Übungsaufgaben 12.

Local rings

- **1.** Show: The endomorphism ring of the 1-module $N(\infty)$ is a local ring.
- **2.** Let V a vector space (over the field k). Define a multiplication on $k \oplus V$ as follows

$$(x, v)(x', v') = (xx', xv' + x'v),$$

for $x \in k$ and $v \in V$.

- (a) Show: With this multiplication, $k \oplus V$ is a local ring with radical $I = 0 \oplus V$, and $I^2 = 0$. This ring is usually denoted by $k \ltimes V$.
- (b) Let M be any module with $\operatorname{soc} M \subseteq \operatorname{rad} M$. Let $u : \operatorname{soc} M \to M$ be the inclusion map and $p : M \to M/\operatorname{rad}(M)$ be the canonical projection. Show that the subring of $\operatorname{End}(M)$ generated by the k-multiples of 1 and the elements ufp, where $f : M/\operatorname{rad} M \to \operatorname{soc} M$ is a homomorphism, is isomorphic as a ring to $k \ltimes \operatorname{Hom}(M/\operatorname{rad} M,\operatorname{soc} M)$.

(Remark: The definition (x,v)(x',v')=(xx',xv'+x'v) can be used only in case that k is commutative, since otherwise this multiplication will not be associative! A better definition would be (x,v)(x',v')=(xx',xv'+vx'), meaning that we are allowed to multiply vectors both from the left as well as from the right by scalars. For k commutative, just let vx=xv for $x\in k$ and $v\in V$; in general we need that V is what is called a k-k-bimodule.)

3. Let k be a field and k(X) the field of rational funktions, its elements are of the form f/g, where f,g are polynomials with coefficients in k and g=0.

Let $a \in k$. Show that the set of elements f/g with $g(a) \neq 0$ is a subring of k(T) which is a local ring. (What is its maximal ideal?).

Remark. These kind of rings are the origin of considering local rings — here, "local" means that one fixes the position a and looks at the behaviour of functions (here rational functions) in the neighborhood of a.

- **4.** Let k be a field.
- (a) Let R be a k-algebra. Assume that R is a local ring with radical I such that $R = k \oplus I$. Show that any subring of R which contains $k = k \cdot 1_R$ is a local ring.
- (b) Determine all local subrings of the ring of all upper triangular (3×3) matrices with coefficients in k. (Remark: By definition, a subring of the ring R with
 identity element 1_R is supposed to contain the element 1_R .)

Zusatz-Aufgabe. Let k be an algebraically closed field. Determine for any indecomposable Kronecker module M its endomorphsim ring $\operatorname{End}(M)$.