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0. Motivation

Let g be a finite dimensional Lie algebra over an algebraically closed field k. The structure of
g and its modules is usually analyzed by considering weight space decompositions relative to a
Cartan subalgebra h ⊂ g:

g = h ⊕
⊕

α∈R

gα ; M =
⊕

λ∈X(M)

Mλ.

Here R ⊂ h∗ \{0} and X(M) ⊂ h∗ are finite subsets, and gα,Mλ denote the root spaces and weight
spaces of g and M , respectively.

In the classical situation, that is, when g is semisimple and char(k) = 0, these decompositions
define grading of g and M relative to a finitely generated subgroup Q ⊂ h∗. This group is torsion
free (and hence free), which has a number of consequences:

• If α 6= 0, then there exists n ∈ N with (nα + R) ∩ R = ∅. Consequently, (ad xα)n(g) = (0)
for xα ∈ gα. Thus, these elements act via nilpotent transformations. By the same token,
xα acts nilpotently on M .

• By choosing postive roots corresponding to a Borel subalgebra one obtains a partial ordering
on Q that is compatible with the addition.

If char(k) = p > 0, then we have

p λ = 0 ∀ λ ∈ h∗,

so that one obtains a grading relative to a p-elementary abelian group rather than a torsion free
group.

Example. We consider the p-dimensional Witt algebra W (1) := Der(k[X]/(Xp)). Setting x :=
X + (Xp), we denote by ∂ the derivation induced by the partial derivative of k[X]. Then W (1) =
⊕p−2

i=−1 kei, where ei := xi+1∂. We have

[ei, ej ] =

{

(j − i)ei+j −1 ≤ i + j ≤ p − 2
0 otherwise.

Thus, h := ke0 is a Cartan subalgebra and W (1) is Z-graded.
Setting y := x + 1, we obtain another basis of W (1) by defining e′i := yi∂. This time we have

[e′i, e
′
j ] = (j − i)e′i+j ,

where the indices are to be interpreted mod(p). For instance, we have

[e′1, e
′
p−2] = [y2∂, yp−1∂] = (y2∂(yp−1) − yp−1∂(y2))∂ = (p − 3)yp∂ = (p − 3)∂ = (p − 3)e′−1.

Thus, for p 6= 3, we obtain a Z/(p)-grading. (For p = 3 we have W (1) ∼= sl(2)).
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1. G1T -modules

From now on we assume that char(k) = p > 0 and let g = Lie(G) be the Lie algebra of a reductive
group G. Then g shares many properties with a complex semisimple Lie algebra. For instance,

g = g− ⊕ h ⊕ g+

affords a triangular decomposition, with b := h⊕g+ being a Borel subalgebra. We know that (g, [p])
is a restricted Lie algebra and that the three constituents above are p-subalgebras. We consider
the restricted enveloping algebra

U0(g) := U(g)/({xp − x[p] ; x ∈ g}).

Given an algebra homomorphism λ : U0(b) −→ k one defines the corresponding baby Verma module

via

Z(λ) := U0(g) ⊗U0(b) kλ.

The idea was to prove results similar to those obtained by Bernstein-Gel’fand-Gel’fand in their
famous 1976 paper on the category O. When Jantzen tried to carry out this program in 1978, he
encountered the aforementioned problems concerning the weights. He overcame these obstacles by
defining the category of G1T -modules.

By general theory, one can find a maximal torus T ⊂ G such that h = Lie(T ). Recall that T
acts on g via the adjoint representation

Ad : T −→ GL(g).

In fact, T operates via automorphisms of the restricted Lie algebra (g, [p]) and the subalgebras
h, g+ and g− are T -invariant. Consequently, T also acts on the corresponding restricted enveloping
algebras, so that we obtain an operation

Ad : T −→ Autk(U0(g))

of T on U0(g)
Let X(T ) := Hom(T, k×) be the character group of T . Since T is a torus, X(T ) is a finitely

generated torsion free abelian goup. If V is a finite dimensional T -module, then

V =
⊕

λ∈X(T )

Vλ,

where Vλ = {v ∈ V ; t · v = λ(t)v ∀ t ∈ T}. Here is Jantzen’s definition of a G1T -module:

Definition. A finite dimensional k-vector space V is a G1T -module if
(a) V is a U0(g)-module,
(b) V is a T -module,
(c) we have

t(uv) = Ad(t)(u)(tv) ∀ t ∈ T, u ∈ U0(g), v ∈ V,

(d) the differential h −→ gl(V ) of the T -action coincides with the action of h coming from (a).

Remarks. (i) Recall that g corresponds to the first Frobenius kernel G1 � G, so that mod U0(g) =
modG1. By (a) and (b) the vector space V is a T -module and a G1-module. Condition (d) ensures
that the restrictions of these two actions to the first Frobenius kernel T1 = G1 ∩ T coincide.

(ii) Thanks to condition (c) we have an action of the semidirect product G1 ⋊ T on V . In view
of (d), this action is trivial on

T1
∼
−→ {(t−1, t) ; t ∈ T1}.
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Consequently, the action factors through to

G1T ∼= (G1 ⋊ T )/T1.

Since T acts on U0(g) via automorphisms, we have a decomposition

U0(g) =
⊕

α∈X(T )

U0(g)α with U0(g)αU0(g)β ⊂ U0(g)α+β .

In other words, U0(g) is an X(T )-graded algebra.
A vector space V fulfills conditions (a)-(c) if and only if it is a X(T )-graded U0(g)-module. Let

us disregard condition (d) for the time being and focus on the category modX(T ) U0(g) of X(T )-
graded modules and degree 0 homomorphisms. This is a Frobenius category, that is, it has enough
projectives and enough injectives, and the projectives coincide with the injectives. We thus have
all the tools from the theory of self-injective algebras at our disposal.

Recall that modX(T ) U0(g) decomposes into blocks: Two simples S, S′ belong to the same block,

if there exist finitely many simple modules S = S1, S2, . . . , Sn = S′ such that Ext1(Si, Si+1) ⊕
Ext1(Si+1, Si) 6= (0) for 1 ≤ i ≤ n − 1. Modules belong to a block if all their composition factors
do.

By definition, mod G1T ⊂ modG1 ⋊ T is the full subcategory of modX(T ) U0(g), whose objects
are the G1T -modules.

Lemma 1.1. The full subcategory modG1T ⊂ modX(T ) U0(g) is a sum of blocks of modX(T ) U0(g).

Example. We consider modSL(2)1T , where T := {

(

t 0
0 t−1

)

; t ∈ k}. Then we have X(T ) ∼= Z,

where i ∈ Z corresponds to

(

t 0
0 t−1

)

7→ ti. For i ≡ −1 mod(p), the module P̂ (i) = L̂(i) is

simple. Otherwise the Loewy factors of P̂ (i) are given by

P̂ (i) =

L̂(i)

L̂(−i − 2) ⊕ L̂(−i − 2 + 2p)

L̂(i)

.

Hence we have blocks B(i) containing simple modules {L̂(i + 2np), L̂(2np − i − 2) ; n ∈ Z} for
0 ≤ i ≤ p − 2, and blocks B(np − 1) containing one simple module. The non-simple blocks can be
described as trivial extensions of radical square zero hereditary algebra of type A∞

∞.

2. Auslander-Reiten Components

Let F : modX(T ) U0(g) −→ modU0(g) be the forgetful functor. Since X(T ) ∼= Z
n is a free abelian

group, we can apply the results by Gordon and Green on modules over graded Artin algebras:

Theorem 2.1 (Gordon-Green, 1982). (1) The category modX(T ) U0(g) has almost split sequences.

(2) The functor F : modX(T ) U0(g) −→ modU0(g) sends indecomposables to indecomposables

and almost split sequences to almost split sequences.
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In view of (1.1), the foregoing statement remains true if modX(T ) U0(g) is replaced by modG1T .
We can thus speak of the stable Auslander-Reiten quiver Γs(G1T ) of mod G1T . We want to study
Γs(G1T ) and the stable AR-quiver Γs(g) of U0(g) by means of rank varieties.

Recall that

Vg := {x ∈ g ; x[p] = 0}

is the nullcone of g. Given M ∈ mod U0(g), we define the rank variety of M via

Vg(M) := {x ∈ Vg ; M |U0(kx) is not projective} ∪ {0}.

If M ∈ mod G1T , then we put Vg(M) := Vg(F(M)).
Here are some facts concerning rank varieties and AR-components:

• A module M ∈ mod G1T is projective if and only if dimVg(M) = 0.
• If Θ ⊂ Γs(G1T ) is a component, then we have

Vg(M) = Vg(N) ∀ [M ], [N ] ∈ Θ.

Accordingly, we can speak of the variety Vg(Θ) of the AR-component Θ.
• Using rank varieties one can show that Webb’s Theorem holds for the components of

Γs(G1T ).

Recall that

g =
⊕

α∈R∪{0}

gα ; R ⊂ X(T ) \ {0}

is the root space decomposition of g relative to T . Since G is reductive, we have g0 = Lie(T ) = h

as well as dimk gα = 1 for all α ∈ R.

Theorem 2.2. The following statements hold:

(1) Let M be a G1T -module. Then Vg(M) is a T -invariant conical subvariety of Vg.

(2) If V ⊂ Vg is a conical, closed, T -invariant subset, then there exists M ∈ mod G1T such that

V = Vg(M).
(3) Let M be an indecomposable G1T -module such that dimVg(M) = 1. Then there exists a

root αM ∈ R such that

(a) Vg(M) = gαM
, and

(b) τG1T (M) ∼= M ⊗k kpαM
.

Since X(T ) is torsion free, it follows from (3) that Γs(G1T ) has no τG1T -periodic vertices.

Theorem 2.3. Let Θ ⊂ Γs(G1T ) be a component.

(1) We have Θ ∼= Z[A∞], Z[A∞
∞], Z[D∞].

(2) If dimVg(Θ) 6= 2, then Θ ∼= Z[A∞].

Remarks. (1) If Θ ⊂ Γs(SL(2)1T ) has a rank variety of dimension 2, then Θ ∼= Z[A∞
∞].

(2) I do not know whether components of tree class D∞ can occur.
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3. Modules with a good filtration

The main advantage of working in modG1T rather than modU0(g) rests on modG1T being
a highest weight category in the sense of Cline-Parshall-Scott. The projective indecomposable
objects in modG1T are indexed by elements of X(T ): Given λ ∈ X(T ) we let P̂ (λ) and L̂(λ) be
the projective indecomposable and the simple G1T -module of highest weight λ, respectively. We
also consider the G1T -module

Ẑ(λ) := U0(g) ⊗U0(b) kλ,

where t(u⊗α) := Ad(t)(u)⊗λ(t)α and h acts on kλ via the differential dλ ∈ X(T )/pX(T ) = X(T1).
We have

• Top(Ẑ(λ)) = L̂(λ), and

• [Ẑ(λ) : L̂(λ)] = 1.

The following result, often referred to as BGG duality or Brauer-Humphreys reciprocity, was one
of Jantzen’s main objectives:

Theorem 3.1 (Jantzen, 1979). Given λ ∈ X(T ), the module P̂ (λ) has a Ẑ-filtration and

(P̂ (λ) : Ẑ(µ)) = [Ẑ(µ) : L̂(λ)].

Let R+ be the set of positive roots of g, corresponding to a choice of a Borel subgroup B ⊂ G. We
define a partial ordering on X(T ) via

λ ≤ µ :⇔ µ − λ ∈ N0R
+.

Relative to this ordering we have
Ẑ(λ) ∼= P̂ (λ)/M(λ),

where M(λ) =
∑

µ>λ im(P̂ (µ) −→ P̂ (λ)). This means that the Ẑ(λ) = ∆(λ) are the standard

modules in the highest weight category modG1T , and that Jantzen’s Ẑ-filtration is a ∆-good
filtration. The costandard modules are given by

▽(λ) := Ẑ ′(λ) := U0(g) ⊗U0(b−) kλ−2(p−1)̺,

where b− := h ⊕ g− is the opposite Borel subalgebra, and ̺ := 1
2

∑

α∈R+ α. We denote by F (∆)
and F (▽) the full subcategories of modG1T , whose objects afford a ∆-filtration and a ▽-filtration,
respectively.

Lemma 3.2. Let M be a G1T -module.

(1) M ∈ F (∆) if and only if Vg(M) ∩ b− = {0}.
(2) M ∈ F (▽) if and only if Vg(M) ∩ b = {0}.

In particular, F (∆) is closed under extensions, direct summands, and tensor products.

Theorem 3.3 (Ringel, 1991). The subcategory F (∆) has relative almost split sequences.

Strictly speaking, Ringel showed this for quasi-hereditary algebras, but his arguments also apply
in our context. Since Vg(Ẑ(λ)) ⊂ Vb and Vg(Ẑ ′(λ)) ⊂ Vb− , we obtain

Vg(M) ⊂ Vb ∩ Vb− = {0}

for every M ∈ F (∆)∩F (▽). Thus, our tilting modules are projective, and the infinite-dimensional
characteristic tilting module does not determine F (∆).
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The following result can be viewed as an interpretation of (3.3). In our particular context the
relative almost split sequences are almost split within the category modG1T :

Proposition 3.4. Let M be an indecomposable G1T -module, Θ ⊂ Γs(G1T ) and Ψ ⊂ Γs(g) the

stable AR-components containing M and F(M), respectively.

(1) Every vertex of Ψ has a G1T -structure.

(2) If M ∈ F (∆), then every vertex of Θ belongs to F (∆).
(3) If F(M) has a Z-filtration, so does every vertex of Ψ.

The third statement illustrates the utility of modG1T in the study of modU0(g).

Theorem 3.5. The following statements hold:

(1) The module L̂(λ) is either projective, quasi-simple, or it belongs to a component of type

Z[A∞
∞].

(2) The module Ẑ(λ) is either projective or quasi-simple.

(3) Every component of Γs(G1T ) contains at most one L̂(λ) and at most one Ẑ(λ), but not both.

Remark. The proof of (3) employs formal characters and relies on the fact that Z[X(T )] is an integral
domain. Working in mod U0(g) would involve Z[X(T )/pX(T )] ∼= Z[X1, . . . ,Xn]/(Xp

1 , . . . ,Xp
n).

However, using the functor F one obtains the analogous result for Γs(g).
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