
SIMPLE MODULES AND p-REGULAR CLASSES

ROLF FARNSTEINER

Let Λ be a finite dimensional algebra over an algebraically closed field k. One fundamental
problem is to determine the number sΛ of isomorphism classes of simple Λ-modules. If Λ is semi-
simple, then Wedderburn’s Theorem yields an isomorphism

Λ ∼= Matn1
(k) ⊕ · · · ⊕ MatnsΛ

(k),

so that sΛ = dimk Z(Λ) is the dimension of the center Z(Λ) of Λ.
If Λ = kG is the group algebra of a finite group G, then dimk Z(kG) is the number cG of conjugacy

classes of kG, and Maschke’s Theorem implies cG = skG whenever char(k) ∤ ord(G).
The examples of local group algebras show that skG 6= cG for not necessarily semi-simple group

algebras. Suppose that char(k) = p > 0, and consider an abelian group G. Then

G = P × Q

is a direct product of its Sylow-p-subgroup P and a group Q of order prime to p. Every simple
kG-module is given by an algebra homomorphism λ : kG −→ k, which corresponds a group
homomorphism λ : G −→ k× from G to the multiplicative group k× = k \ {0} of the field k. Since
k× has no elements of order a proper p-power, it follows that skG = skQ = ord(Q) is the number of
p-regular elements of G. This is the content of Dickson’s early result [3] concerning this problem.

About thirty years later, Brauer [1] provided a solution for arbitary finite groups. He returned
to the subject again in his article [2].

We henceforth assume that k is an algebraically closed field of characteristic p > 0.

Definition. Let G be a finite group. A conjugacy class C ⊂ G is called p-regular if it contains an
element whose order is not divisible by p.

Theorem. Let G be a finite group. Then skG coincides with the number of p-regular classes of G.

We begin by giving a characterization of sΛ for an arbitrary k-algebra Λ. In the sequel, J denotes
the (Jacobson) radical of Λ. We consider Λ as a Lie algebra via the commutator product

[x, y] := xy − yx ∀ x, y ∈ Λ.

Let Λ(1) = [Λ,Λ] be the derived algebra, and define

Np(Λ) := {x ∈ Λ ; ∃ n ∈ N0 with xpn

∈ Λ(1)}.

We record the following basic properties:

(1) If Λ = Λ1 × Λ2 is a product of algebras, then Np(Λ) = Np(Λ1) ×Np(Λ2).

(2) (x + y)p ≡ xp + yp mod(Λ(1)).

(3) (xy − yx)p ≡ (xy)p − (yx)p = [x, y(xy)p−1] ≡ 0 mod(Λ(1)) ∀ x, y ∈ Λ.
(4) Let π : Λ −→ Λ/J be the canonical projection. Then Np(Λ) = π−1(Np(Λ/J)).
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Lemma 1. There exist linear maps ωi : Λ −→ k for 1 ≤ i ≤ sΛ such that

(a) ωi(xy) = ωi(yx) ∀ x, y ∈ Λ, and

(b) ωi(x
p) = ωi(x)p ∀ x ∈ Λ, and

(c) Np(Λ) =
⋂sΛ

i=1 ker ωi.

Proof. We write

Λ/J ∼=

sΛ⊕

i=1

Matni
(k)

and let

ωi := tri ◦pri ◦ π

be the composition of the projections π : Λ −→ Λ/J , pri : Λ/J −→ Matni
(k) and the trace function

tri : Matni
(k) −→ k. Since tri satisfies (a) and (b) and pri ◦ π is a homomorphism of k-algebras,

properties (a) and (b) hold.
In view of property (4), it suffices to verify

Np(Λ/J) =

sΛ⋂

i=1

ker(tri ◦pri).

If Γ = Matn(k) is a matrix algebra, then Γ(1) = sl(n) is the special linear Lie algebra. Since
tr(xp) = tr(x)p for all x ∈ Γ, we obtain Np(Γ) = ker tr. It follows that

sΛ⋂

i=1

ker(tri ◦pri) = ker tr1 × · · · × ker trsΛ
=

sΛ∏

i=1

Np(Matni
(k)),

so that property (1) yields the desired result. �

Lemma 2. We have sΛ = dimk Λ/Np(Λ).

Proof. Using the above notation, we let vj ∈ Matnj
(k) be a matrix of trace 1 and put uj :=

(δijvi)1≤i≤sΛ
∈ Λ/J . Picking xj ∈ π−1(uj), we obtain

ωi(xj) = δij .

In view of (c), the map ω : Λ −→ ksΛ ;x 7→ (ω1(x), . . . , ωsΛ
(x)) induces an isomorphism Λ/Np(Λ) ∼=

ksΛ , as desired. �

In the context of symmetric algebras, we have the following description of the center Z(Λ) and the

derived Lie algebra Λ(1):

Lemma 3. Let Λ be a symmetric algebra. Then

Z(Λ) = (Λ(1))⊥ and Z(Λ)⊥ = Λ(1).

Proof. Let ( , ) : Λ × Λ −→ k be a non-degenerate symmetric associative form. Given c, x, y ∈ Λ,
we have

(cx − xc, y) = (c, xy) − (y, xc) = (c, xy) − (yx, c) = (c, xy − yx),

so that c ∈ Z(Λ) if and only if c ∈ (Λ(1))⊥.
Since ( , ) is non-degenerate, we have X = (X⊥)⊥ for every subspace X ⊂ Λ. Consequently, the

above also shows Z(Λ)⊥ = ((Λ(1))⊥)⊥ = Λ(1). �



SIMPLE MODULES AND p-REGULAR CLASSES 3

Recall that the projection onto 1 endows kG with the structure of a symmetric algebra. Given a
conjugacy class C ⊂ G, we let zC :=

∑
g∈G g be the corresponding central element. Denoting by

Cl(G) the set of conjugacy classes of G, Lemma 3 yields

(∗) kG(1) = {
∑

g∈G

αgg ;
∑

g∈C

αg = 0 ∀ C ∈ Cl(G)}.

We now turn to the proof of the main theorem:

Proof. Given an element g ∈ G of order n, the cyclic subgroup 〈g〉 ⊂ G generated by g is the direct
product of its Sylow subgroups. Consequently, g uniquely decomposes as

g = gpgr

with gpgr = grgp, ord(gp) = pℓ and gr being p-regular. Since ((gp − 1)gr)
pℓ

= 0, it follows that

g = (gp − 1)gr + gr ≡ gr mod(Np(kG)).

Let h ∈ G. In view of ωi(hgh−1) = ωi(g) for all i ∈ {1, . . . , skG}, Lemma 1 gives

hgh−1 ≡ g modNp(kG).

Let c1, . . . , ct be elements of G, each belonging to exactly one of the p-regular classes of G. As an
upshot of our discussion, the canonical projection map σ : kG −→ kG/Np(kG) induces a surjection

σ :

t⊕

i=1

kci −→ kG/Np(kG).

It remains to be shown that σ is injective.
Let x =

∑t
i=1 αici be an element of ker σ. Then we have xpn

∈ kG(1) for some n ∈ N0, so that
properties (2) and (3) imply

t∑

i=1

αpn

i cpn

i ∈ kG(1).

Observe that the cpn

i still belong to different p-regular classes of G. Identity (∗) now yields αpn

i = 0
for every i, so that x = 0.

Consequently, skG = dimk kG/Np(kG) = t is the number of p-regular classes of G. �

Example. Let G = SL(2, p) be the special linear group over Fp. Then G has (p − 1)p(p + 1)
elements and is known to afford p p-regular classes. Thus, G has p simple modules, given by the
first p symmetric powers of the standard module (the first power being the trivial module).
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[1] R. Brauer. Über die Darstellung von Gruppen in Galoisschen Feldern. Actualités Sci. Indust. 195 (1935), 15pp.
[2] . Zur Darstellungstheorie der Gruppen endlicher Ordnung. Math. Z. 72 (1956), 406-444
[3] L. Dickson. Modular theory of group characters. Bull. Amer. Math. Soc. 13 (1907), 477-488


