Übungsaufgaben 4.

Let k be a field.

1. Determine all minimal generating sets for the 1-module

$$(k^3, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}).$$

2. Let $V = k^3$ with basis e_1, e_2, e_3 . Define linear maps $\phi, \alpha, \beta \colon V \to V$ by

$$\phi(e_1) = e_3, \quad \phi(e_2) = e_3, \quad \phi(e_3) = 0,$$

 $\alpha(e_1) = e_3, \quad \alpha(e_2) = 0, \quad \alpha(e_3) = 0,$
 $\beta(e_1) = 0, \quad \beta(e_2) = e_3, \quad \beta(e_3) = 0.$

We are interested in the 1-module (V, ϕ) and the 2-module (V, α, β) .

Show: (a) Every submodule of (V, α, β) is also a submodule of (V, ϕ) .

- (b) (V, ϕ) has additional submodules! For example, if $k = \mathbb{F}_p$ is the finite field with p elements, then there are precisely p subspaces of V, which are submodules of (V, ϕ) , but not submodules (V, α, β) .
 - (c) (V, α, β) is indecomposable, but (V, ϕ) is decomposable.
- **3. The module** $N(\infty)$. Let k[T] be the polynomial ring in one variable T with coefficients in k. Let $k[T, T^{-1}]$ be the following ring: start with the vector space with basis $\{T^z \mid z \in \mathbb{Z}\}$, and define a multiplication on this basis as follows: $T^zT^{z'} = T^{z+z'}$. Using the multiplication map $\phi = T$ both k[T] as well as $k[T, T^{-1}]$ are 1-modules. Of course, (k[T], T) is a submodule of $(k[T, T^{-1}], T)$.
 - (a) Show: The factor module $(k[T, T^{-1}], T \cdot)/(k[T], T \cdot)$ is isomorphic to $N(\infty)$.
- (b) Let $k = \mathbb{R}$ be the field of the reell numbers. Differentiation $p \mapsto \frac{\mathrm{d}}{\mathrm{d}\,T} p$ is a linear map $\frac{\mathrm{d}}{\mathrm{d}\,T}$: $k[T] \to k[T]$. Show: The 1-module $(k[T], \frac{\mathrm{d}}{\mathrm{d}\,T})$ is isomorphic to $N(\infty)$.
- **4.** Let U_1, U_2, W be submodules of the module V such that $U_1 \subseteq U_2$. Show: The set of submodules

$$0, U_1, U_2, W, U_1 \cap W, U_2 \cap W, U_1 + W, U_2 + W, U_1 + W \cap U_2, V$$

is closed under \cap and + (thus, we obtain a "sublattice" of the lattice of all submodules of V.)

Hint (nothing is difficult, the only problem is to order the arguments conveniently):

(a) There are the following obvious inclusions:

Note that if U, U' are submodules of U with $U \subseteq U'$, then $U \cap U' = U$ und U + U' = U', thus we only have to consider pairs of submodules U, U' which are not necessarily comparable.

(b) There are only five pairs (U,U^\prime) of submodules in the list which may be incomporable:

$$(U_2, U_1 + W), (U_2, W), (U_1 + W \cap U_2, W), (U_1, W), (U_1, U_2 \cap W).$$

Always, we have to determine U + U' as well as $U \cap U'$. Thus, we have to show that any of these 10 submodules belongs to the given list. (In nearly all cases, nothing has to be shown!)