INDUCED MODULES: FIRST PROPERTIES OF DEFECT GROUPS

ROLF FARNSTEINER

Let k be a field of characteristic $p > 0$. If G is a finite group, then the group algebra kG has a block decomposition

$$kG = B_1 \oplus B_2 \oplus \cdots \oplus B_r,$$

where each block $B_i \subseteq kG$ is an indecomposable two-sided ideal. Equivalently, each block $B \subseteq kG$ is an indecomposable $kG \otimes_k kG^{op}$-module. Since the map

$$(g, h) \mapsto g \otimes h^{-1}$$

induces an isomorphism $k(G \times G) \longrightarrow kG \otimes_k kG^{op}$ of associative k-algebras, the latter condition amounts to B being an indecomposable submodule of the $(G \times G)$-module kG, relative to the action

$$(g, h), x := gxh^{-1} \quad \forall \ g, h \in G, \ x \in kG.$$

One can thus speak of the vertex of the $(G \times G)$-module B, see [4] for the definition.

Let $\Delta : G \longrightarrow G \times G : g \mapsto (g, g)$ be the diagonal embedding, whose induced algebra homomorphism $kG \longrightarrow k(G \times G)$ will also be denoted Δ.

Definition. Let $B \subseteq kG$ be a block. A p-subgroup $D \subseteq G$ is called a defect group of B if $\Delta(D)$ is a vertex of the $(G \times G)$-module B. If $\text{ord}(D) = p^d$, then d is called the defect of B.

The name defect derives from an early result of the theory, which states that a block $B \subseteq kG$ is semi-simple (and hence simple) if and only if $d = 0$. Thus, d may be viewed as a measure for the deviation of B from being semi-simple.

Defects were first defined by Brauer [1], with the definition of a defect group following shortly thereafter [2]. In his seminal articles [1, 2, 3] Brauer established important properties of defect groups that were later reformulated by Green [6, 7], whose approach is the basis of our exposition.

Recall that G acts on k via

$$g.\alpha = \alpha \quad \forall \ g \in G, \ \alpha \in k.$$

Our first result establishes the existence of defect groups and shows that the defect of a block is well-defined.

Theorem 1. Let $B \subseteq kG$ be a block of kG.

1. B possesses a defect group $D \subseteq G$.

2. If $D, D' \subseteq G$ are defect groups of B, then there exists $g \in G$ with $D' = gDg^{-1}$.

Proof. (1) We consider $k(G \times G)$ as a left and right G-module via Δ. The bilinear map

$$\varphi : k(G \times G) \times k \longrightarrow kG ; \ ((g, h), \alpha) \mapsto \alpha gh^{-1}$$

is kG-balanced: Given $x \in G$, we have

$$\varphi((g, h), x, \alpha) = \varphi((gx, hx), \alpha) = \alpha gh^{-1} = \varphi((g, h), x.\alpha).$$
Hence there exists a surjective, k-linear map
\[\psi : k(G \times G) \otimes_{kG} k \rightarrow kG \quad ; \quad (g, h) \otimes \alpha \mapsto \alpha gh^{-1}, \]
which is readily seen to be $k(G \times G)$-linear. Since both spaces involved have dimension $\text{ord}(G)$, ψ is in fact an isomorphism, so that kG is a relatively $\Delta(G)$-projective $k(G \times G)$-module. Being a direct summand of kG, the block B enjoys the same property. According to [4, Prop.4] there exists a p-subgroup $D \subseteq G$ such that $\Delta(D)$ is a vertex of B.

(2) Let D, D' be defect groups of B. Owing to [4, Prop.4], there exists an element $(g, h) \in G \times G$ such that
\[\Delta(D') = (g, h)\Delta(D)(g, h)^{-1}, \]
whence $D' = gDg^{-1}$.

We would like to relate the defect group of a block to the vertices of its indecomposable modules. This necessitates the following subsidiary result, which shows that induction commutes with taking tensor products over k. Recall that the tensor product $M \otimes_k N$ of G-modules obtains the structure of a G-module via
\[g.(m \otimes n) := g.m \otimes g.n \]
for all $g \in G$, $m \in M$ and $n \in N$.

Lemma 2 (Tensor Identity). Let $H \subseteq G$ be a subgroup of the finite group G. If V is a finite-dimensional G-module and M is a finite-dimensional H-module, then we have an isomorphism
\[kG \otimes_{kH} (M \otimes_k V) \cong (kG \otimes_{kH} M) \otimes_k V \]
of G-modules.

Proof. Given $g \in G$, we consider the k-linear map
\[\lambda_g : M \otimes_k V \rightarrow (kG \otimes_{kH} M) \otimes_k V \quad ; \quad m \otimes v \mapsto (g \otimes m) \otimes g.v \]
If $a = \sum_{g \in G} \alpha_g g$ is an element of kG, we define $\lambda_a := \sum_{g \in G} \alpha_g \lambda_g$. There results a bilinear map
\[\psi : kG \times (M \otimes_k V) \rightarrow (kG \otimes_{kH} M) \otimes_k V \quad ; \quad (a, x) \mapsto \lambda_a(x). \]
Since $\lambda_a(hx) = \lambda_a(h x)$ for all $a \in kG$, $h \in H$ and $x \in M \otimes_k V$, the map ψ is kH-balanced and there exists a k-linear map
\[\omega : kG \otimes_{kH} (M \otimes_k V) \rightarrow (kG \otimes_{kH} M) \otimes_k V \quad ; \quad a \otimes x \mapsto \lambda_a(x). \]
This map is actually kG-linear: Let $g, g' \in G$, $m \in M$ and $v \in V$. Then we have
\[
\begin{align*}
\omega(g'.(g \otimes (m \otimes v))) &= \omega(g'g \otimes (m \otimes v)) = (g'g \otimes m) \otimes g'.g.v = g'.((g \otimes m) \otimes g.v)
\end{align*}
\]
Directly from the definition, we obtain the surjectivity of ω. Since both G-modules involved have dimension $|G/H|(\dim_k M)(\dim_k V)$, the map ω is bijective.

Recall that any block $B \subseteq kG$ is of the form $B = kGe$, where $e \in kG$ is a central, primitive idempotent of kG. Given an indecomposable kG-module M, we thus have $e.M = (0)$ or $e.M = M$. In the latter case, we say that M belongs to B.

Theorem 3. Let $B \subseteq kG$ be a block with defect group D. Then every indecomposable kG-module M belonging to B has a vertex $D_M \subseteq D$.

Proof. We let G act on kG via conjugation, i.e.,
$$g.a := gag^{-1} \quad \forall a \in kG, \: g \in G.$$
Note that this amounts to pulling back the $(G \times G)$-action on kG along Δ. Since $B \subseteq kG$ is a two-sided ideal, $B \subseteq kG$ is a G-submodule relative to this operation. The multiplication
$$\mu : B \otimes_k M \rightarrow M \mid b \otimes m \mapsto bm$$
is a homomorphism of G-modules: Given $g \in G$, $b \in B$ and $m \in M$, we have
$$\mu(g(b \otimes m)) = \mu(gbg^{-1} \otimes gm) = gbg^{-1}gm = g(bm) = g\mu(b \otimes m).$$
Let $e \in kG$ be the central primitive idempotent of B, so that $B = ke$. Then
$$\iota : M \rightarrow B \otimes_k M \mid m \mapsto e \otimes m$$
is a homomorphism of G-modules. Since M belongs to B, we obtain $\mu \circ \iota = \text{id}_M$, so that M is a direct summand of $B \otimes_k M$.

As $D \subseteq G$ is a defect group of B, the G-module B is relatively D-projective. Consequently, B is a direct summand of $kG \otimes_{kD} B|D$. In view of Lemma 2, the tensor product $B \otimes_k M$ is a direct summand of $(kG \otimes_{kD} B|D) \otimes_k M \cong kG \otimes_{kD} (B|D \otimes_k M|D)$. By the above, this implies that M is relatively D-projective, so that D contains a vertex of M, cf. [4, Prop.4].

There exists exactly one block $B_0(G) \subseteq kG$ to which the trivial G-module k belongs. The block $B_0(G)$ is customarily referred to as the principal block. The following result shows why $B_0(G)$ is thought of as being the “most complicated” block of kG:

Corollary 4. Every defect group $D \subseteq G$ of the principal block $B_0(G)$ is a Sylow-p-subgroup of G.

Proof. Owing to Theorem 3, D contains a vertex D' of the trivial module k. Being a p-group, D' is contained in a Sylow-p-subgroup $P \subseteq G$. As k is relatively D'-projective, k is a summand of $kG \otimes_{kD'} k$. By Mackey’s Theorem [4], the trivial P-module $k|P$ is a summand of
$$\bigoplus_{P \subseteq D'} kP \otimes_{k(P \cap D')} k = \bigoplus_{P \subseteq D'} kP \otimes_{k(P \cap D')} k,$$
where $D' := gD'g^{-1}$. Repeated application of Green’s Indecomposability Theorem [5] (to a chain of normalizers in P starting with $\text{Nor}_P(P \cap D')$) implies that each summand is an indecomposable kP-module. Theorem of Krull-Remak-Schmidt now ensures that $k|P$ is isomorphic to one of these summands. Hence there exists an element g with $P = D'g$, so that $P = D'$.

Corollary 5. Let $B \subseteq kG$ be a block with defect group D.

1. If D is cyclic, then B has finite representation type.
2. If $D = \{1\}$, then B is simple.

Proof. Suppose that $\text{ord}(D) = p^r$. As D is cyclic, the group algebra $kD \cong k[X]/(X^{p^r})$ has finite representation type, with indecomposable modules N_1, \ldots, N_{p^r}. In view of Theorem 3, every indecomposable B-module is relatively D-projective, and hence a direct summand of some $kG \otimes_{kD} N_i$. Consequently, there are only finitely many isomorphism classes of such modules. If $D = \{1\}$, then each indecomposable B-module M is a direct summand of $kG \otimes_k k \cong kG$ and is thus projective. This implies that B is simple.

1This argument actually shows that induction functors of p-groups preserve indecomposables. In our situation, Frobenius reciprocity gives $\text{Hom}_{kP}(kP \otimes_{k(P \cap D')} k, k) \cong \text{Hom}_{k(kP \cap D')} k(k, k)$, which, in view of kP being local, implies that the top of the induced module is simple.
Remark. The converse statements of (1) and (2) of Corollary 5 also hold, but their proofs necessitate the so-called Brauer correspondence of blocks.

References