HOPF MODULES AND INTEGRALS: THE SPACE OF INTEGRALS

ROLF FARNSTEINER

Throughout, \(H \) denotes a finite dimensional Hopf algebra over a field \(k \). As usual, the comultiplication, the counit and the antipode of \(H \) are denoted \(\Delta, \varepsilon \) and \(\eta \), respectively. Recall that

\[
\int^l_H := \{ x \in H ; hx = \varepsilon(h)x \ \forall \ h \in H \} \quad \text{and} \quad \int^r_H := \{ x \in H ; xh = \varepsilon(h)x \ \forall \ h \in H \}
\]

are the subspaces of left and right integrals of \(H \), respectively. The object of this lecture is the ensuing

Theorem ([3]). The following statements hold:

1. \(\dim_k \int^r_H = 1 \).
2. The antipode \(\eta \) is bijective.
3. \(\eta(\int^r_H) = \int^l_H \).

The main idea of the proof is to endow \(H^* \) with the structure of a Hopf module and use the fundamental theorem [2] to show \(\dim_k \int^r_{H^*} = 1 \). Since \(H^* \) is also a Hopf algebra, the asserted result follows.

The multiplication and comultiplication on \(H^* \) are given by the following formulae:

\[
(\varphi \psi)(h) := \sum_{(h)} \varphi(h^{(1)})\psi(h^{(2)}) \quad \forall \ \varphi, \psi \in H^*, \ h \in H
\]

and

\[
\Delta(\varphi) = \sum_{(\varphi)} \varphi^{(1)} \otimes \varphi^{(2)} \Leftrightarrow \varphi(hh') = \sum_{(h)} \varphi^{(1)}(h)\varphi^{(2)}(h') \quad \forall \ h, h' \in H.
\]

These rules are obtained by dualizing those for \(H \). For instance, the multiplication \(m_{H^*} \) is the composite

\[
m_{H^*} : H^* \otimes_k H^* \longrightarrow (H \otimes_k H)^* \xrightarrow{\Delta^*} H^*.
\]

The counit and the antipode of \(H^* \) are defined via

\[
\varepsilon^*(\varphi) = \varphi(1) \quad \text{and} \quad \eta^*(\varphi) = \varphi \circ \eta \quad \forall \ \varphi \in H^*,
\]

respectively. In a similar fashion, the vector space \(H^* \) obtains the structure of a Hopf module for \(H \) by postulating

\[
(h \cdot \varphi)(x) := \varphi(\eta(h)x) \quad \forall \ h, x \in H, \ \varphi \in H^*
\]

as well as

\[
\nabla(\varphi) = \sum_{(\varphi)} \varphi^{(0)} \otimes \varphi^{(1)} \Leftrightarrow \varphi \psi = \sum_{(\varphi)} \psi(\varphi^{(0)})\varphi^{(1)} \quad \forall \ \psi \in H^*
\]

for every \(\varphi \in H^* \). Taking these structures for granted, we can prove our Theorem.

\textit{Date:} April 26, 2006.
Proof. By the fundamental theorem of Hopf modules (cf. [2]), the multiplication induces an isomorphism
\[\Phi : H \otimes_k (H^*)^{coH} \rightarrow H^* ; \quad h \otimes \varphi \mapsto h \cdot \varphi. \]
Given \(\varphi \in (H^*)^{coH} \), we have \(\nabla(\varphi) = 1 \otimes \varphi \), so that \(\varphi \psi = \psi(1) \varphi \) for all \(\psi \in H^* \). Consequently, \((H^*)^{coH} \subset \int_{H^*}^r \). The reverse inclusion follows analogously. Since \(\dim_k H = \dim_k H^* \), we obtain \(\dim_k \int_{H^*}^r = 1 \). Replacing \(H \) by \(H^* \), while observing \((H^*)^* \cong H \), yields (1).

Assertion (3) now follows from direct computation, using the fact that \(\eta \) is an anti-homomorphism of associative algebras. \(\square \)

Examples. (1) Suppose that \(H = kG \) is the group algebra of a finite group. Then \(x := \sum_{g \in G} g \) is a two-sided integral of \(kG \).

(2) In general, integrals of Hopf algebras are not easy to find. Suppose that \(\text{char}(k) = p > 0 \) and let \(g = kt \oplus kx \) be the two-dimensional non-abelian restricted Lie algebra with restricted enveloping algebra \(U_0(g) \). Thus, \(U_0(g) \) is generated by \(t \) and \(x \) subject to the relations \(t^p = t, x^p = 0, tx - xt = x \). The generators are primitive elements (that is, they satisfy \(\Delta(y) = y \otimes 1 + 1 \otimes y \) and hence are annihilated by \(\varepsilon \). Moreover, \(\eta(t) = -t \) and \(\eta(x) = -x \). Then
\[(t^{p-1} - 1)x^{p-1} \in \int_{U_0(g)}^l \]
is a non-zero (!) left integral and \(x^{p-1}(t^{p-1} - 1) \) is a right integral. Since
\[(t^{p-1} - 1)x^{p-1}t = (t^{p-1} - 1)x^{p-1} \]
the left integral is not a right integral.

We record an important consequence of the main theorem, namely \(H \) being a Frobenius algebra. Despite the title of their article [3], the authors were apparently not aware of this fact at the time of writing.\(^1\)

Corollary 1. Let \(\pi \in \int_{H^*}^r \) be non-zero left integral of \(H^* \). Then
\[(x, y) := \pi(xy) \quad \forall \ x, y \in H \]
defines a non-degenerate associative form on \(H \). In particular, \(H \) is a Frobenius algebra.

Proof. Writing \((h \ast \varphi)(x) := \varphi(xh)\) for \(h, x \in H \) and \(\varphi \in H^* \), we consider the canonical homomorphism
\[\Psi : H \rightarrow H^* ; \quad h \mapsto h \ast \pi. \]
In view of our theorem, \(\varphi_0 := \pi \circ \eta \) is a non-zero right integral of \(H^* \) and the map
\[\Phi : H \rightarrow H^* ; \quad h \mapsto h \ast \varphi_0 \]
is an isomorphism. Direct computation shows that \(\eta^{-2}(\ker \Psi) \subset \ker \Phi = \{0\} \). Consequently, \(\Psi \) is an isomorphism, and [1, Lemma 1] implies the result. \(\square \)

\(^1\)On page 85 of [3] they note: “The referee has pointed out to us that our main theorem implies that every finite dimensional Hopf algebra with antipode is a Frobenius algebra.”
Our next application is often referred to as “Maschke’s Theorem for Hopf algebras”. Given two H-modules M, N, we recall that $\text{Hom}_k(M, N)$ obtains the structure of an H-module via
\[(h, \varphi)(m) = \sum_{(h)} h(1) \varphi(h(2)) m\]
for all $h \in H$, $m \in M$, $\varphi \in \text{Hom}_k(M, N)$.

Corollary 2. The following statements are equivalent:
1. H is semi-simple.
2. $\varepsilon(\int H) \neq (0)$.

Proof. (1) \Rightarrow (2). By assumption, the exact sequence
\[(0) \longrightarrow \ker \varepsilon \longrightarrow H \longrightarrow k \longrightarrow (0)\]
splits, so that $H = \ker \varepsilon \oplus \int H$.

(2) \Rightarrow (1). The assumption entails the splitting of the above exact sequence. As a result, the trivial H-module k is projective. Let P be a projective H-module, M be any H-module. The adjoint isomorphism
\[\text{Hom}_k(P \otimes_k M, N) \cong \text{Hom}_k(P, \text{Hom}_k(M, N))\]
induces an isomorphism
\[\text{Hom}_H(P \otimes_k M, N) \cong \text{Hom}_H(P, \text{Hom}_k(M, N)).\]
Consequently, $\text{Hom}_H(P \otimes_k M, -)$ is exact, so that $P \otimes_k M$ is projective. Setting $P = k$, we see that $k \otimes_k M \cong M$ is projective. This shows that H is semi-simple. \hfill \Box

Examples. (1) Let G be a finite group and consider the integral $x := \sum_{g \in G} g \in kG$. Then $\varepsilon(x) = \text{ord}(G) \cdot 1$, so that kG is semi-simple if and only if $\text{char}(k) \nmid \text{ord}(G)$.

(2) Let $g = kt \oplus kx$ be as above. Then $\varepsilon((t^{p-1} - 1)x^{p-1}) = (0)$, so that $U_0(g)$ is not semi-simple. In fact, $\text{Rad}(U_0(g)) = U_0(g)x$.

Corollary 3. If H is semi-simple, then H is separable.

Proof. Let K be an extension field of k. Then $H' := H \otimes_k K$ obtains the structure of a Hopf algebra by defining $\Delta' = \Delta \otimes \text{id}_K$. Here we use the identification $(H \otimes_k K) \otimes_K (H \otimes_k K) \cong (H \otimes_k H) \otimes_k K$. Since the counit ε' of H' is given by $\varepsilon \otimes \text{id}_K$, we get
\[\int_{H'}^{\ell} = \int_H^{\ell} \otimes_k K.\]
Thus, if H is semi-simple, then
\[\varepsilon'\left(\int_{H'}^{\ell}\right) = \varepsilon\left(\int_H^{\ell}\right) K \neq (0),\]
so that H' is also semi-simple. Consequently, H is separable. \hfill \Box
References

