SIMPLE MODULES AND p-REGULAR CLASSES

ROLF FARNSTEINER

Let A be a finite dimensional algebra over an algebraically closed field k. One fundamental
problem is to determine the number sy of isomorphism classes of simple A-modules. If A is semi-
simple, then Wedderburn’s Theorem yields an isomorphism

A = Maty, (k) @ - & Mat,,  (k),

so that sy = dimy 3(A) is the dimension of the center 3(A) of A.

If A = kG is the group algebra of a finite group G, then dimy 3(kG) is the number ¢ of conjugacy
classes of kG, and Maschke’s Theorem implies c¢q = spg whenever char(k) { ord(G).

The examples of local group algebras show that sipa # cg for not necessarily semi-simple group
algebras. Suppose that char(k) = p > 0, and consider an abelian group G. Then

G=PxQ

is a direct product of its Sylow-p-subgroup P and a group @ of order prime to p. Every simple
kG-module is given by an algebra homomorphism A\ : kG — k, which corresponds a group
homomorphism A : G — k* from G to the multiplicative group £* =k \ {0} of the field k. Since
k* has no elements of order a proper p-power, it follows that syg = spg = ord(Q) is the number of
p-regular elements of G. This is the content of Dickson’s early result [3] concerning this problem.

About thirty years later, Brauer [1] provided a solution for arbitary finite groups. He returned
to the subject again in his article [2].

We henceforth assume that k is an algebraically closed field of characteristic p > 0.

Definition. Let G be a finite group. A conjugacy class C' C G is called p-regular if it contains an
element whose order is not divisible by p.

Theorem. Let G be a finite group. Then spq coincides with the number of p-reqular classes of G.

We begin by giving a characterization of sj for an arbitrary k-algebra A. In the sequel, J denotes
the (Jacobson) radical of A. We consider A as a Lie algebra via the commutator product

[z,y] == zy — yx Vx,y€A.
Let A = [A, A] be the derived algebra, and define
Ny(A) :={z € A ; In e Ny with 27" € AW}
We record the following basic properties:
(1) If A = Ay x Ay is a product of algebras, then NV,(A) = Np(A1) X Np(Ag).
2) (z+y)? =2P+3” mod(AM).

(2)
(3) (zy —y2)P = (2y)’ — (yx)’ = [z,y(zy)* '] =0 mod(AV) Va,ye A
(4) Let m: A — A/J be the canonical projection. Then N,(A) = 7~ 1(N,(A/J)).
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Lemma 1. There exist linear maps w; : A — k for 1 < i < sp such that
(a) wi(zy) =wilyr) Vazx,ye A, and
(b) wi(zP) =wi(x)P V€A, and
(c) Ny(A) = M2, kerwy.

Proof. We write
sA
A/J = P Mat,, (k)
i=1

and let
w; = tryopr;om
be the composition of the projections 7 : A — A/J, pr; : A/J — Mat,,, (k) and the trace function
tr; : Mat,, (k) — k. Since tr; satisfies (a) and (b) and pr; o 7 is a homomorphism of k-algebras,
properties (a) and (b) hold.
In view of property (4), it suffices to verify
sA
Np(A/JT) = ﬂ ker(tr; opr;).

i=1
If I' = Mat, (k) is a matrix algebra, then I'") = si(n) is the special linear Lie algebra. Since
tr(zP) = tr(z)P for all z € I, we obtain N,(I") = ker tr. It follows that

SA SA
ﬂ ker(tr; oprj) = ker try x - -+ x ker trg, = HNP(Matni(k)),
i=1 i=1
so that property (1) yields the desired result. O

Lemma 2. We have sy = dimy A/N,(A).

Proof. Using the above notation, we let v; € Mat,, (k) be a matrix of trace 1 and put w; :=
(6ijvi)1<i<s, € A/J. Picking z; € 7 1(u;), we obtain

wi(z5) = ij.

In view of (c), themapw : A — k*A ;2 — (w1(2),...,ws, (x)) induces an isomorphism A /N, (A)
k3A . as desired.

O

In the context of symmetric algebras, we have the following description of the center 3(A) and the
derived Lie algebra A():

Lemma 3. Let A be a symmetric algebra. Then
3(A) = (A and 3(A)F =AW,
Proof. Let (,): A x A — k be a non-degenerate symmetric associative form. Given c,z,y € A,
we have
(C.%' - .%'C,y) - (C, xy) - (y,xc) - (C, 1’:1/) - (yl', C) - (C7 Y — yx)v
so that ¢ € 3(A) if and only if ¢ € (AM)L.

Since (, ) is non-degenerate, we have X = (X 1)+ for every subspace X C A. Consequently, the
above also shows 3(A)L = (AM)H)L = A, O



SIMPLE MODULES AND p-REGULAR CLASSES 3

Recall that the projection onto 1 endows kG with the structure of a symmetric algebra. Given a
conjugacy class C C G, we let z¢ := deG g be the corresponding central element. Denoting by
Cl(G) the set of conjugacy classes of G, Lemma 3 yields
(%) kG = {Z agg ; Z a, =0 VCeClG)}.
geG geC
We now turn to the proof of the main theorem:

Proof. Given an element g € G of order n, the cyclic subgroup (g) C G generated by g is the direct
product of its Sylow subgroups. Consequently, g uniquely decomposes as

g9 = gp3r
with g,g, = grgp, ord(g,) = p’ and g, being p-regular. Since ((g, — 1)gr)pe = 0, it follows that
9=( 19 +9r =9 mod (N (kG)).
Let h € G. In view of w;(hgh™!) = w;(g) for all i € {1,..., sk}, Lemma 1 gives
hgh ™' =g  mod N, (kG).

Let ¢1,...,c: be elements of GG, each belonging to exactly one of the p-regular classes of G. As an
upshot of our discussion, the canonical projection map o : kG — kG /N, (kG) induces a surjection

t
o EB ke — kG /Np(kG).
i=1
It remains to be shown that o is injective.
Let ¢ = 2521 a;c; be an element of ker 0. Then we have zP" € kGO for some n € Ng, so that

properties (2) and (3) imply
¢

S e kG,
i=1
Observe that the ¢ " still belong to different p-regular classes of G. Identity (*) now yields o =0
for every ¢, so that x = 0.
Consequently, syg = dimg kG/N,(kG) =t is the number of p-regular classes of G. O

Example. Let G = SL(2,p) be the special linear group over F,. Then G has (p — 1)p(p + 1)
elements and is known to afford p p-regular classes. Thus, G has p simple modules, given by the
first p symmetric powers of the standard module (the first power being the trivial module).
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