Übungsaufgaben 5.

1. We have considered the following classes of finite-dimensional indecomposable Kronecker modules:

$$\mathcal{R}_0 = \{ M \mid M_{\alpha} \text{ is invertible and } M_{\beta} M_{\alpha}^{-1} \text{ is nilpotent} \}$$

$$\mathcal{B} = \{ M \mid \text{both } M_{\alpha}, M_{\beta} \text{ are invertible} \}$$

$$\mathcal{R}_{\infty} = \{ M \mid M_{\beta} \text{ is invertible and } M_{\alpha} M_{\beta}^{-1} \text{ is nilpotent} \}$$

Let M, N be finite-dimensional indecomposable Kronecker modules which are neither both in \mathcal{R}_0 , nor both in \mathcal{B} , nor both in \mathcal{R}_{∞} . Show that $\operatorname{Hom}(M, N) = 0$.

2. Let V and W be S-modules. Then the product set $V \times W$ is again an S-module which is the direct sum of $V = V \times 0$ and $W = 0 \times W$ (thus, often we write just $V \oplus W$ instead of $V \times W$). Let $f \colon V \to W$ be a module homomorphism, and let

$$\Gamma_f = \{ (v, f(v)) \mid v \in V \}$$

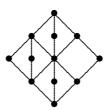
be the graph of f.

Show: The map $f \mapsto \Gamma_f$ defines a bijection between $\operatorname{Hom}(V, W)$ and the set of submodules $U \subseteq V \times W$ with $U \oplus (0 \times W) = V \times W$.

3. (a) Show: If M is a module with submodule lattice

then the base field k is the field with two elements.

(b) Show: The following lattice cannot be the submodule-lattice of a module:



4. Let V be a module of finite length, and let V_1, \ldots, V_t be submodules of V with $\sum_i V_i = V$. Show: If

$$\sum_{i=1}^{t} l(V_i) = l(V),$$

then
$$V = \bigoplus_{i=1}^{t} V_i$$
.