Aufgabenzettel 7.

- **7.1. Schnelles Potenzieren.** Sei n eine natürliche Zahl. (a) Zeige per Induktion: n lässt sich eindeutig in der Form $n = \sum_{i=0}^{\infty} a_i 2^i$ mit Zahlen $a_i \in \{0, 1\}$ (natürlich fast alle $a_i = 0$) schreiben. (Man nennt dies die *dyadische Darstellung* von n).
- (b) Zeige, dass man (a) verwenden kann, um für eine reelle Zahl x relativ schnell x^n zu berechnen: Wie sollte man vorgehen? Man möchte die Anzahl der notwendigen Multiplikationen minimieren Beispiel: Um $x^7 = (x^2x)^2x$ zu berechnen, braucht man 4 Multiplikationen.
- 7.2. Die Zweifachen in einer abelschen Gruppe (G,+), die Quadrate in einer abelschen Gruppe (G,\cdot) (Fortführung der Aufgabe 6.4):
- (a) Sei (G, +) eine abelsche Gruppe, additiv geschrieben. Wir betrachten $2G := \{2g \mid g \in G\}$ (dabei ist natürlich 2g = g + g), also die Menge der Zweifachen in G. Zeige:
- (1) Es ist 2G immer eine Untergruppe von G.
- (2) Ist G endlich, und ist |G| ungerade, so ist 2G = G.
- (3) Ist G zyklisch, und ist |G| gerade, so ist $|2G| = \frac{1}{2}|G|$.
- (4) Sind (G, +), (H, +) abelsche Gruppen, so ist $2(\tilde{G} \times H) = 2G \times 2H$.
- (b) Nun sei (G, \cdot) eine multiplikativ geschriebene abelsche Gruppe. Man formuliere die entsprechenden Aussagen (1) (4). Hier betrachten wir also $G^2 = \{g^2 \mid g \in G\}$ die Menge der Quadratzahlen (oder einfach Quadrate) in G.
- (c) Man gebe eine Formel für die Anzahl der Quadrate in $(\mathbb{Z}/n)^*$ an für $n \in \mathbb{N}$ (natürlich mit Beweis).
- **7.3.** Zeige: Ist g eine Primitivwurzel modulo n und ist $a \in \mathbb{Z}$ mit $(a, \phi(n)) = 1$, so ist auch g^a eine Primitivwurzel modulo n und man erhält auf diese Weise alle Primitivwurzeln modulo n.

Folgere daraus: Die Anzahl der Primitivwurzeln modulo n ist $\phi(\phi(n))$, sofern es überhaupt Primitivwurzeln gibt.

Wieviele Primitivwurzeln modulo p gibt es also für jede der Primzahlen p < 50?

- **7.4.** Mit C_n bezeichnen wir eine zyklische Gruppe der Ordnung n.
- (a) Sei $G = C_{n_1} \times \cdots \times C_{n_t}$ mit geraden Zahlen n_1, \dots, n_t . Zeige: in G gibt es genau $2^t 1$ Elemente der Ordnung 2.
- (b) Folgere daraus: Glässt sich nicht als Produkt von t-1zyklischen Gruppen schreiben.
- (c) Gesucht sind Zahlen n_1, \ldots, n_{10} , sodass sich $(\mathbb{Z}/n_i)^*$ als Produkt von i zyklischen Gruppen, nicht aber von i-1 zyklischen Gruppen schreiben lässt.

- **7.1.** Let n be a natural number. (a) Show by induction on n: we can write $n = \sum_{i=0}^{\infty} a_i 2^i$ with numbers $a_i \in \{0,1\}$ (of course, almost all $a_i = 0$), and this representation is unique. (This is called the *dyadic expansion* of n).
- (b) Use (a) in order to provide an algorithm in order to calculate powers x^n fast (here x is any real number). One wants to minimize the number of multiplication! For example, in order to to calculate x^7 , one may use $x^7 = (x^2x)^2x$ in this way, only 4 multiplications are needed.

7.2. Doubling in an abelian group (G,+), squaring in an abelian group (G,\cdot) (This is related to exercise 6.4):

- (a) Let (G,+) be an abelian group, written with addition. Let $2G:=\{2g\mid g\in G\}$
- G} (here 2q = q + q). Show:
- (1) 2G is a subgroup of G.
- (2) If G is finite, and |G| is odd, then 2G = G.
- (3) If G is cyclic and |G| is even, then $|2G| = \frac{1}{2}|G|$.
- (4) If (G, +), (H, +) are abelian groups, then $2(G \times H) = 2G \times 2H$.
- (b) Now let (G, \cdot) be an abelian group, written with multiplication. Formulate the corresponding assertions (1) (4), now using $G^2 = \{g^2 \mid g \in G\}$ this set is called the set of squares in G.
 - (c) Determine the number of squares in $(\mathbb{Z}/n)^*$ for $n \in \mathbb{N}$ (with proof!).
- **7.3.** Show: If g is a primitive root modulo n and $a \in \mathbb{Z}$ satisfies $(a, \phi(n)) = 1$, then also g^a is a primitive root modulo n and all primitive roots modulo n are obtained in this way.

Show that this implies that the number of primitive roots modulo n is $\phi(\phi(n))$, provided there is at least one primitive root.

Calculate the number of primitive roots modulo p for all the primes p < 50.

- **7.4.** Let C_n denote a cyclic group of order n.
- (a) Let $G = C_{n_1} \times \cdots \times C_{n_t}$ with even numbers n_1, \ldots, n_t . Show: in G there are precisely $2^t 1$ elements of order 2.
- (b) Show that this implies that G cannot be written as a product of t-1 cyclic groups.
- (c) Exhibit numbers n_1, \ldots, n_{10} , such that $(\mathbb{Z}/n_i)^*$ can be written as a product of i cyclic groups, but not as a product of i-1 cyclic groups.