LINEARE ALGEBRA WS 2004/5

http://www.math.uni-bielefeld.de/birep/linalg/

Übungsaufgaben 4.

Weiteres zur Matrizen-Multiplikation

1. Zur Gauss-Elimination. Sei K ein Körper und $A \in M(m \times; n, R)$. Sei l das Minimum von m und n.

Zeige: Man braucht höchstens $m \cdot l$ Einzelschritte, um A in Schubert-Normalform zu bringen. Dabei soll unter einem Einzelschritt eine der drei Operationen verstanden werden:

- Vertauschen zweier Zeilen,
- Addition eines Vielfachen einer Zeile zu einer anderen Zeile,
- Multiplikation einer Zeile mit einem von Null verschiedenen Skalar

Zum Knobeln. Kann man die Schranke $m \cdot l$ verbessern?

2. Seien $\lambda, \mu \in K$. Man bestimme alle (2×2) -Matrizen A mit Koeffizienten in K, für die gilt:

$$A\begin{bmatrix}\lambda & 0\\ 0 & \mu\end{bmatrix} = \begin{bmatrix}\lambda & 0\\ 0 & \mu\end{bmatrix}A.$$

Hinweis: Es gibt zwei wesentlich verschiedene Fälle. Welche?

- **3.** Betrachte die $(n \times n)$ -Matrix $J = (c_{ij})_{ij}$ mit $c_{i,i+1} = 1$ für $1 \le i < n$ und $c_{ij} = 0$ sonst. Zeige: Ist $A = (a_{ij})_{ij} \in M(n \times n, K)$ so sind die folgenden Aussagen äquivalent:
 - (i) AJ = JA
 - (ii) Es ist $a_{ij} = 0$ für i > j und es ist $a_{i,j} = a_{s,t}$ falls gilt $j i = t s \ge 0$.
- (iii) A ist eine Linearkombination der Matrizen $I, J, J^2, \dots J^{n-1}$.
- **4.** Sei R ein kommutativer Ring. Ist $A=(a_{ij})_{ij}$ eine $(n\times n)$ -Matrix mit Koeffizienten in R, so nennt man $\sum_{i=1}^n a_{ii}$ die **Spur** von A. Zeige: Sind $A,B\in M(n\times n,R)$, so haben die Matrizen AB und BA die gleiche Spur.