http://www.mathematik.uni-bielefeld.de/birep/linalg/

Abgabe 29.06.2000

11. Symmetrische Bilinearformen

41. Sei $\langle -, - \rangle$ die durch die Matrix $\begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix}$ gegebene Bilinearform auf $V = \mathbb{R}^4$.

Gesucht sind

- (a) drei 2-dimensionale Unterräume $U \subset V$, auf denen $\langle -, \rangle$ positiv definit ist.
- (b) drei 1-dimensionale Unterräume $U \subset V$, auf denen $\langle -, \rangle$ negativ definit ist.
- (c) drei 2-dimensionale Unterräume $U \subset V$, auf denen $\langle -, \rangle$ identisch Null ist.
- **42.** Sei \mathcal{D} der \mathbb{R} -Vektorraum aller differenzierbaren Funktionen $(-1,1) \to \mathbb{R}$. Zeige, daß wir durch

 $\langle f, g \rangle = (fg)'(0)$ (= Auswertung der Ableitung des Produkts an der Stelle 0)

eine symmetrische Bilinearform auf \mathcal{D} erhalten und daß das Radikal dieser Bilinearform die Menge der $f \in \mathcal{D}$ ist mit f(0) = f'(0) = 0.

43. Seien p, q, r natürliche Zahlen mit p + q + r = n. Sei $s = \min\{p, q\}$. Betrachte auf $V = \mathbb{R}^n$ die quadratische Form

$$\phi(x_1, \dots, x_n) = \sum_{i=1}^p x_i^2 - \sum_{i=p+1}^{p+q} x_i^2.$$

Ein Unterraum U von V heißt total-isotrop, falls $\phi(u) = 0$ für alle $u \in U$ gilt.

- (a) Zeige: Ist U ein total-isotroper Unterraum von V, so ist $U \cap \text{span}\{e_1, \ldots, e_p\} = 0$ und $U \cap \text{span}\{e_{p+1}, \ldots, e_{p+q}\} = 0$. Folgere daraus: dim $U \leq r + s$.
- (b) Zeige: Der von den Vektoren $e_i + e_{p+i}$ mit $1 \le i \le s$ und den Vektoren e_j mit $p+q < j \le n$ erzeugte Unterraum ist total-isotrop (und hat die Dimension r+s).
- (c)* Jeder total-isotrope Unterraum ist in einem total-isotropen Unterraum der Dimension r + s enthalten.
- (d)* Sind U_1, U_2 total-isotrope Unterräume der Dimension r+s, so gibt es einen Endomorphismus f von V mit $\phi(f(v)) = \phi(v)$ für alle $v \in V$, der U_1 auf U_2 abbildet.
- **44.** Sei K ein Körper mit $\operatorname{char}(K) \neq 2$. In der Vorlesung wird gezeigt, daß jedes quadratische Polynom $P(x_1, \ldots, x_n)$ in den Unbestimmten x_1, \ldots, x_n mit Koeffizienten in K in eine der folgenden Normalformen überführt werden kann:

$$\sum_{i=1}^{p} x_i^2 - \sum_{i=p+1}^{p+q} x_i^2 \qquad \text{mit} \quad p+q \le n,$$

$$\sum_{i=1}^{p} x_i^2 - \sum_{i=p+1}^{p+q} x_i^2 - 1 \qquad \text{mit} \quad p+q \le n,$$

$$\sum_{i=1}^{p} x_i^2 - \sum_{i=p+1}^{p+q} x_i^2 - x_{p+q+1} \quad \text{mit} \quad p+q < n.$$

Betrachte den Fall $K = \mathbb{R}$ und n = 2. Welche Möglichkeiten gibt es? Für jede der Normalformen $P(x_1, x_2)$ soll eine Zeichnung der Nullstellenmenge V(P) angefertigt werden

$$V(P) = \{(r_1, r_2) \in \mathbb{R}^2 \mid P(r_1, r_2) = 0\}.$$