Probe-Klausur 23.06.05

Für jede Aufgabe stehen 7,5 min zur Verfügung. Jede der Aufgaben sollte in höchstens 7 Minuten zu bearbeiten sein. Im ersten Durchgang sollte man nach jeweils 7 Minuten zur nächsten Aufgabe übergehen! Bei den Aufgaben mit dem Zusatz nur Antwort soll nur die Antwort notiert werden (ohne Beweis, ohne Angabe des Rechenverfahrens); Nebenrechnungen bitte auf den leeren Zwischenblättern.

- **1.** Sei $A \in M(4 \times 4, \mathbb{R})$ mit charakteristischem Polynom $T^4 T^2$. Welche Möglichkeiten gibt es für die zugehörige Jordan'sche Normalform ? (Nur **Antwort**).
- 2. Sei

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix}.$$

Welche A-invarianten Unterräume im \mathbb{R}^3 gibt es? (Nur **Antwort**)

3. Gesucht ist eine invertierbare Matrix $P \in M(2 \times 2, \mathbb{R})$ mit

$$P^{-1} \begin{bmatrix} 3 & 3 \\ -3 & -3 \end{bmatrix} P = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

(nur Antwort).

4. Sei K ein Körper, sei V ein endlich-dimensionaler K-Vektorraum, sei $f: V \to V$ ein Endomorphismus mit $f^2 = 0$. Man setzt H(f) = Kern(f) / Bild(f). **Beweise**:

$$\dim V = \dim H(f) + 2 \dim \text{Bild}(f).$$

(Alle in der Vorlesung bewiesenen Sätze dürfen verwendet werden.)

5. Sei K ein Körper, sei V ein K-Vektorraum, seien U_1, U_2, W Unterräume von V mit $V = U_1 + U_2$ und $U_1 \subseteq W$. Beweise:

$$W\subseteq U_1+(U_2\cap W).$$

6. Sei K ein Körper, sei V ein K-Vektorraum mit Basis v_1, \ldots, v_4 , sei ϕ_1, \ldots, ϕ_4 die duale Basis. Sei U der von $v_1 - v_2$ und $v_2 - v_3$ erzeugte Unterraum von V. Man bestimme eine Basis von U° . (Nur **Antwort**.)

- 7. Sei W ein Vektorraum, seien $U\subseteq V\subseteq W$ Unterräume von W. Beweise: Durch die Vorschrift f(w+U)=w+V für $w\in W$ erhält man eine wohldefinierte Abbildung $f\colon W/U\to W/V$. (Es soll nur die Wohldefiniertheit gezeigt werden, nicht dagegen, dass diese Abbildung auch linear ist).
- 8. Man orthonormalisiere die folgende Folge von Vektoren im euklid'schen Raum \mathbb{R}^3

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

(nur Antwort).

- **9.** Sei $(V, \langle -, \rangle)$ ein unitärer Vektorraum, sei $f: V \to V$ unitärer Endomorphismus. **Beweise:** Jeder Eigenwert von f hat den Betrag 1.
- 10. Berechne im \mathbb{R}^2 bzw \mathbb{R}^4
 - (i) die Länge des Vektors a
 - (ii) den Winkel zwischen den Vektoren a und b
- (iii) den Abstand des Punkts c von der Geraden $d + \mathbb{R}e$.
- (iv) einen zu f orthogonalen Vektor der Länge 1.

$$a = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 3 \\ 3 \\ 3 \end{bmatrix}, \quad c = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad d = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad e = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad f = \begin{bmatrix} 5 \\ -5 \end{bmatrix}.$$

(nur die Antworten).

12. Welche der folgenden Matrizen sind orthogonal? welche unitär?

	orthogonal	${ m unit}\ddot{ m ar}$	$\operatorname{weder-noch}$
$\begin{bmatrix} 1 & 1+i \\ 0 & 1 \end{bmatrix}$	0	\circ	0
$\left[egin{array}{ccc} 1 & 0 & 0 \ 0 & 0 & i \ 0 & 1 & 0 \end{array} ight]$	0	0	0
$\begin{bmatrix} 2\cos\alpha & -2\sin\alpha \\ 2\sin\alpha & 2\cos\alpha \end{bmatrix}$	0	0	0
$\frac{1}{2} \begin{bmatrix} 1 & -1 & -1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}$	0	0	0

11. Welche der folgenden Aussagen sind wahr:	wahr	falsch
Ist A orthogonale Matrix, so hat jeder Eigenwert den Betrag 1.	0	\circ
Sei $A \in M(n \times n, \mathbb{C})$ eine Matrix, deren Eigenwerte alle den Betrag 1 haben. Dann ist A unitär.	0	0
Sei v_1, \ldots, v_n Orthonormalbasis eines euklid'schen Vektorraums. Seien $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Ist auch $\lambda_1 v_1, \ldots, \lambda_n v_n$ eine Orthonormalbasis, so gilt $\lambda_i = 1$ für alle i .	0	0
Jede unitäre Matrix ist diagonaliserbar.	0	\circ
Seien σ_1,σ_2 Spiegelungen an Ursprungsgeraden von \mathbb{R}^2 . Dann ist auch $\sigma_1\sigma_2$ eine Spiegelung an einer Ursprungsgeraden.	0	0
Sei v_1, \ldots, v_n Orthonormalbasis eines euklid'schen Vektorraums. Dann ist auch $-v_1, \ldots, -v_n$ eine Orthonormalbasis.	\circ	\circ

Bewertung: Pro richtig gelöster Aufgabe gab es 2 Punkte.

Bei der Aufgabe 11 gab es für n richtige Zeilen $\max(0, \frac{n}{2} - 1)$ Punkte (eigentlich zu viel, denn bei willkürlichem Ankreuzen hat man auf diese Weise im statistischen Mittel noch 0.5 Punkte erhalten.)

Bei der Aufgabe 12 gab es für n richtige Zeilen $\max(0, n-2)$ Punkte.