Übungsaufgaben 6.

Linear Relations.

Recall that a linear relation on a vector space W is a subspace of $W \times W$. We consider linear relations as Q_0 -free Kronecker modules (for example we call ρ a band provided $\pi_1 u$ and $\pi_2 u$ are both bijective, where π_i are the canonical projections $W \times W \to W$ und $u \colon \rho \to W \times W$ is the inclusion map). The composition of two relations ρ, ρ' on W will be denoted by $\rho \circ \rho'$ or just by $\rho \rho'$. Thus ρ^t is the t-fold composition of ρ .

- 1. Let W be a vector space.
- (a) Given subspaces W', W'' of W and a linear transformation $f \colon W'' \to W/W',$ define

$$\rho(f) = \{(w_1, w_2) \mid f(w_2) = w_1 + W' \text{ with } w_2 \in W'', w_1 \in W\}.$$

Show: The map $f \mapsto \rho(f)$ defines a bijection of sets

$$\{\text{triples } (W', W'', f \colon W'' \to W/W')\} \longrightarrow \{\text{relations on } W\}.$$

- (b) Show that this implies: There is a bijection between the set of relations on W and five-tuples $(W_1', W_2', W_1'', W_2''; g)$ where $W_1' \subseteq W_2'$ and $W_1'' \subseteq W_2''$ are subspaces of W and $g: W_1''/W_1'' \to W_2'/W_1'$ is an isomorphism.
 - **2.** Show that the following conditions are equivalent:
- (i) ρ is a band.
- (ii) $\rho \circ \rho^{-1} = \{(w, w) \mid w \in W\} = \rho^{-1} \circ \rho.$
 - 3. Show
- (a) If $\rho = P_t$ with $t \ge 0$, then ρ^{t+1} is the direct sum of t+1 copies of P_0 .
- (b) If $\rho = Q_t$ with $t \ge 1$, then ρ^t is the direct sum of t copies of Q_0 .
 - **4.** If ρ is any relation, then

$$\rho \circ \rho^{-1} \circ \rho = \rho.$$