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1. Calabi-Yau varieties in Pn

Let k be the field of complex numbers and Pn the projective n-space over k. The
anticanonical sheaf ω−1 is isomorphic to O(n + 1), and we can identify a global
section in ω−1 with a homogeneous polynomial of degree n+1 in the n+1 variables
x0, . . . , xn.

a) Let n = 2, then a generic polynomial f of degree 3 defines an elliptic curve
E in P2.

b) Let n = 3, then a generic polynomial of degree 4 defines a K3-surface in
P4.

c) Let n = 4, then a generic polynomial of degree 5 defines a 3–dimensional
Calabi-Yau variety in P5.

All these varieties X are Calabi-Yau varieties (see definition below), in particu-
lar, ωX ' O (the canonical sheaf is trivial) and the Serre duality is of the form
Extl(F ,G) ' Extn−l(G,F)∗.

We can also (using the action of the torus kn on Pn) identify the space of
polynomials of degree n with all formal linear combinations of elements in a lattice
polytope ∆(n). (The elements in ∆(n) correspond to a torus invariant basis of the
space of homogeneous polynomials of degree n+1 in n+1 variables, for the torus
action (λ1, . . . , λn)(x0, x1, . . . , xn) := (x0, λ1x1, . . . , λnxn) this basis consists just
of the monomials.) So we get

∆(n) := {a ∈ Zn+1 |
∑
i=1

ai = n + 1, ai ≥ 0},

a simplex in the lattice Zn+1. This is a polytope which has precisely one inner
lattice point (a lattice point not on the boundary of ∆(n)), it is (1, 1, . . . , 1).

On the projective n–space, there exists a sequence of line bundlesO,O(1), . . . ,O(n)
without any self extensions (Extl

Pn(O(i),O(j)) = 0 for all 0 ≤ i, j ≤ n and all l)
generating the derived category of coherent sheaves on Pn. Classical results on the
derived category of coherent sheaves on Pn allow us to describe it using derived
categories of modules over the endomorphism ring of

⊕n
i=0O(i).

2. Calabi-Yau Varieties

Definition. A Calabi-Yau variety X is a smooth projective variety satisfying
(1) ωX ' O (the canonical sheaf is trivial), and
(2) Hl(X;OX) = 0 for all 1 ≤ l ≤ dim X − 1.

The definition above can be generalised, sometimes one only wants X to be
complete, and in dimension greater or equal to 4, one often allows some mild
singularities. Calabi-Yau varieties can be constructed in Fano varieties, we explain
the construction in more detail below.
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Example. a) Let X ⊂ Pn be a hyper surface defined by a generic homoge-
neous polynomial of degree n+1 (as in section 1), then X is a Calabi-Yau
variety.

b) Let F be a smooth Fano variety satisfying Hl(F ;OF ) = 0 for all 1 ≤
l ≤ dim X. Take a generic element f in H0(F ;ω−1

F ), then the hyper
surface X defined by f is a Calabi-Yau variety. Condition 1) follows from
the adjunction formula and condition 2) from the long exact cohomology
sequence applied to

0 −→ ωF −→ OF −→ OX −→ 0.

To find Calabi-Yau varieties, we need to find Fano varieties F satisfying the
condition Hl(F,OF ) = 0 for all 1 ≤ l ≤ dim X. The conditions on F can be
chosen weaker at several places. E. g., it is sufficient that F has only isolated
singularities (a generic section does not meet these singularities), and one can
also take partial resolutions F̃ of singular Fano varieties F satisfying ωF̃ ' OF̃ .
There exists a large class of those varieties that can be constructed using so-called
reflexive polytopes, the class of toric (possibly singular) Fano varieties (see [5]).

3. Reflexive Polytopes

Definition. Let M be a lattice in MR ' Rn. A lattice polytope ∆ in MR is the
convex hull in MR of a finite number of lattice points (that is points in M). We
assume dim ∆ = n and 0 be an interior lattice point of ∆. The polytope ∆ is
reflexive if its dual polytope

∆◦ := {n ∈ M∗
R | n(m) ≥ −1 ∀m ∈ ∆}

is also a lattice polytope. A lattice polytope is smooth if for each vertex v the
cone spanned by ∆ − v (we shift the polytope so that v becomes the zero point
and consider the cone with apex in 0 generated by the shifted elements in ∆) is
generated by a Z–basis of MR.

To each lattice polytope ∆ one can associate a toric variety F∆. If ∆ is smooth,
then F∆ is smooth, and if ∆ is reflexive, then F∆ is a Fano variety. Conversely,
each toric Fano variety also comes from a reflexive polytope, the sections in ω−1

F

form a reflexive polytope (similar to the example in section 1).
Let ∆ be a lattice polytope. We define a cone C(∆) as the cone with apex in

0 generated by ∆ × {1} ⊂ MR × R. The lattice points C(∆)Z in C(∆) form a
semi-group, and we consider the semi-group ring S(∆) of C(∆)Z. It is a graded
ring, the degree comes from the additional element, so deg(x, a) := a for x ∈ a∆.
Then we define the projective algebraic variety F∆ as Proj(S(∆)). This variety
is of dimension n, and it comes with an action of an n–dimensional algebraic
torus T ' kn, the torus acts with a dense orbit. If we consider the T–action on
H0(F∆,OF∆(1)) (where OF∆(1) is taken with respect to the given embedding in
PN , where N is the number of lattice points in ∆), then the T–invariant points
form the lattice points of the n–dimensional lattice polytope ∆.
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We conclude this section with an overview of the classification of reflexive poly-
topes.
n = 1: There exists precisely one reflexive simplex, it is the convex hull of −1 and

1 in R.
n = 2: It is an exercise to classify them, there exist precisely 16 reflexive polytopes

and 5 of them are smooth. These five smooth ones correspond to the five
toric del Pezzo surfaces: P2, P1 × P1, and the blow up of P2 in one, two
or three points (the three points must not lie on a common line).

n = 3: A classification of the smooth reflexive polytopes can be found in [10],
there exist 18. They can be classified using certain double weighted tri-
angulations of the plane. The classification of all reflexive polytopes is
done by a computer, the algorithm can be found in [8], there exist 4, 319
of them (see [11]).

n = 4: The classification of 4–dimensional smooth reflexive polytopes was done
by Batyrev in [5], there exist 124 of them. The classification of all reflexive
polytopes is mainly a problem on hard disc space (as one of the authors
told me), there exist 473, 800, 776 of them (see [9, 11]).

For reflexive simplices the classification is much simpler and consists essentially of
the classification of so-called weight systems. These weight systems also appear
for weighted projective spaces in the sense of Baer, Geigle and Lenzing ([3]).

4. Quivers and Reflexive Polytopes

Surprisingly, one can construct some reflexive polytopes using quivers, however
the class of these polytopes is not very large (see [1, 6]). On the other hand, a
smooth reflexive polytope constructed from a quiver comes always with a sequence
of line bundles without any self extension (see [1]). There exist also several other
approaches to construct exceptional sequences of line bundles on toric varieties. It
is an open problem (see [2, 7]) whether there exists on any smooth toric variety a
full strong exceptional sequence of line bundles, (similar to the one on Pn). This
problem is even open for toric surfaces.
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