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Group Algebras. Let k be an algebraically closed field of characteristic p > 0.
Throughout, all algebras and modules are assumed to be finite dimensional. An
associative k-algebra Λ decomposes into a direct sum Λ = B1 ⊕ B2 ⊕ · · · ⊕ Bs of
two-sided ideals, that are indecomposable associative k-algebras. The relevance
of this block decomposition for representation theory was first observed by Brauer
and Nesbitt in their study of non-semisimple group algebras of finite groups.

Because of these historical origins, results on group algebras have often served
as a paradigm for other classes of algebras, such as reduced enveloping algebras of
restricted Lie algebras or distribution algebras of infinitesimal group schemes. In
my talk, I will compare the representation theories of finite groups and restricted
Lie algebras, focusing on the notion of representation type. In retrospect, most
phenomena characteristic of infinitesimal group schemes already occur at the level
of restricted Lie algebras [2, 3, 4].

Let me begin by collecting some of the methods and results from the modular
representation theory of finite groups. We fix a finite group G, and recall that the
unique block B0(G) ⊂ k[G] containing the trivial k[G]-module k is the principal
block.
Mackey Decomposition. If H ⊂ G is a subgroup and M is an H-module, then

k[G]⊗k[H] M |H ∼=
⊕
HgH

k[H]⊗k[H∩gHg−1] M
g.

In particular, M is always a direct summand of the restriction of the induced
module. Mackey’s result leads to the important notion of the defect: Each block
B ⊂ k[G] gives rise to a p-subgroup DB ⊂ G that measures the complexity of B.
Since the defect group of B0(G) is a Sylow-p-subgroup, it is the most complicated
block of k[G].
The aforementioned facts together with Brauer correspondence imply that repre-
sentation type behaves well under passage from the principal block to other blocks,
or from a group to a subgroup.
Reduced Enveloping Algebras. Let (g, [ , ]) be a Lie algebra, B ⊂ g a basis.
If for every element x ∈ B the p-th power of the inner derivation adx : g −→
g ; y 7→ [x, y] is again inner, then a theorem by Jacobson ensures the existence
of a map [p] : g −→ g ; x 7→ x[p] that enjoys the basic properties of the p-power
operator of an associative algebra. In particular, we have

(adx)p = adx[p] ∀ x ∈ g.

The pair (g, [p]) is then referred to as a restricted Lie algebra.
In the 1970’s Kac and Weisfeiler noticed that much of the representation theory

of g, or equivalently that of its universal enveloping algebra U(g), is captured by
an algebraic family of (Uχ(g))χ∈g∗ of associative algebras of dimension pdim g. The
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study of this family has since been one of the focal points in the representation
theory of modular Lie algebras. By definition, we have Uχ(g) := U(g)/Iχ, where
Iχ := ({xp − x[p] − χ(x)p1 ; x ∈ g}). The algebra Uχ(g) is a Frobenius algebra,
though in general not symmetric. Contrary to finite groups, the Cartan matrix
of Uχ(g) may be singular. The example of the Steinberg module shows that one
cannot expect to have good control of the composition of induction and restriction
in the sense of Mackey. By analogy with finite groups, special attention is given
to the principal block B0(g) ⊂ U0(g). In a similar vein, the algebra U0(g), being
located at the generic point of the family, is thought of as the most complicated
member of the family.

To this date, the most promising replacement of a defect appears to be given by
Carlson’s concepts of support varieties and rank varieties, that were transferred
to our context by Friedlander-Parshall [7]. Let Vg := {x ∈ g ; x[p] = 0} be the
nullcone of g. Given a Uχ(g)-module M the rank variety Vg(M) is defined via

Vg(M) := {x ∈ Vg ; M |Uχ|kx
(kx) is not free} ∪ {0}.

If B ⊂ Uχ(g) is a block with simple modules S1, . . . , Sn, then we put

VB :=
n⋃

i=1

Vg(Si) ⊂ Vg.

This is our replacement of a defect. Again, VB ⊂ VB0(g) = Vg, so that B0(g) has
the largest defect.

Facts. Let B ⊂ Uχ(g) be a block.
(1) B is representation-finite if and only if dimVB ≤ 1.
(2) If B is tame (and representation-infinite), then dimVB = 2.

From now on we assume that p ≥ 3. In the early eighties, Drozd, Rudakov and
Fischer independently showed that B0(sl(2)) is Morita equivalent to the trivial
extension of the Kronecker algebra. It turns out that for Lie algebras g = Lie(G)
of algebraic groups, all tame blocks of U0(g) are of this type [1].

Examples. We consider the Lie algebra g := sl(2) ⊕ kz, where [z, sl(2)] = (0).
Using the standard basis {e, h, f} ⊂ sl(2), we introduce two p-maps on g:

(1) The algebra sl(2)n is defined via e[p] = 0 ; h[p] = h ; f [p] = z ; z[p] = 0.
(2) The algebra sl(2)s is defined via e[p] = 0 ; h[p] = h+ z ; f [p] = 0 ; z[p] = 0.

Let C(g) := {x ∈ g ; [x, g] = (0)} be the center of g. By general theory, we have
a “Fitting decomposition”

(∗) C(g) = t⊕ u

of C(g) into its toral and unipotent parts. Here is a recognition criterion for
tameness:

Theorem ([2]). Let g be a restricted Lie algebra.
(1) Then B0(g) is tame if and only if g/C(g)[p] ∼= sl(2), sl(2)s.
(2) If B0(g) is tame and C(g) is unipotent or toral, then U0(g) is tame.
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In particular, the block B0(sl(2)n) is wild, while the algebra U0(sl(2)s) is tame.
Moreover, h := ke⊕kz is a p-subalgebra of⊂ sl(2)s with U0(h) ∼= k[X,Y ]/(Xp, Y p).
Thus, U0(h) ⊂ U0(sl(2)s) is wild, while U0(sl(2)s) is tame.

Using rank varieties and schemes of tori one first shows that g/C(g) ∼= sl(2),
with u ⊂ C(g) being generated by one element [5, 6]. Let P be a principal
indecomposable U0(g)-module, B ⊂ U0(g) the block belonging to P , and set HP :=
Rad(P )/Rad3(P ).

Proposition 1 ([2]). The block B is tame if and only if HP is decomposable.

Filtrations by Verma modules and Auslander-Reiten Theory then yield the list of
decomposable hearts. Let me illustrate one technical aspect. By general theory,
the central extension g is given by a p-semilinear map ψ : sl(2) −→ C(g). The
decomposition (∗) of C(g) provides a p-semilinear map ψt : sl(2) −→ t. One then
has

U0(g) ∼=
⊕

γ∈X(t)

Uχγ
(g/t),

where X(t) is the character group of t, and χγ(x+u)p = γ(ψt(x)) ∀ x ∈ sl(2), u ∈
u.

The map ψ also gives rise to a p-semilinear form ψ̂ : sl(2) −→ C(g)/C(g)[p] ⊂ k.
For χ ∈ sl(2)∗ ⊂ g∗, we define

d(ψ, χ) := dimVsl(2) ∩ ker ψ̂ ∩ kerχ.

A linear form χ ∈ sl(2)∗ is nilpotent if it corresponds via the Cartan-Killing form
to a nonzero nilpotent element of sl(2).

Proposition 2 ([2]). Let g be a central extension of sl(2) with ψ̂ 6= 0.
(1) If C(g) is unipotent, χ is nilpotent, and d(ψ, χ) 6= 0, then Uχ(g) is wild.
(2) If d(ψ, χγ) 6= 0 for some nilpotent χγ , then U0(g) possesses a wild block.

Examples. (1) Let χ ∈ sl(2)∗s be defined via χ(e) = 0 = χ(h) ; χ(f) = 1 ; χ(z) = 0.
Then U0(sl(2)s) is tame, while Uχ(sl(2)s) is wild.

(2) Let g := sl(2)⊕ kz ⊕ kt, [kz ⊕ kt, g] = (0), e[p] = 0 ; h[p] = h+ z ; f [p] =
t ; z[p] = 0 ; t[p] = t. Then B0(g) is tame, while U0(g) is wild.
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