Aufgabenzettel 3.

3.1. Let p be a prime, and t, n natural numbers with $1 \leq n \leq p^t$. If s is maximal such that p^s divides n, then

$$\binom{p^t}{n}_p = p^{t-s}.$$

Hints for the proof: First, we show: Let x, x', y be positive real numbers with $\frac{x+x'}{y} \in \mathbb{N}$. If $\frac{x}{y} \in \mathbb{N}$, then

$$\lfloor \frac{x + x'}{y} \rfloor = \lfloor \frac{x}{y} \rfloor + \lfloor \frac{x'}{y} \rfloor.$$

If $\frac{x}{y}$ is not a natural number, then

$$\lfloor \frac{x+x'}{y} \rfloor = \lfloor \frac{x}{y} \rfloor + \lfloor \frac{x'}{y} \rfloor - 1.$$

Show that this implies: $\lfloor \frac{p^t}{p^i} \rfloor = \lfloor \frac{n}{p^i} \rfloor + \lfloor \frac{p^t-n}{p^i} \rfloor$ if and only if p^i divides n. And show that this implies the assertion.

3.2. (Erdös). Use the following considerations in order to show:

$$\pi(n) \ge \frac{1}{2\ln 2} \ln n.$$

- (a) Show that there are at most \sqrt{n} square numbers m with $m \leq n$ is
- (b) Show that there are at most $2^{\pi(n)}$ squarefree numbers m with $m \leq n$.
- (c) Show that the unique factorization property implies that

$$n \le \sqrt{n} \ 2^{\pi(n)},$$

and that this implies the assertion.

- (d) Campare this inequality with the inequality $\pi(n) \geq \frac{\ln 2}{4} \cdot \frac{n}{\ln n}$ which has been shown in the lecture.
- **3.3.** Determine the smallest natural number m with the following property: If n > m, there there are at least 3 prime numbers p such that n .
- **3.4. Fermat numbers.** These are the numbers of the form $F_n = 2^{2^n} + 1$ with $n \in \mathbb{N}_0$. (a) Let $G_n = F_n 2 = 2^{2^n} 1$. Show that $F_n G_n = G_{n+1}$ for $n \in \mathbb{N}_0$. (b) Show that this implies $\prod_{t=0}^n F_t = G_{n+1}$.
- (c) Use this in order to show that the Fermat numbers have pairwise no proper common divisor.
 - (d) Show that this implies that there are infinitely many prime numbers.

3.1. Die Aufgabe 2.4 legt folgende Vermutung nahe: Sei p Primzahl, seien t, n natürliche Zahlen mit $1 \le n \le p^t$. Ist s maximal, sodass p^s Teiler von n ist, so gilt

$$\binom{p^t}{n}_p = p^{t-s}.$$

Beweis der Vermutung: Zeige zuerst: Seien x,x',y positive reele Zahlen mit $\frac{x+x'}{y}\in\mathbb{N}$. Ist auch $\frac{x}{y}\in\mathbb{N}$, so ist

$$\lfloor \frac{x + x'}{y} \rfloor = \lfloor \frac{x}{y} \rfloor + \lfloor \frac{x'}{y} \rfloor.$$

Ist dagegen $\frac{x}{y}$ keine natürliche Zahl, so ist

$$\lfloor \frac{x+x'}{y} \rfloor = \lfloor \frac{x}{y} \rfloor + \lfloor \frac{x'}{y} \rfloor - 1.$$

Folgere: $\lfloor \frac{p^t}{p^i} \rfloor = \lfloor \frac{n}{p^i} \rfloor + \lfloor \frac{p^t-n}{p^i} \rfloor$ genau dann, wenn p^i ein Teiler von n ist. Folgere daraus die Behauptung.

3.2. (Erdös). Zeige mit Hilfe der folgenden Überlegungen:

$$\pi(n) \ge \frac{1}{2\ln 2} \ln n.$$

(wieder ein Beweis, dass es unendlich viele Primzahlen gibt...)

- (a) Zeige: Die Anzahl der Quadratzahlen m mit $m \leq n$ ist höchstens \sqrt{n} .
- (b) Die Anzahl der quadratfreien Zahlen m mit $m \leq n$ ist höchstens $2^{\pi(n)}$.
- (c) Folgere aus der eindeutigen Primfaktorzerlegung, dass demnach gilt:

$$n \le \sqrt{n} \ 2^{\pi(n)},$$

und zeige damit die Behauptung.

- (d) Vergleiche diese Abschätzung mit der Abschätzung $\pi(n) \ge \frac{\ln 2}{4} \cdot \frac{n}{\ln n}$, die in der Vorlesung gezeigt wurde.
- **3.3.** Bestimme die kleinste natürliche Zahl m mit folgender Eigenschaft: Ist n > m, so gibt es mindestens drei Primzahlen p mit n .
- **3.4. Fermat-Zahlen.** Die Zahlen der Form $F_n = 2^{2^n} + 1$ mit $n \in \mathbb{N}_0$ nennt man Fermat-Zahlen.
 - (a) Setze $G_n = F_n 2 = 2^{2^n} 1$. Zeige: $F_n G_n = G_{n+1}$ für $n \in \mathbb{N}_0$.
 - (b) Folgerung: $\prod_{t=0}^{n} F_t = G_{n+1}$.
 - (c) Folgerung: Die Fermat-Zahlen sind paarweise teilerfremd.
 - (d) Folgere daraus: Es gibt unendliche viele Primzahlen.