G₁T-MODULES, AR-COMPONENTS, AND GOOD FILTRATIONS

ROLF FARNSTEINER

0. MOTIVATION

Let \mathfrak{g} be a finite dimensional Lie algebra over an algebraically closed field k. The structure of \mathfrak{g} and its modules is usually analyzed by considering weight space decompositions relative to a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$:

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha} \quad ; \quad M = \bigoplus_{\lambda \in X(M)} M_{\lambda}.$$

Here $R \subset \mathfrak{h}^* \setminus \{0\}$ and $X(M) \subset \mathfrak{h}^*$ are finite subsets, and $\mathfrak{g}_{\alpha}, M_{\lambda}$ denote the root spaces and weight spaces of \mathfrak{g} and M, respectively.

In the classical situation, that is, when \mathfrak{g} is semisimple and $\operatorname{char}(k) = 0$, these decompositions define grading of \mathfrak{g} and M relative to a finitely generated subgroup $Q \subset \mathfrak{h}^*$. This group is torsion free (and hence free), which has a number of consequences:

- If $\alpha \neq 0$, then there exists $n \in \mathbb{N}$ with $(n\alpha + R) \cap R = \emptyset$. Consequently, $(\operatorname{ad} x_{\alpha})^{n}(\mathfrak{g}) = (0)$ for $x_{\alpha} \in \mathfrak{g}_{\alpha}$. Thus, these elements act via nilpotent transformations. By the same token, x_{α} acts nilpotently on M.
- By choosing postive roots corresponding to a Borel subalgebra one obtains a partial ordering on Q that is compatible with the addition.

If char(k) = p > 0, then we have

$$p\,\lambda = 0 \quad \forall \ \lambda \in \mathfrak{h}^*,$$

so that one obtains a grading relative to a *p*-elementary abelian group rather than a torsion free group.

Example. We consider the *p*-dimensional Witt algebra $W(1) := \text{Der}(k[X]/(X^p))$. Setting $x := X + (X^p)$, we denote by ∂ the derivation induced by the partial derivative of k[X]. Then $W(1) = \bigoplus_{i=-1}^{p-2} ke_i$, where $e_i := x^{i+1}\partial$. We have

$$[e_i, e_j] = \begin{cases} (j-i)e_{i+j} & -1 \le i+j \le p-2\\ 0 & \text{otherwise.} \end{cases}$$

Thus, $\mathfrak{h} := ke_0$ is a Cartan subalgebra and W(1) is \mathbb{Z} -graded.

Setting y := x + 1, we obtain another basis of W(1) by defining $e'_i := y^i \partial$. This time we have

$$[e'_i, e'_j] = (j - i)e'_{i+j},$$

where the indices are to be interpreted mod(p). For instance, we have

$$[e_1', e_{p-2}'] = [y^2 \partial, y^{p-1} \partial] = (y^2 \partial (y^{p-1}) - y^{p-1} \partial (y^2)) \partial = (p-3)y^p \partial = (p-3)\partial = (p-3)e_{-1}'.$$

Thus, for $p \neq 3$, we obtain a $\mathbb{Z}/(p)$ -grading. (For p = 3 we have $W(1) \cong \mathfrak{sl}(2)$).

Date: July 17, 2005.

1. G_1T -modules

From now on we assume that $\operatorname{char}(k) = p > 0$ and let $\mathfrak{g} = \operatorname{Lie}(G)$ be the Lie algebra of a reductive group G. Then \mathfrak{g} shares many properties with a complex semisimple Lie algebra. For instance,

$$\mathfrak{g}=\mathfrak{g}^-\oplus\mathfrak{h}\oplus\mathfrak{g}^+$$

affords a triangular decomposition, with $\mathfrak{b} := \mathfrak{h} \oplus \mathfrak{g}^+$ being a Borel subalgebra. We know that $(\mathfrak{g}, [p])$ is a restricted Lie algebra and that the three constituents above are *p*-subalgebras. We consider the restricted enveloping algebra

$$U_0(\mathfrak{g}) := U(\mathfrak{g})/(\{x^p - x^{[p]} ; x \in \mathfrak{g}\}).$$

Given an algebra homomorphism $\lambda : U_0(\mathfrak{b}) \longrightarrow k$ one defines the corresponding baby Verma module via

$$Z(\lambda) := U_0(\mathfrak{g}) \otimes_{U_0(\mathfrak{b})} k_{\lambda}.$$

2

The idea was to prove results similar to those obtained by Bernstein-Gel'fand-Gel'fand in their famous 1976 paper on the category \mathcal{O} . When Jantzen tried to carry out this program in 1978, he encountered the aforementioned problems concerning the weights. He overcame these obstacles by defining the category of G_1T -modules.

By general theory, one can find a maximal torus $T \subset G$ such that $\mathfrak{h} = \text{Lie}(T)$. Recall that T acts on \mathfrak{g} via the adjoint representation

$$\operatorname{Ad}: T \longrightarrow \operatorname{GL}(\mathfrak{g}).$$

In fact, T operates via automorphisms of the restricted Lie algebra $(\mathfrak{g}, [p])$ and the subalgebras $\mathfrak{h}, \mathfrak{g}^+$ and \mathfrak{g}^- are T-invariant. Consequently, T also acts on the corresponding restricted enveloping algebras, so that we obtain an operation

$$\operatorname{Ad}: T \longrightarrow \operatorname{Aut}_k(U_0(\mathfrak{g}))$$

of T on $U_0(\mathfrak{g})$

Let $X(T) := \text{Hom}(T, k^{\times})$ be the character group of T. Since T is a torus, X(T) is a finitely generated torsion free abelian goup. If V is a finite dimensional T-module, then

$$V = \bigoplus_{\lambda \in X(T)} V_{\lambda},$$

where $V_{\lambda} = \{v \in V ; t \cdot v = \lambda(t)v \; \forall t \in T\}$. Here is Jantzen's definition of a G_1T -module:

Definition. A finite dimensional k-vector space V is a G_1T -module if

- (a) V is a $U_0(\mathfrak{g})$ -module,
- (b) V is a T-module,
- (c) we have

$$t(uv) = \operatorname{Ad}(t)(u)(tv) \quad \forall \ t \in T, \ u \in U_0(\mathfrak{g}), \ v \in V,$$

(d) the differential $\mathfrak{h} \longrightarrow gl(V)$ of the *T*-action coincides with the action of \mathfrak{h} coming from (a).

Remarks. (i) Recall that \mathfrak{g} corresponds to the first Frobenius kernel $G_1 \triangleleft G$, so that $\operatorname{mod} U_0(\mathfrak{g}) = \operatorname{mod} G_1$. By (a) and (b) the vector space V is a T-module and a G_1 -module. Condition (d) ensures that the restrictions of these two actions to the first Frobenius kernel $T_1 = G_1 \cap T$ coincide.

(ii) Thanks to condition (c) we have an action of the semidirect product $G_1 \rtimes T$ on V. In view of (d), this action is trivial on

$$T_1 \xrightarrow{\sim} \{(t^{-1}, t) ; t \in T_1\}.$$

Consequently, the action factors through to

$$G_1T \cong (G_1 \rtimes T)/T_1.$$

Since T acts on $U_0(\mathfrak{g})$ via automorphisms, we have a decomposition

$$U_0(\mathfrak{g}) = \bigoplus_{\alpha \in X(T)} U_0(\mathfrak{g})_{\alpha} \quad \text{with} \quad U_0(\mathfrak{g})_{\alpha} U_0(\mathfrak{g})_{\beta} \subset U_0(\mathfrak{g})_{\alpha+\beta}$$

In other words, $U_0(\mathfrak{g})$ is an X(T)-graded algebra.

A vector space V fulfills conditions (a)-(c) if and only if it is a X(T)-graded $U_0(\mathfrak{g})$ -module. Let us disregard condition (d) for the time being and focus on the category $\operatorname{mod}_{X(T)} U_0(\mathfrak{g})$ of X(T)graded modules and degree 0 homomorphisms. This is a *Frobenius category*, that is, it has enough projectives and enough injectives, and the projectives coincide with the injectives. We thus have all the tools from the theory of self-injective algebras at our disposal.

Recall that $\operatorname{mod}_{X(T)} U_0(\mathfrak{g})$ decomposes into blocks: Two simples S, S' belong to the same block, if there exist finitely many simple modules $S = S_1, S_2, \ldots, S_n = S'$ such that $\operatorname{Ext}^1(S_i, S_{i+1}) \oplus \operatorname{Ext}^1(S_{i+1}, S_i) \neq (0)$ for $1 \leq i \leq n-1$. Modules belong to a block if all their composition factors do.

By definition, $\operatorname{mod} G_1 T \subset \operatorname{mod} G_1 \rtimes T$ is the full subcategory of $\operatorname{mod}_{X(T)} U_0(\mathfrak{g})$, whose objects are the G_1T -modules.

Lemma 1.1. The full subcategory $\operatorname{mod} G_1T \subset \operatorname{mod}_{X(T)} U_0(\mathfrak{g})$ is a sum of blocks of $\operatorname{mod}_{X(T)} U_0(\mathfrak{g})$.

Example. We consider mod SL(2)₁T, where $T := \{ \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} ; t \in k \}$. Then we have $X(T) \cong \mathbb{Z}$, where $i \in \mathbb{Z}$ corresponds to $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \mapsto t^i$. For $i \equiv -1 \mod(p)$, the module $\hat{P}(i) = \hat{L}(i)$ is simple. Otherwise the Loewy factors of $\hat{P}(i)$ are given by

$$\hat{P}(i) = \hat{L}(-i-2) \oplus \hat{L}(-i-2+2p) \cdot \hat{L}(i)$$

Hence we have blocks $\mathcal{B}(i)$ containing simple modules $\{\hat{L}(i+2np), \hat{L}(2np-i-2); n \in \mathbb{Z}\}$ for $0 \leq i \leq p-2$, and blocks $\mathcal{B}(np-1)$ containing one simple module. The non-simple blocks can be described as trivial extensions of radical square zero hereditary algebra of type A_{∞}^{∞} .

2. Auslander-Reiten Components

Let $\mathcal{F} : \operatorname{mod}_{X(T)} U_0(\mathfrak{g}) \longrightarrow \operatorname{mod} U_0(\mathfrak{g})$ be the forgetful functor. Since $X(T) \cong \mathbb{Z}^n$ is a free abelian group, we can apply the results by Gordon and Green on modules over graded Artin algebras:

Theorem 2.1 (Gordon-Green, 1982). (1) The category $\operatorname{mod}_{X(T)} U_0(\mathfrak{g})$ has almost split sequences. (2) The functor $\mathcal{F} : \operatorname{mod}_{X(T)} U_0(\mathfrak{g}) \longrightarrow \operatorname{mod} U_0(\mathfrak{g})$ sends indecomposables to indecomposables and almost split sequences to almost split sequences. In view of (1.1), the foregoing statement remains true if $\operatorname{mod}_{X(T)} U_0(\mathfrak{g})$ is replaced by $\operatorname{mod} G_1 T$. We can thus speak of the stable Auslander-Reiten quiver $\Gamma_s(G_1 T)$ of $\operatorname{mod} G_1 T$. We want to study $\Gamma_s(G_1 T)$ and the stable AR-quiver $\Gamma_s(\mathfrak{g})$ of $U_0(\mathfrak{g})$ by means of rank varieties.

Recall that

$$\mathcal{V}_{\mathfrak{g}} := \{ x \in \mathfrak{g} \ ; \ x^{[p]} = 0 \}$$

is the nullcone of \mathfrak{g} . Given $M \in \text{mod } U_0(\mathfrak{g})$, we define the rank variety of M via

$$\mathcal{V}_{\mathfrak{g}}(M) := \{ x \in \mathcal{V}_{\mathfrak{g}} ; M |_{U_0(kx)} \text{ is not projective} \} \cup \{ 0 \}.$$

If $M \in \text{mod} G_1T$, then we put $\mathcal{V}_{\mathfrak{g}}(M) := \mathcal{V}_{\mathfrak{g}}(\mathcal{F}(M))$.

- Here are some facts concerning rank varieties and AR-components:
 - A module $M \in \text{mod} G_1T$ is projective if and only if $\dim \mathcal{V}_{\mathfrak{g}}(M) = 0$.
 - If $\Theta \subset \Gamma_s(G_1T)$ is a component, then we have

$$\mathcal{V}_{\mathfrak{g}}(M) = \mathcal{V}_{\mathfrak{g}}(N) \qquad \forall [M], [N] \in \Theta.$$

Accordingly, we can speak of the variety $\mathcal{V}_{\mathfrak{g}}(\Theta)$ of the AR-component Θ .

• Using rank varieties one can show that Webb's Theorem holds for the components of $\Gamma_s(G_1T)$.

Recall that

$$\mathfrak{g} = \bigoplus_{\alpha \in R \cup \{0\}} \mathfrak{g}_{\alpha} \quad ; \quad R \subset X(T) \setminus \{0\}$$

is the root space decomposition of \mathfrak{g} relative to T. Since G is reductive, we have $\mathfrak{g}_0 = \operatorname{Lie}(T) = \mathfrak{h}$ as well as $\dim_k \mathfrak{g}_{\alpha} = 1$ for all $\alpha \in \mathbb{R}$.

Theorem 2.2. The following statements hold:

(1) Let M be a G_1T -module. Then $\mathcal{V}_{\mathfrak{g}}(M)$ is a T-invariant conical subvariety of $\mathcal{V}_{\mathfrak{g}}$.

(2) If $\mathcal{V} \subset \mathcal{V}_{\mathfrak{g}}$ is a conical, closed, *T*-invariant subset, then there exists $M \in \text{mod} G_1T$ such that $\mathcal{V} = \mathcal{V}_{\mathfrak{g}}(M)$.

(3) Let M be an indecomposable G_1T -module such that $\dim \mathcal{V}_{\mathfrak{g}}(M) = 1$. Then there exists a root $\alpha_M \in R$ such that

- (a) $\mathcal{V}_{\mathfrak{g}}(M) = \mathfrak{g}_{\alpha_M}, and$
- (b) $\tau_{G_1T}(M) \cong M \otimes_k k_{p\alpha_M}.$

Since X(T) is torsion free, it follows from (3) that $\Gamma_s(G_1T)$ has no τ_{G_1T} -periodic vertices.

Theorem 2.3. Let $\Theta \subset \Gamma_s(G_1T)$ be a component.

- (1) We have $\Theta \cong \mathbb{Z}[A_{\infty}], \mathbb{Z}[A_{\infty}^{\infty}], \mathbb{Z}[D_{\infty}].$
- (2) If dim $\mathcal{V}_{\mathfrak{g}}(\Theta) \neq 2$, then $\Theta \cong \mathbb{Z}[A_{\infty}]$.

Remarks. (1) If $\Theta \subset \Gamma_s(\mathrm{SL}(2)_1 T)$ has a rank variety of dimension 2, then $\Theta \cong \mathbb{Z}[A_{\infty}^{\infty}]$. (2) I do not know whether components of tree class D_{∞} can occur.

3. Modules with a good filtration

The main advantage of working in $\operatorname{mod} G_1T$ rather than $\operatorname{mod} U_0(\mathfrak{g})$ rests on $\operatorname{mod} G_1T$ being a highest weight category in the sense of Cline-Parshall-Scott. The projective indecomposable objects in $\operatorname{mod} G_1T$ are indexed by elements of X(T): Given $\lambda \in X(T)$ we let $\hat{P}(\lambda)$ and $\hat{L}(\lambda)$ be the projective indecomposable and the simple G_1T -module of highest weight λ , respectively. We also consider the G_1T -module

$$Z(\lambda) := U_0(\mathfrak{g}) \otimes_{U_0(\mathfrak{b})} k_{\lambda},$$

where $t(u \otimes \alpha) := \operatorname{Ad}(t)(u) \otimes \lambda(t)\alpha$ and \mathfrak{h} acts on k_{λ} via the differential $d\lambda \in X(T)/pX(T) = X(T_1)$. We have

• $\operatorname{Top}(\hat{Z}(\lambda)) = \hat{L}(\lambda)$, and

•
$$[\hat{Z}(\lambda) : \hat{L}(\lambda)] = 1$$

The following result, often referred to as BGG duality or Brauer-Humphreys reciprocity, was one of Jantzen's main objectives:

Theorem 3.1 (Jantzen, 1979). Given $\lambda \in X(T)$, the module $\hat{P}(\lambda)$ has a \hat{Z} -filtration and $(\hat{P}(\lambda) : \hat{Z}(\mu)) = [\hat{Z}(\mu) : \hat{L}(\lambda)].$

Let R^+ be the set of positive roots of \mathfrak{g} , corresponding to a choice of a Borel subgroup $B \subset G$. We define a partial ordering on X(T) via

$$\lambda \le \mu :\Leftrightarrow \mu - \lambda \in \mathbb{N}_0 R^+.$$

Relative to this ordering we have

$$\hat{Z}(\lambda) \cong \hat{P}(\lambda)/M(\lambda),$$

where $M(\lambda) = \sum_{\mu>\lambda} \operatorname{im}(\hat{P}(\mu) \longrightarrow \hat{P}(\lambda))$. This means that the $\hat{Z}(\lambda) = \Delta(\lambda)$ are the standard modules in the highest weight category mod G_1T , and that Jantzen's \hat{Z} -filtration is a Δ -good filtration. The costandard modules are given by

$$\nabla(\lambda) := Z'(\lambda) := U_0(\mathfrak{g}) \otimes_{U_0(\mathfrak{b}^-)} k_{\lambda - 2(p-1)\varrho},$$

where $\mathfrak{b}^- := \mathfrak{h} \oplus \mathfrak{g}^-$ is the opposite Borel subalgebra, and $\varrho := \frac{1}{2} \sum_{\alpha \in R^+} \alpha$. We denote by $F(\Delta)$ and $F(\nabla)$ the full subcategories of mod G_1T , whose objects afford a Δ -filtration and a ∇ -filtration, respectively.

Lemma 3.2. Let M be a G_1T -module. (1) $M \in F(\Delta)$ if and only if $\mathcal{V}_{\mathfrak{g}}(M) \cap \mathfrak{b}^- = \{0\}$. (2) $M \in F(\nabla)$ if and only if $\mathcal{V}_{\mathfrak{g}}(M) \cap \mathfrak{b} = \{0\}$.

In particular, $F(\Delta)$ is closed under extensions, direct summands, and tensor products.

Theorem 3.3 (Ringel, 1991). The subcategory $F(\Delta)$ has relative almost split sequences.

Strictly speaking, Ringel showed this for quasi-hereditary algebras, but his arguments also apply in our context. Since $\mathcal{V}_{\mathfrak{g}}(\hat{Z}(\lambda)) \subset \mathcal{V}_{\mathfrak{b}}$ and $\mathcal{V}_{\mathfrak{g}}(\hat{Z}'(\lambda)) \subset \mathcal{V}_{\mathfrak{b}^-}$, we obtain

$$\mathcal{V}_{\mathfrak{g}}(M) \subset \mathcal{V}_{\mathfrak{b}} \cap \mathcal{V}_{\mathfrak{b}^{-}} = \{0\}$$

for every $M \in F(\Delta) \cap F(\nabla)$. Thus, our tilting modules are projective, and the infinite-dimensional characteristic tilting module does not determine $F(\Delta)$.

The following result can be viewed as an interpretation of (3.3). In our particular context the relative almost split sequences are almost split within the category $\text{mod } G_1T$:

Proposition 3.4. Let M be an indecomposable G_1T -module, $\Theta \subset \Gamma_s(G_1T)$ and $\Psi \subset \Gamma_s(\mathfrak{g})$ the stable AR-components containing M and $\mathcal{F}(M)$, respectively.

- (1) Every vertex of Ψ has a G_1T -structure.
- (2) If $M \in F(\Delta)$, then every vertex of Θ belongs to $F(\Delta)$.
- (3) If $\mathcal{F}(M)$ has a Z-filtration, so does every vertex of Ψ .

The third statement illustrates the utility of $\operatorname{mod} G_1 T$ in the study of $\operatorname{mod} U_0(\mathfrak{g})$.

Theorem 3.5. The following statements hold:

(1) The module $\hat{L}(\lambda)$ is either projective, quasi-simple, or it belongs to a component of type $\mathbb{Z}[A_{\infty}^{\infty}]$.

- (2) The module $\hat{Z}(\lambda)$ is either projective or quasi-simple.
- (3) Every component of $\Gamma_s(G_1T)$ contains at most one $\hat{L}(\lambda)$ and at most one $\hat{Z}(\lambda)$, but not both.

Remark. The proof of (3) employs formal characters and relies on the fact that $\mathbb{Z}[X(T)]$ is an integral domain. Working in mod $U_0(\mathfrak{g})$ would involve $\mathbb{Z}[X(T)/pX(T)] \cong \mathbb{Z}[X_1,\ldots,X_n]/(X_1^p,\ldots,X_n^p)$. However, using the functor \mathcal{F} one obtains the analogous result for $\Gamma_s(\mathfrak{g})$.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT BIELEFELD, POSTFACH 10 01 31, 33501 BIELEFELD, GERMANY. *E-mail address:* rolf@mathematik.uni-bielefeld.de