QUASI-HEREDITARY ALGEBRAS: BGG RECIPROCITY

ROLF FARNSTEINER

Let A be a finite-dimensional associative algebra over an algebraically closed field k. We let $S(1), \ldots, S(n)$ denote a full set of representatives of the simple A-modules and define P(i) to be the projective cover of S(i). Reciprocity laws, such as Brauer reciprocity [2], Humphreys reciprocity [4, §4], or Bernstein-Gel'fand-Gel'fand reciprocity [1] involve A-modules $\Delta(1), \ldots, \Delta(n)$ such that each P(i) admits a Δ -filtration, that is, a filtration

$$(0) = M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_r = P(i)$$

such that $M_i/M_{i-1} \in \{\Delta(1), \ldots, \Delta(n)\}$ for $i \in \{1, \ldots, r\}$. The actual law then reads as

$$(P(i):\Delta(j)) = [\Delta(j):S(i)],$$

where the brackets denote the relevant filtration multiplicities.

Let us record one immediate consequence. Recall that $C_A = (c_{ij})_{1 \le i,j \le n}$ with $c_{ij} := [P(j):S(i)] = \dim_k \operatorname{Hom}_A(P(i), P(j))$ is a *Cartan matrix* of A. In view of the exactness of $\operatorname{Hom}_A(P(i), -)$, we obtain

$$c_{ij} = \dim_k \operatorname{Hom}_A(P(i), P(j)) = \sum_{\ell=1}^n (P(j) : \Delta(\ell)) \dim_k \operatorname{Hom}_A(P(i), \Delta(\ell))$$
$$= \sum_{\ell=1}^n (P(j) : \Delta(\ell)) [\Delta(\ell) : S(i)] = \sum_{\ell=1}^n (P(j) : \Delta(\ell)) (P(i) : \Delta(\ell)).$$

Thus, setting $D := ((P(j): \Delta(i))_{1 \le i,j \le n})$, we arrive at $C_A = D^{\mathrm{tr}}D$, so that C_A is symmetric with $\det(C_A) = \det(D)^2$ being a square.

The main tools for the proof of reciprocity laws are certain subcategories of the module categories to be considered. For complex semi-simple Lie algebras or Kac-Moody algebras one considers the BGG-categories \mathcal{O} (cf. [1, 9, 10]); for Frobenius kernels of reductive groups Jantzen [6] introduced the category of G_rT -modules. In addition, certain categories of perverse sheaves also satisfy BGGreciprocity, see [7]. With so many examples in hand, people started thinking about a proper axiomatic set-up for reciprocity theorems. The initial ideas in this direction appear to be due to Irving [5]; the more general framework of a *highest weight category* was introduced by Cline-Parshall-Scott, see [3].

Let A be a finite-dimensional k algebra, (I, \leq) be a finite partially ordered set with $(S(i))_{i \in I}$ being a complete set of representatives for the isomorphism classes of the simple A-modules. For each $i \in I$, let P(i) and I(i) be the projective cover and the injective hull of S(i), respectively. Throughout, we will be working in the category mod A of finite-dimensional A-modules. The Jordan-Hölder multiplicity of S(i) in M will be denoted [M:S(i)].

The following definition is motivated by properties of the so-called *Verma modules* occurring in Lie theory.

Date: January 23, 2008.

ROLF FARNSTEINER

Definition. A family $(\Delta(i))_{i \in I}$ of A-modules is referred to as a collection of standard modules (for A relative to (I, \leq)) if

- (1) $\operatorname{Top}(\Delta(i)) \cong S(i)$ and $[\Delta(i):S(i)] = 1$ for all $i \in I$, and
- (2) $[\Delta(i):S(j)] = 0$ for $j \not\leq i$.

An A-module M is called Δ -good if it affords a filtration, whose filtration factors are standard modules. In that case, the element [M] in the Grothendieck group $K_0(A)$ of mod A corresponding to M can be written as

$$[M] = \sum_{j \in I} n_j [\Delta(j)] = \sum_{i \in I} (\sum_{j \in I} [\Delta(j) : S(i)] n_j) [S(i)].$$

Since the matrix $([\Delta(j):S(i)])_{i,j\in I}$ is unipotent upper triangular, the coefficients n_j are uniquely determined. In other words, the multiplicities

$$(M:\Delta(j)) = n_j$$

do not depend on the choice of the Δ -filtration of M.

Definition. Let A be a k-algebra, $\{\Delta(i); i \in I\}$ be a collection of standard modules. Then A is called *quasi-hereditary* if

- (1) each P(i) is Δ -good, and
- (2) for each $i \in I$, we have $(P(i):\Delta(i)) = 1$ and $(P(i):\Delta(j)) = 0$ for $i \not\leq j$.

From now on we fix a quasi-hereditary algebra A. We consider truncated subcategories of mod A. For each $i \in I$, we let $\text{mod}_{\leq i} A$ be the full subcategory of mod A, whose objects have all their composition factors lying in $\{S(j) ; j \leq i\}$. We record the following properties:

- $mod_{\leq i} A$ is closed under submodules, factor modules and extensions.
- If $M_1, M_1 \subseteq M$ are submodules of M, then

$$M_1/(M_1 \cap M_2) \cong (M_1 + M_2)/M_2.$$

Thus, if $M_1, M_2 \in \text{mod}_{\leq i} A$, then $M_1 + M_2 \in \text{mod}_{\leq i} A$.

• Similarly, if M/M_1 and M/M_2 belong to $\operatorname{mod}_{\leq i} A$, then $M/(M_1 \cap M_2)$ belongs to $\operatorname{mod}_{\leq i} A$. As a result, M possesses a unique largest factor module $\operatorname{Tr}_{\leq i}(M) \in \operatorname{mod}_{\leq i}(M)$ and a unique largest submodule belonging to $\operatorname{mod}_{\leq i} A$. We define $\nabla(i)$ to be the largest submodule of I(i) such that $\nabla(i) \in \operatorname{mod}_{\leq i} A$. Note that $\Delta(i) \in \operatorname{mod}_{\leq i} A$.

Given an A-module M, we let $\Omega_A(M)$ be the kernel of a projective cover $P \longrightarrow M$. In the following, $\mathcal{F}(\Delta)$ denotes the full subcategory of mod A, whose objects are the Δ -good modules.

Lemma 1. Let A be quasi-hereditary. Then the following statements hold:

- (1) The module $\Omega_A(\Delta(i))$ is Δ -good, with filtration factors belonging to $\{\Delta(\ell) ; \ell > i\}$.
- (2) $\dim_k \operatorname{Hom}_A(\Delta(i), \nabla(j)) = \delta_{ij}$ for all $i, j \in I$.
- (3) If $N \subseteq I(j)$ is a submodule such that $\dim_k \operatorname{Hom}_A(\Delta(i), N) = \delta_{ij}$ for all $i \in I$, then $N \subseteq \nabla(j)$.

Proof. (1) Since A is quasi-hereditary, there exists a surjection $P(i) \xrightarrow{\pi} \Delta(j)$ for some $j \ge i$ such that ker π is Δ -good. Thus, $S(i) \cong \text{Top}(\Delta(j)) \cong S(j)$, whence i = j. Consequently, $\Omega_A(\Delta(i))$ is a Δ -good module with filtration factors belonging to $\{\Delta(\ell) ; \ell > i\}$.

(2) Suppose that $i \not\leq j$. Then S(i) is not a composition factor of $\Delta(j)$ or $\nabla(j)$, whence

 $\operatorname{Hom}_{A}(P(i), \nabla(j)) = (0) = \operatorname{Hom}_{A}(\Delta(j), I(i)).$

As Hom_A is left exact, we obtain Hom_A($\Delta(i), \nabla(j)$) = (0) = Hom_A($\Delta(j), \nabla(i)$). Consequently, Hom_A($\Delta(i), \nabla(j)$) = (0) for $i \neq j$. Since $\Delta(i) \in \text{mod}_{\leq i} A$, we also have

 $\dim_k \operatorname{Hom}_A(\Delta(i), \nabla(i)) = \dim_k \operatorname{Hom}_A(\Delta(i), I(i)) = [\Delta(i): S(i)] = 1,$

as desired.

(3) Suppose that $\operatorname{Hom}_A(P(i), N) \neq (0)$. Since P(i) is filtered with filtration factors $(\Delta(\ell))_{\ell \geq i}$, there exists $\ell \geq i$ such that $\operatorname{Hom}_A(\Delta(\ell), N) \neq (0)$. By assumption, we obtain $\ell = j$, so that $i \leq j$. Consequently, $N \in \operatorname{mod}_{\leq i} A$, whence $N \subseteq \nabla(j)$.

Lemma 2. The following statements hold:

(1) $\operatorname{Ext}_{A}^{1}(\Delta(i), \nabla(j)) = (0)$ for all $i, j \in I$.

(2) If M is a Δ -good module, then $(M : \Delta(j)) = \dim_k \operatorname{Hom}_A(M, \nabla(j))$.

Proof. Let \leq_1 be a total ordering on I containing \leq . If (A, \leq) is quasi-hereditary with standard modules $\{\Delta(i), i \in I\}$, then (A, \leq_1) is quasi-hereditary with the same standard modules. Letting $\nabla_1(j) \subseteq I(j)$ be the co-standard module relative to \leq_1 , we have $\nabla(j) \subseteq \nabla_1(j)$. Moreover, Lemma 1(1) yields dim_k Hom_A($\Delta(i), \nabla_1(j)$) = δ_{ij} for all $i \in I$, so that (3) of Lemma 1 gives $\nabla_1(j) = \nabla(j)$. We may therefore assume without loss of generality that \leq is a total ordering on I.

(1) If $i \geq j$, then (1) and (2) of Lemma 1 yield $\operatorname{Hom}_A(\Omega_A(\Delta(i)), \nabla(j)) = (0)$, whence $\operatorname{Ext}^1_A(\Delta(i), \nabla(j)) = (0)$. Alternatively, i < j and we consider the canonical projection $\pi : I(j) \longrightarrow I(j)/\nabla(j)$. If $f \in \operatorname{Hom}_A(\Delta(i), I(j)/\nabla(j))$, then $\pi^{-1}(f(\Delta(i))) \in \operatorname{mod}_{\leq j} A$, so that $\pi^{-1}(f(\Delta(i))) = \nabla(j)$. Consequently, $f(\Delta(i)) = \pi(\pi^{-1}(f(\Delta(i)))) = (0)$. Since the connecting homomorphism

$$\operatorname{Hom}_A(\Delta(i), I(j)/\nabla(j)) \longrightarrow \operatorname{Ext}_A^1(\Delta(i), \nabla(j))$$

is surjective, we obtain $\operatorname{Ext}_{A}^{1}(\Delta(i), \nabla(j)) = (0)$.

(2) Let M be a Δ -good module. Thanks to (1), we have $\operatorname{Ext}_A^1(M, \nabla(j)) = (0)$ for all $j \in I$. This implies that the functor $\operatorname{Hom}_A(-, \nabla(j))|_{\mathcal{F}(\Delta)}$ is exact. Our assertion is now a consequence of Lemma 1(2).

The weak BGG reciprocity principle reads as follows:

Theorem 3. Let A be a quasi-hereditary algebra. Then we have

 $(P(i)\!:\!\Delta(j))=[\nabla(j)\!:\!S(i)]$

for all $i, j \in I$.

Proof. According to (2) of Lemma 2, we have

$$(P(i):\Delta(j)) = \dim_k \operatorname{Hom}_A(P(i):\nabla(j)).$$

Since k is algebraically closed, the latter number coincides with $[\nabla(j):S(i)]$.

The above reciprocity law has a blemish residing in the seemingly contrived definition of the costandard modules $\nabla(i)$. Our next lemma addresses this issue by showing that the $\Delta(i)$ may be constructed in a similar fashion. Many papers on quasi-hereditary algebras use this as the defining property of standard modules, see for instance [8, p.213f].

Lemma 4. We have

$$\operatorname{Tr}_{\leq i}(P(i)) \cong \Delta(i)$$

for every $i \in I$.

ROLF FARNSTEINER

Proof. Let $\pi : P(i) \longrightarrow \Delta(i)$ and $\tilde{\pi} : P(i) \longrightarrow \operatorname{Tr}_{\leq i}(P(i))$ be the canonical projections. By definition of $\operatorname{Tr}_{\leq i}(P(i))$, there exists a linear map $\omega : \operatorname{Tr}_{\leq i}(P(i)) \longrightarrow \Delta(i)$ such that $\omega \circ \tilde{\pi} = \pi$. Since $\Omega_A(\Delta(i)) = \ker \pi$ is Δ -good with filtration factors $(\Delta(\ell))_{\ell > i}$ and

$$\operatorname{Hom}_{A}(\Delta(\ell), \operatorname{Tr}_{\leq i}(P(i))) = (0)$$

for $\ell > i$, it follows that $\operatorname{Hom}_A(\Omega_A(\Delta(i)), \operatorname{Tr}_{\leq i}(P(i))) = (0)$. Consequently, the map

$$\pi^* : \operatorname{Hom}_A(\Delta(i), \operatorname{Tr}_{\leq i}(P(i))) \longrightarrow \operatorname{Hom}_A(P(i), \operatorname{Tr}_{\leq i}(P(i)))$$

is surjective, and there exists $\gamma : \Delta(i) \longrightarrow \operatorname{Tr}_{\langle i}(P(i))$ with

$$\tilde{\pi} = \gamma \circ \pi.$$

Thus, $(\omega \circ \gamma) \circ \pi = \omega \circ \tilde{\pi} = \pi$, so that $\omega \circ \gamma = \mathrm{id}_{\Delta(i)}$. This shows that $\Delta(i)$ is a direct summand of $\mathrm{Tr}_{\leq i}(P(i))$. Being a factor module of P(i), $\mathrm{Tr}_{\leq i}(P(i))$ is indecomposable, whence $\Delta(i) \cong \mathrm{Tr}_{\leq i}(P(i))$.

The classical BGG reciprocity principle necessitates an additional ingredient, a duality functor which interchanges standard modules and costandard modules. By definition, a *duality* $D : \text{mod } A \longrightarrow \text{mod } A$ is a contravariant functor which is an equivalence $(\text{mod } A)^{\text{op}} \longrightarrow \text{mod } A$. Such functors are available in the aforementioned contexts.

Definition. A quasi-hereditary algebra A is called a BGG-algebra if there exists a duality D: mod $A \longrightarrow \text{mod } A$ such that $D(S(i)) \cong S(i)$ for every $i \in I$.

Theorem 5 (BGG Reciprocity). Let A be a BGG-algebra. Then we have

$$(P(i):\Delta(j)) = [\Delta(j):S(i)]$$

for all $i, j \in I$.

Proof. By assumption, there exists a duality $D : \text{mod } A \longrightarrow \text{mod } A$ such that $D(S(i)) \cong S(i)$ for all $i \in I$. Consequently, $D(I(i)) \cong P(i)$ and $D(\text{mod}_{\leq i} A) = \text{mod}_{\leq i} A$. In view of Lemma 4, we thus have $D(\nabla(i)) \cong \Delta(i)$, so that

$$\nabla(j):S(i)] = [D(\nabla(j)):D(S(i))] = [\Delta(j):S(i)]$$

for all $i, j \in I$. The assertion now follows from Theorem 3.

References

- [1] I. Bernstein, I. Gel'fand and S. Gel'fand, Category of g-modules. Functional Anal. Appl. 10 (1976), 87–92.
- [2] R. Brauer, On modular and p-adic representations of algebras. Proc. Natl. Acad. Sci. U.S.A. 25 (1939), 252–258...
- [3] E. Cline, B. Parshall and L. Scott, Finite dimensional algebras and highest weight categories. J. reine angew. Math. 391 (1988), 85–99.
- [4] J. Humphreys, Modular representations of classical Lie algebras and semisimple groups. J. Algebra 19 (1971), 51–79.
- [5] R. Irving, BGG algebras and the BGG reciprocity principle. J. Algebra 135 (1990), 363–380.
- [6] J. Jantzen, Über Darstellungen höherer Frobenius-Kerne halbeinfacher algebraischer Gruppen. Math. Z. 164 (1979), 271–292.
- [7] R. Mirollo and K. Vilonen, Bernstein-Gelfand-Gelfand reciprocity on perverse sheaves. Ann. Sci. École Norm. Sup. 20 (1987), 311–324.
- [8] C. Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. 208 (1991), 209–223.

BGG RECIPROCITY

[10] A. Rocha-Caridi and N. Wallach, Projective modules over graded Lie algebras, I. Math. Z. 180 (1982), 151–177.