Remark to Exercise 3.1.: There are many possibilities! Let us look at the
following easier problem:

Problem. Let k be a field and let V = (k®, ¢, 1) be a module such that
A1
A3

with pairwise different \; € k. How can the lattice of submodules of V' look like?

Solution. There are 9 essentially different cases. The submodule lattice L of
V = (k3, ¢) itself looks as follows:

kEO 0kk
k00 00k

All the sublattices L’ of L which include 0 and V' can be realized by chosen a
suitable map 1. Since the “length” of the lattice L is 3, the lattice L’ can have length
1,2 or 3.

Length of L’ is 3. There are 4 essentially different cases where L’ has length
3. We display cases where both k00, kk0 belong to L’; in the first three cases we still
have made an additional choice:

kEO ¢ kKO kKO kEO
k00 ‘ 00k k00 k00 k00
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Length of L’ is 2. There are three essentially different cases with L’ being of
length 2. We display the cases where k00 or kk0O belong to L’
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00k 00k
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Length of L’ is 1. In order to achieve that L’ has length 1 (thus (V, ¢, si) is
0
simple), we may take for example ¢ = | 1



