Übungsaufgaben 13: Eigenvektoren und Eigenwerte.

Sei K ein Körper.

- 1. Im FISCHER, p.216 steht folgende Warnung: Sei F ein Endomorphismus von K^n . Selbst wenn F diagonalisierbar ist, braucht nicht **jeder** Vektor ungleich Null ein Eigenvektor zu sein. Dies sollte Ihnen völlig klar sein! Zeigen Sie dazu, daß für jede $(n \times n)$ -Matrix A gilt:
- (a) Sind v_1, v_2 Eigenvektoren zu A mit Eigenwerten λ_1 , beziehungsweise λ_2 , und ist $\lambda_1 \neq \lambda_2$, so ist $v_1 + v_2$ von Null verschieden und **kein** Eigenvektor.
- (b) Man folgere aus (a), dass die folgenden Aussagen äquivalent sind:
 - (i) Jeder von Null verschiedene Vektor des K^n ist Eigenvektor für A.
 - (ii) Die Matrix A ist ähnlich zu einer Skalarmatrix.
- (iii) Die Matrix A ist eine Skalarmatrix.
- **2.** Sei V ein Vektorraum mit Basis $\{v_1,...,v_n\}$. Sei $v=\sum_i v_i$. Sei $f\colon V\to V$ eine lineare Abbildung und jedes v_i sei ein Eigenvektor zu f mit Eigenwert γ_i . Zeige: Die folgenden Aussagen sind äquivalent:
 - (i) Die Elemente $\gamma_1, ..., \gamma_n$ sind paarweise verschieden.
 - (ii) Ist U ein Unterraum von V mit $v \in U$ und $f(U) \subseteq U$, so ist U = V.
- (iii) Die Vektoren $v, f(v), \ldots, f^{n-1}(v)$ bilden eine Basis von V.
- **3.** Einmal eine Rechenaufgabe: Bestimmen Sie die Eigenwerte und Eigenvektoren der folgenden Matrizen $A, B \in M(3 \times 3, \mathbb{R})$. Können die Matrizen diagonalisiert werden?

$$A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}.$$

4. Noch eine Rechenaufgabe (und auch eine Zeichenaufgabe). Betrachte die (2×2) -Matrix

$$C = C(a, b) = \begin{bmatrix} ba - 1 & -a \\ b & -1 \end{bmatrix}.$$

dabei seien $a, b \in \mathbb{N}_1$.

- (1) Bestimme Eigenwerte und zugehörige Eigenvektoren über \mathbb{R} . (Welche Fälle muß man unterscheiden?)
- (2) Was kann man über die Operation der Potenzen C^n (mit $n \gg 0$) auf der Ebene \mathbb{R}^2 sagen ? (Mit Skizzen für die Fälle $a=b\in\{1,2,3,4\}$.)