http://www.math.uni-bielefeld.de/birep/linalg/

Übungsaufgaben 8.

Polynome (und ganze Zahlen)

- 1. Sei $R = \mathbb{Z}$ oder $R = \mathbb{Q}[T]$. Mit Hilfe des Euklid'schen Algorithmus bestimme man jeweils $c = \operatorname{ggT}(a, b)$ (zu notieren sind jeweils die Ergebnisse, die beim Teilen mit Rest auftreten) und man schreibe c in der Form c = au + bv mit $u, v \in R$.
- (a) Es sei $R = \mathbb{Z}$ und

$$a = 97059503, \quad b = 96049601.$$

(b) Es sei $R = \mathbb{Q}[T]$ (Polynomring) und

$$a = T^5 + 2T^4 + T^3 + T^2 + 2T + 1, \quad b = T^5 + T^3 + T^2 + 1.$$

2. Sei K ein Körper, $\lambda \in K$. Man bestimme das Minimalpolynom der Matrix

$$J(\lambda, n) = \sum_{i=1}^{n} \lambda E_{ii} + \sum_{i=1}^{n-1} E_{i,i+1}.$$

3. Sei K ein Körper. Ohne Verwendung des Satzes von Cayley-Hamilton zeige man: Ist $A=(a_{ij})_{ij}\in M(n\times n,K)$ eine Diagonalmatrix, und gilt $\{a_{11},a_{22},\ldots,a_{nn}\}=\{d_1,\ldots,d_m\}$ mit paarweise verschiedenen Elementen d_1,\ldots,d_m , so ist das Minimalpolynom von A das Polynom

$$\prod_{i=1}^{m} (T - d_i).$$

4. Sei K ein Körper, seien $a_0, \ldots, a_{n-1} \in K$. Bestimme das charakteristische Polynom der $(n \times n)$ -Matrix $A = \sum_{i=1}^{n-1} E_{i+1,i} + \sum_{i=1}^n a_{i-1} E_{in}$.