INDUCED MODULES: GRADED ALGEBRAS AND GREEN’S INDECOMPOSABILITY THEOREM

ROLF FARNSTEINER

Throughout, \(k \) is assumed to be an algebraically closed field of characteristic \(\text{char}(k) = p > 0 \). Let \(N \trianglelefteq G \) be a normal subgroup of a finite group \(G \). As usual, \(kG \) denotes the group algebra of \(G \).

Theorem (Green’s Indecomposability Theorem, [3]). Suppose that \(G/N \) is a \(p \)-group. If \(M \) is an indecomposable \(kN \)-module, then the \(kG \)-module \(kG \otimes_{kN} M \) is indecomposable.

We shall prove this result by establishing a general statement on group-graded algebras, that has also been useful in the representation theory of infinitesimal group schemes (cf. [2]). In the sequel, all algebras and modules are finite-dimensional.

Definition. Let \(G \) be a finite group. A \(k \)-algebra

\[
R = \bigoplus_{g \in G} R_g
\]

is said to be \(G \)-graded if \(R_g R_h \subseteq R_{gh} \) for all \(g, h \in G \). We call \(R \) strongly \(G \)-graded if \(R_g R_h = R_{gh} \) for all \(g, h \in G \).

For instance, if \(N \trianglelefteq G \) is a normal subgroup, then \(kG \) is a strongly \(G/N \)-graded \(k \)-algebra. In fact, if \(R = \bigoplus_{g \in G} R_g \) is \(G \)-graded and \(\pi : G \rightarrow H \) is a surjective homomorphism of finite groups, then \(R \) obtains the structure of an \(H \)-graded algebra via

\[
R_h := \bigoplus_{g \in \pi^{-1}(h)} R_g.
\]

Indecomposability corresponds to endomorphism rings being local, so we are interested in the question when a graded algebra is local. By way of motivation we record a few necessary conditions.

Lemma 1. Suppose that \(R = \bigoplus_{g \in G} R_g \) is a local algebra. Then the following statements hold:

1. The algebra \(R_1 \) is local.
2. If \(R_g \not\subseteq \text{Rad}(R) \) for every \(g \in G \), then \(G \) is a \(p \)-group.

Proof. By assumption, there exists an algebra homomorphism \(\varepsilon : R \rightarrow k \) such that \(\ker \varepsilon = \text{Rad}(R) \).

1. Since \(\ker \varepsilon |_{R_1} \) is a nilpotent ideal of codimension 1, it follows that \(R_1 \) is local.
2. Consider \(N := \bigoplus_{g \in G} (\ker \varepsilon) \cap R_g \). Then \(N \) is a nilpotent ideal of \(R \). Thus, \(\varepsilon \) induces an algebra homomorphism \(\gamma : S \rightarrow k \) of the local, \(G \)-graded algebra \(S := R/N \). By virtue of our current assumption, we have \(\text{dim}_k S_g = 1 \) for every \(g \in G \), and for every \(g \in G \) there exists a unique element \(s_g \in S_g \) such that \(\gamma(s_g) = 1 \). Consequently, we have \(s_gh = s_g \) for all \(g, h \in G \).
so that the map $G \to S : g \mapsto s_g$ induces a surjective algebra homomorphism $\zeta : kG \to S$. By equality of dimensions, this map is bijective. As a result, the group algebra kG is local, forcing G to be a p-group.

We turn to algebras that are graded by some p-group G, beginning with the case where G is abelian.

Lemma 2. Let $R = \bigoplus_{g \in G} R_g$ be a group-graded k-algebra. Suppose that

(a) G is an abelian p-group, and

(b) $\dim_k R_g < 1$ for every $g \in G$, and

(c) the elements of $R_g \setminus \{0\}$ are invertible for every $g \in G$.

Then there exists a subgroup $H \subseteq G$ with $R \cong kH$.

Proof. In view of (c), $H := \{h \in G : R_h \neq (0)\}$ is a subgroup of G, and $R = \bigoplus_{h \in H} R_h$. By general theory, the group H is a direct sum of cyclic groups with generators h_1, \ldots, h_{ℓ} of orders $p^{\nu_1}, \ldots, p^{\nu_{\ell}}$, say. Pick $r_i \in R_{h_i}$ with $r_i^{p^{\nu_i}} = 1$. Given $i, j \in \{1, \ldots, \ell\}$, there exists $\alpha_{ij} \in k$ such that

$$r_i r_j r_i^{-1} = \alpha_{ij} r_j,$$

Thus,

$$r_j = r_i^{p^{\nu_i}} r_j r_i^{-p^{\nu_i}} = \alpha_{ij}^{p^{\nu_i}} r_j,$$

so that $\alpha_{ij} = 1$. Consequently, the elements r_1, \ldots, r_{ℓ} commute with each other. Since the subalgebra generated by these elements contains all homogeneous parts of R, we see that R is commutative. By the same token, the map $T_i \mapsto r_i$ defines an isomorphism

$k[T_1, \ldots, T_{\ell}]/(T_i^{p^{\nu_i}} - 1, \ldots, T_{\ell}^{p^{\nu_{\ell}}} - 1) \sim R,$

with the truncated polynomial ring being isomorphic to kH.

The proof of our main result necessitates information on nilpotent elements. A subset $W \subseteq R$ of a k-algebra R is nil if every element $w \in W$ is nilpotent. We say that W is nilpotent if $W^n = (0)$ for some $n \in \mathbb{N}$. The set W is referred to as weakly closed if there exists a function $\gamma : W \times W \to k$ such that $vw + \gamma(v, w)vw \in W$ for all $v, w \in W$. Here is the relevant result, which we shall take for granted (see [4, (II.2)]).

Theorem 3 (Jacobson’s Theorem on nil weakly closed sets). Let $W \subseteq R$ be a nil, weakly closed subset of an associative k-algebra R. Then the associative subalgebra $\text{alg}_k(W) \subseteq R$ without identity that is generated by W is nilpotent.

Theorem 4 ([2]). Let G be a p-group, $R = \bigoplus_{g \in G} R_g$ be a G-graded algebra. If R_1 is local, then R is local.

Proof. We first assume that G is abelian and write G additively. Since R_0 is local, there exists a linear map $\alpha : R_0 \to k$ such that

$$\ker \alpha = \{r \in R_0 : r \text{ is nilpotent}\}.$$

Given $g \in G$, we set

$$N_g := \{r \in R_g : r \text{ is nilpotent}\}.$$

Suppose that $\text{ord}(G) = p^m$. For $g \in G$ and $r \in R_g$, we have $r^{p^m} \in R_{p^m g} = R_0$. By the above, we can write

$$(*) \quad r^{p^m} = \alpha(r^{p^m})1 + x.$$
for some nilpotent element $x \in N_0$. It follows that
\[\psi_g : R_g \to k : r \mapsto \alpha(r^{p^n}) \]
is a homogeneous polynomial function of degree p^n, whose zero locus $Z(\psi_g)$ is N_g. Since R_g and k are irreducible varieties and ψ_g is a morphism, it follows from standard results on morphisms that $\dim N_g \geq \dim_k R_g - 1$.

By (*), a homogeneous element $r \in R$ is either nilpotent or invertible. Given $r \in N_g$ and $s \in R_h$, we have $rs \in R_{g+h}$. If rs is invertible, then left multiplication by r is surjective, which contradicts the nilpotence of r. Hence $rs \in N_{g+h}$, and a similar argument shows that $sr \in N_{g}$. Consequently, $N := \bigcup_{g \in G} N_g$ is a nil weakly closed subset of R. Theorem 3 now implies that the associative algebra $\text{alg}_k(N)$ without identity generated by N is nilpotent. In particular, N_g is a subspace of R_g, which, by our earlier observation, has codimension ≤ 1. By the above, $J = \bigoplus_{g \in G} N_g$ is a nilpotent ideal of R, such that the factor algebra $S := R/J$ is G-graded with the following properties:

(a) $\dim_k S_g \leq 1$ for every $g \in G$, and
(b) every element of $S_g \setminus \{0\}$ is invertible.

Consequently, Lemma 2 provides a subgroup $H \subseteq G$ such that $S \cong kH$. In particular, S is local and the algebra R thus enjoys the same property.

In the general case, that is, when G is not necessarily abelian, we proceed by induction on the order of G. The p-group G has a non-trivial center $C(G)$. We set $G' := G/C(G)$ and denote by $\pi : G \to G'$ the canonical projection. By our introductory remarks, this map endows R with a G' grading such that $R_1 = \bigoplus_{g \in C(G)} R_g$ is graded with respect to the abelian p-group $C(G)$. By the first part of the proof R_1 is local, so that induction ensures that the algebra R is also local.

\[\square \]

Corollary 5. Let $R = \bigoplus_{g \in G} R_g$ be a group-graded algebra. If $N \unlhd G$ is a normal subgroup of index a p-power such that the subalgebra $\bigoplus_{h \in N} R_h$ is local, then R is local.

\[\square \]

If G is a finite group that acts on a k-algebra Λ via automorphisms
\[(g, \lambda) \mapsto g \cdot \lambda, \]
then $\Lambda * G$ denotes the skew group algebra of G with coefficients in Λ. By definition, $\Lambda * G$ is the free Λ-module with basis G, whose multiplication is given by
\[(\lambda_g)(\lambda_h h) := \lambda_g(g, \lambda_h)gh \quad \forall g, h \in G, \lambda_g, \lambda_h \in \Lambda. \]

We now obtain the following generalization of Green’s theorem:

Corollary 6. Let G be a finite group that operates on an algebra Λ via automorphisms, and suppose that $N \unlhd G$ is a normal subgroup of index a power of p. If M is an indecomposable $\Lambda * N$-module, then the induced module $\Lambda * G \otimes_{\Lambda * N} M$ is indecomposable.

Proof. The skew group algebra $\Lambda * G$ is strongly graded relative to the p-group G/N, with one-component $(\Lambda * G)_1 = \Lambda * N$. Moreover, the induced module $\Lambda * G \otimes_{\Lambda * N} M$ and its endomorphism ring are also G/N-graded, and $[1, (4.8)]$ provides an isomorphism
\[\text{End}_{\Lambda G}(\Lambda * G \otimes_{\Lambda * N} M) \cong \text{End}_{\Lambda N}(M) \]
of rings. Our assumption on M in conjunction with Theorem 4 now guarantees that the k-algebra $\text{End}_{\Lambda G}(\Lambda * G \otimes_{\Lambda * N} M)$ is local. Consequently, the module $\Lambda * G \otimes_{\Lambda * N} M$ is indecomposable.

\[\square \]
References