5.4. Unitäre Endomorphismen und unitäre Matrizen.

Lemma. Die folgenden Eigenschaften sind für eine Matrix $A \in M(n \times n, \mathbb{C})$ äquivalent:

- (i) A ist invertierbar und $A^{-1} = \overline{A}^t$.
- (ii) $\overline{A}^t A = E_n$.
- (iii) $A\overline{A}^t = E_n$.
- (ii') Die Spalten von A bilden eine Orthonormalbasis des kanonischen unitären Raums \mathbb{C}^n .
- (iii') Die Zeilen von A (transponiert) bilden eine Orthonormalbasis des kanonischen unitären Raums \mathbb{C}^n .

Falls diese Eigenschaften gelten, nennt man die Matrix A unitär.

Ist A eine unitäre Matrix, so ist $|\det A| = 1$. (Denn es ist $\det \overline{A} = \overline{\det A}$, also $1 = \det A^{-1}A = \det(\overline{A}^t \cdot A) = \overline{d} \cdot d$ mit $d = \det A$).

Beispiele:

(a) Die unitären 2×2 -Matrizen. Als erste Spalte nimmt man einen beliebigen normierten Vektor in \mathbb{C}^2 . Also: man nimmt einen Vektor $v \neq 0$ in \mathbb{C}^2 und normiert ihn, bildet also $v_1 = \frac{1}{||v||}v$. Sei die erste Spalte $[a\ c]^t$. Dann kann man als zweite Spalte $[-\overline{c}\ \overline{a}]^t$ nehmen, oder allgemeiner: $\omega[-\overline{c}\ \overline{a}]^t$, wobei $\omega \in \mathbb{C}$ den Betrag 1 haben muss. Auf diese Weise erhält man alle unitären (2×2) -Matrizen. (Die erste Spalte v_1 haben wir ja so allgemein wie nur möglich gewählt. Die zweite Spalte muss ein Vektor in v_1^{\perp} sein, dies ist ein eindimensionaler Vektorraum, und er enthält für $v_1 = [a\ c]^t$ den Vektor $w = [-\overline{c}\ \overline{a}]^t$. Da w schon normiert ist, erhält man alle normierten Vektoren in v_1^{\perp} indem man w mit einer beliebigen komplexen Zahl ω vom Betrag 1 multipliziert.)

Beispiel. Wir beginnen mit $[1\ 2]^t$, die Norm ist $\sqrt{5}$, also $v_1 = \frac{1}{\sqrt{5}}[1\ 2]^t$, also erhält man als erstes

$$A = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}, \quad \text{oder} \quad \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2i \\ 2 & i \end{bmatrix}, \quad \text{oder ganz allgemein} \quad \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2\omega \\ 2 & \omega \end{bmatrix},$$

dabei ist $\omega \in \mathbb{C}$ mit $|\omega| = 1$, also etwa $\omega = \frac{1}{2}(1 + \sqrt{3}i)$.

Beginnen wir mit $v = [1 + 2i, 3 - 4i]^t$, so ist die Norm $||v|| = \sqrt{30}$, also nimmt man als erste Spalte $\frac{1}{\sqrt{30}}[1 + 2i, 3 - 4i]^t$. Eine unitäre Matrix mit dieser ersten Spalte ist

$$\frac{1}{\sqrt{30}} \begin{bmatrix} 1 + 2i & -3 - 4i \\ 3 - 4i & 1 - 2i \end{bmatrix},$$

weitere erhält man, in dem man die zweite Spalte mit einer komplexen Zahl ω mit $|\omega|=1$ multipliziert.

(b) Die unitären 3×3 -Matrizen: Wieder nimmt man als erste Spalte einen beliebigen normierten Vektor v_1 , dann aber muss man etwas arbeiten: Als zweite Spalte braucht man einen zu v_1 orthogonalen Vektor, der auch auch wieder zu normieren ist. Es bietet sich hier an, einen beliebigen Vektor in $\mathbb{C}^3 \setminus L(v_1)$ zu nehmen, und das Gram-Schmidt-sche Orthonormalisierungsverfahren anzuwenden, usw.