne der linearen Abbildungen f_A und f_B die gleiche Dimension. Es ist $f_{J(p)^s} = f_p^s$ und $f_{J(q)^s} = f_q^s$. Wir verwenden nun Folgerung 1:

$$p_s' = \dim \operatorname{Kern}(f_p^s) - \dim \operatorname{Kern}(f_p^{s-1}) = \dim \operatorname{Kern}(f_q^s) - \dim \operatorname{Kern}(f_q^{s-1}) = q_s'.$$

Da $p'_s = q'_s$ für alle s gilt, ist p' = q', also p = q.

4.8.5. Satz 2. Sei K ein Körper. Zu jeder nilpotenten $(n \times n)$ -Matrix A mit Koeffizienten in K gibt es eine Partition p von n, so dass A und J(p) ähnlich sind.

Zweite Formulierung. Ist V ein n-dimensionaler K-Vektorraum, und ist $f: V \to V$ nilpotenter Endomorphismus, so gibt es eine Basis \mathcal{B} von V und eine Partition p von n mit $M_{\mathcal{B}}^{\mathcal{B}}(f) = J(p)$.

Zusatz (bezogen auf die zweite Formulierung): Die Partition p kann folgendermaßen berechnet werden: Die zu p duale Partition p' ist durch

$$p'_{j} = \dim \operatorname{Kern}(f^{j}) - \dim \operatorname{Kern}(f^{j-1})$$

für alle $j \ge 1$ gegeben; aus p' erhält man p = (p')'.

Beachte: Die Partition p ist wegen der Folgerung 2 eindeutig, dagegen ist die Basis \mathcal{B} nicht eindeutig bestimmt!

Beweis. Sei $f: V \to V$ nilpotenter Endomorphismus, sei dim V = n.

Ziel: Wir suchen eine Partition $p = (p_1, \ldots, p_t)$ von n und eine Basis \mathcal{B} von V, sodass gilt $M_{\mathcal{B}}^{\mathcal{B}}(f) = J(p)$. Das bedeutet, dass wir die Elemente der Basis \mathcal{B} in der Form v_{ij} mit $1 \leq i \leq t$, und $1 \leq j \leq p_i$ schreiben können, sodass gilt:

$$f(v_{ij}) = \begin{cases} v_{i,j-1} & j > 1, \\ & \text{falls} \\ 0 & j = 1. \end{cases}$$

Statt p werden wir zuerst die zu p duale Partition p' konstruieren (um daraus vermöge p = (p')' auf p zu schließen. In der Tat lässt sich p' recht einfach berechnen!

Beginn des Beweises. Sei etwa $f^r = 0$. Dann gilt:

- Kern $f^0 = 0$.
- Kern $f^{j-1} \subseteq \text{Kern } f^j$ für $1 \le j \le r$.
- Kern $f^r = V$.

Wir werden mit folgender Unterraumkette

$$0 = \operatorname{Kern}(f^0) \subseteq \operatorname{Kern}(f) \subseteq \operatorname{Kern}(f^2) \subseteq \cdots \subseteq \operatorname{Kern}(f^{r-1}) \subseteq \operatorname{Kern}(f^r) = V.$$

arbeiten. Setzen wir

$$p'_j = \dim \operatorname{Kern}(f^j) - \dim \operatorname{Kern}(f^{j-1}),$$

so sehen wir, dass $p_j' \ge 0$ gilt. Noch wissen wir nicht, dass es sich bei $p' = (p_1', p_2', \dots)$ um eine Partition handelt (dass also jeweils $p_j' \ge p_{j+1}'$ gilt); dies wird aber als erstes bewiesen werden.

4.8.7. Lemma. Sei f nilpotenter Endomorphismus von V, sei $j \geq 2$. Sei (v_1, \ldots, v_s) eine Folge von Elementen in $\operatorname{Kern}(f^j)$, die modulo $\operatorname{Kern}(f^{j-1})$ linear unabhängig ist. Dann ist $(f(v_1), \ldots, f(v_s))$ eine Folge von Elementen in $\operatorname{Kern}(f^{j-1})$, die modulo $\operatorname{Kern}(f^{j-2})$ linear unabhängig ist.

Beweis: Jedes Element $f(v_i)$ gehört zu Kern (f^{j-1}) , denn $f^{j-1}f(v_i) = f^j(v_i) = 0$. Seien nun Elemente $c_i \in K$ gegeben, so dass $\sum_i c_i f(v_i)$ zu Kern (f^{j-2}) gehört. Dann gehört $\sum_i c_i v_i$ zu Kern (f^{j-1}) , denn

$$f^{j-1}(\sum_{i} c_i v_i) = f^{j-2}f(\sum_{i} c_i v_i) = f^{j-2}(\sum_{i} c_i f(v_i)) = 0.$$

Da die Folge (v_1, \ldots, v_s) modulo Kern f^{j-1} linear unabhängig ist, folgt $c_i = 0$ für $1 \le i \le s$.

Wir haben $p'_j = \dim \operatorname{Kern}(f^j) - \dim \operatorname{Kern}(f^{j-1})$ gesetzt. Aus dem Lemma folgt sofort:

Folgerung. p' ist eine Partition.

Beweis: Sei (v_1,\ldots,v_s) eine Komplementärbasis zu $\operatorname{Kern}(f^{j-1})$ in $\operatorname{Kern}(f^j)$, also $s=p'_j$. Sei $j\geq 2$. Das Lemma besagt, dass $(f(v_1),\ldots,f(v_s))$ zu $\operatorname{Kern}(f^{j-1})$ gehören, und linear unabhängig modulo $\operatorname{Kern}(f^{j-2})$ sind. Also ist $s\leq p'_{j-1}$. Wir sehen also: $p'_j\leq p'_{j-1}$.

Da p' eine Partition ist, ist auch p = (p')' eine Partition.

4.8.8. Nun beginnen wir mit dem eigentlichen Beweis von Satz 2. Wir konstruieren induktiv Komplementärbasen $(v_{1,j}, \ldots, v_{p'_j,j})$ zu $\operatorname{Kern}(f^{j-1})$ in $\operatorname{Kern}(f^j)$, und zwar in absteigender Folge, wir beginnen also mit j=r, dann kommt j=r-1, und so weiter, bis schließlich j=1.

Induktionsanfang: Wähle eine beliebige Komplementärbasis

$$(v_{1,r},\ldots,v_{p'_r,r})$$

zu Kern (f^{r-1}) in Kern $(f^r) = V$.

Induktionsschritt: sei schon $(v_{1,j},\ldots,v_{p'_j,j})$ konstruiert, dies sei also eine Komplementärbasis zu $\operatorname{Kern}(f^{j-1})$ in $\operatorname{Kern}(f^j)$, für ein $1 \leq j \leq r$. Ist $2 \leq j$, so wende f an, wir erhalten eine Folge $(f(v_{1,j}),\ldots,f(v_{p'_j,j}))$, die nach dem Lemma in $\operatorname{Kern}(f^{j-1})$ liegt und modulo $\operatorname{Kern}(f^{j-2})$ linear unabhängig ist. Wir setzen

(*)
$$v_{i,j-1} = f(v_{i,j})$$
 für $1 \le i \le p'_i$.

Wir können diese Folge $(v_{1,j-1},\ldots,v_{p'_i,j-1})$ zu einer Komplementärbasis

$$(v_{1,j-1},\ldots,v_{p'_j,j-1},v_{p'_j+1,j-1},\ldots,v_{p'_{j-1},j-1})$$

zu $Kern(f^{j-2})$ in $Kern(f^{j-1})$ fortsetzen.

Die Elemente $v_{i,j}$ mit $1 \leq i \leq p'_j$ und $1 \leq j \leq r$ bilden eine Basis von V und (*) zeigt, dass die Wirkung von f auf dieser Basis genau der Wirkung von J(p) auf den Basiselementen $e_{ij}^{(p)}$ entspricht. Damit ist Satz 2 bewiesen.

4.8.9. Folgerung. Sei $A \in M(n \times n, K)$. Die folgenden Aussagen sind äquivalent:

- (i) A ist nilpotent.
- (ii) A ist ähnlich zu einer Matrix der Form J(p), mit p Partition von n.
- (iii) $\chi_A = T^n$.
- (iv) $A^n = 0$.

Beweis: (i) \implies (ii): Dies wurde gerade bewiesen. (ii) \implies (iii): Ist A ähnlich zu J(p), so ist $\chi_A = \chi_{J(p)} = T^n$. (iii) \implies (iv): Dies folgt aus dem Satz von Cayley-Hamilton.

Hier alle Partitionen p von n=5 und die zugehörigen Young-Diagramme und die Jordanmatrizen J(p):

Sei A eine nilpotente Matrix mit Koeffizienten im Körper K. Der Beweis von Satz 2 liefert ein effektives Verfahren, um nicht nur die Partition p zu finden, sodass A und J(p) ähnlich sind (wie im Zusatz formuliert), sondern auch, um eine invertierbare Matrix P angeben zu können mit $P^{-1}AP = J(p)$.

4.8.10. Beispiel. Sei

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & -2 & 1 & -1 \\ 0 & -1 & 0 & 0 \\ -2 & 4 & -2 & 2 \end{bmatrix}.$$

Sei $f = f_A : V \to V$, mit $V = K^4$. Es ist

$$V_1 = \operatorname{Kern}(f) = L(\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}), \quad V_2 = \operatorname{Kern}(f^2) = L(\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}),$$

und Kern $f^3 = V$. Insbesondere ist A nilpotent. Wir sehen also:

$$p'_1 = \dim \text{Kern}(f) = 2,$$

 $p'_2 = \dim \text{Kern}(f^2) - \dim \text{Kern}(f) = 3 - 2 = 1,$
 $p'_3 = \dim \text{Kern}(f^3) - \dim \text{Kern}(f^2) = 4 - 3 = 1.$

27

Also

$$p' = (2, 1, 1),$$
 daher $p = (3, 1).$

Wähle $v_{13} \in V \setminus V_2$, zum Beispiel $v_{13} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. Wir berechnen

$$v_{12} = Av_{13} = \begin{bmatrix} 0\\1\\0\\-2 \end{bmatrix}$$
 und $v_{11} = Av_{12} = \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}$.

Wir ergänzen v_{11} durch einen Vektor $v_{21} \in V_1$ zu einer Basis von V_1 , zum Beispiel wählen wir $v_{21} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. Dann haben wir also Vektoren v_{ij} konstruiert, die in das Young-

Diagramm zur Partition p = (3,1) passen:

Die Matrix P habe als Spalten die Vektoren $v_{11}, v_{12}, v_{13}, v_{21}$ (in dieser Reihenfolge), also

$$P = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -2 & 0 & 1 \end{bmatrix}.$$

Dann gilt

$$P^{-1}AP = J((3,1)).$$

Nach Konstruktion muss dies richtig sein (wenn wir uns nicht verrechnet haben). Überflüssig: Man kann dies natürlich nachträglich verifizieren; berechnet man

$$P^{-1} = \begin{bmatrix} 0 & 2 & -1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -2 & 1 & -1 \\ 0 & 2 & 0 & 1 \end{bmatrix},$$

so sight man:

$$\begin{bmatrix} 0 & 2 & -1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -2 & 1 & -1 \\ 0 & 2 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & -2 & 1 & -1 \\ 0 & -1 & 0 & 0 \\ -2 & 4 & -2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Die Verifikation kann man viel einfacher vornehmen: Statt P^{-1} zu berechnen und die beiden Multiplikationen $P^{-1} \cdot A \cdot P$ vorzunehmen, reicht es zu zeigen, dass gilt

$$AP = PJ((3,1))$$

und dass P invertierbar ist. Offensichtlich entsteht PJ((3,1)) aus P, indem einige Spalten von P nach rechts verschoben werden, und die übrigen Spalten durch Nullen ersetzt werden (genauer: die erste und die zweite Spalte werden jeweils um eine Spalte nach rechts verschoben, die neue erste und die vierte Spalte sind Nullspalten). Genau dies ist aber die Wirkung von A auf die Spalten $v_{11}, v_{12}, v_{13}, v_{21}$ von P: es ist

$$Av_{11} = 0$$
, $Av_{12} = v_{11}$, $Av_{13} = v_{12}$, $Av_{21} = 0$.

Zusatz (ebenfalls überflüssig). Satz 1 beschreibt den Kern von f_p^s . Im Beweis des Satzes haben wir auch das Bild von f_p^s beschrieben:

$$\operatorname{Im}(f^s) = L(e_{ij} \mid 1 \le i \le t, \ 1 \le j \le p_i - s).$$

Hier einige Bilder dazu:

