LINEARE ALGEBRA WS 2004/5

http://www.math.uni-bielefeld.de/birep/linalg/

Übungsaufgaben 6.

Determinanten.

Sei R ein kommutativer Ring.

1. Sei $A \in M(n \times n, R)$; $B \in M(n \times m, R)$, $C \in M(m \times m, R)$. Betrachte $\begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$, dies sei die $(m+n) \times (m+n)$ -Matrix $D = (d_{ij})_{ij}$, mit

$$d_{ij} = \begin{cases} a_{ij} & i \leq n, \ j \leq n, \\ b_{i,j-n} & \text{falls} & i \leq n, \ j > n, \\ 0 & i > n, \ j \leq n, \\ c_{i-n,j-n} & i > n, \ j > n. \end{cases}$$

Zeige:

$$\det \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} = \det A \cdot \det C$$

- **2.** Sei $A = (a_{ij})_{ij}$ eine $(n \times n)$ -Matrix mit Koeffizienten in R. Setze $B = (b_{ij})_{ij}$ mit $b_{ij} = (-1)^{i+j} a_{ij}$. Zeige det $A = \det B$ auf zwei verschiedenen Weisen:
 - Mit Hilfe der Leibniz-Formel.
 - Mit Hilfe des Determinanten-Produkt-Satzes: Schreibe B = SAT mit geeigneten Diagonalmatrizen S, T.

Dabei darf der Determinanten-Produkt-Satzes vorausgesetzt werden: sind C, D in $M(n \times n, R)$, so ist $\det(CD) = (\det C)(\det D)$.

3. Seien $a_1, \ldots, a_t \in R$. Zeige mit Induktion nach n:

$$\det \begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & & & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{bmatrix} = \prod_{1 \le i < j \le n} (a_j - a_i)$$

LR-Zerlegung.

- **4.** Sei K ein Körper, sei $A=(a_{ij})_{ij}\in M(n\times n,K)$. Für jedes $1\leq i\leq t$ setze $A_t=(a_{ij})_{1\leq i\leq t, 1\leq j\leq t}$, dies ist also eine $(t\times t)$ -Matrix. Zeige, dass die folgenden beiden Aussagen äquivalent sind:
 - (i) Es gibt eine invertierbare untere Dreiecksmatrix L und eine invertierbare obere Dreiecksmatrix R mit A = LR.
 - (ii) Alle Matrizen A_t mit $1 \le t \le n$ sind invertierbar.