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1 Definitions

Let k be an algebraically closed field. Throughout A will denote a finite-dimensional,
basic, connected, hereditary k-algebra. Recall that a module M ∈ mod−A is
called a brick, provided End(M) ∼= k.

An indecomposable regular module M is called quasi-simple, if in the Auslander-
Reiten sequence 0 → τM → X → M → 0, X is indecomposable, where τ denotes
the Auslander-Reiten translate. If A is a tame algebra, then quasi-simple modules
lie at the mouth of the tubes in the regular components of the Auslander-Reiten
quiver. If A is wild, the quasi-simple modules lie at the bottom of the ZA∞
components.

Definition 1.1. Let A be a representation-infinite, hereditary algebra. A regular
module E 6= 0 is called elementary, if there exists no short exact sequence 0 →
U → E → V → 0, with U, V nonzero regular A-modules.

W. Crawley-Boevey suggested the study of elementary modules. First results
were published by F. Lukas and O. Kerner in [L2] and [KL]. The following are
easy to show:

1. If E is elementary, then so is τnE, for all n ∈ Z.

2. Elementary modules are quasi-simple.
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3. If A is tame and E is a quasi-simple, regular A-module, then E is elementary.

Elementary modules are of intereset, since any nonzero regular module has a
filtration whose subfactors are elementary: If A is a representation-infinite, hered-
itary algebra, let R be a nonzero regular A-module. Let UR = {all proper regular
submodules U ⊂ R, such that R/U is regular}. Choose a maximal submodule
from UR, say R1 and consider UR1 = {all proper regular submodules U ⊂ R1,
such that R1/U is regular}. Continuing we get a descending chain of regular
submodules of R :

R = R0 ⊃ R1 ⊃ . . . ⊃ Rl ⊃ Rl+1 = 0

For 1 ≤ i ≤ l + 1, let X = Ri−1/Ri. Then X is nonzero regular and not a middle
term of a short exact sequence of regular modules, i.e., there is no exact sequence
0 → S → X → T → 0, S 6= 0, T 6= 0 and both S, T regular. So X is elementary.

2 Properties

Lemma 2.1. Let A be a wild, hereditary algebra.

(a) Let X 6= 0 be regular. Then there exists N ∈ N1, such that for all regular
modules R and all f ∈ Hom(τ lX, R), with l ≥ N, Ker f is regular.

(a′) Let X ′ 6= 0 be regular. Then there exists M ∈ N1, such that for all regular
modules S and all f ∈ Hom(S, τ−mX ′), with m ≥ N, Cok f is regular.

(b) Let Y be regular. If Y has no nontrivial regular factor modules, then so has
τ lY, for all l ≥ 0.

Proof. (a) It is well-known that the dimensions dimk τ−lP grow expoentially with
l for P projective. So there exists an N ∈ N, such that dimk τ−lP > dimk X, for all
l ≥ N and for all nonzero projective modules P. For l ≥ N and R regular, consider
a nonzero f ∈ Hom(τ lX, R). We have a short exact sequence 0 → Ker f →
τ l → Imf → 0 with Imf regular and Ker f without nonzero preinjective direct
summand. Apply τ−l :

0 → τ−l Ker f → X → τ−lImf → 0

But τ−l Ker f being a regular submodule of X, is, by the dimension inequality,
only possible, if Ker f is regular.

(a′) This is dual to (a).
(b) Assume, to get a contradiction, τ lY has a nontrivial regular factor module

Z. Then we get an exact sequence:

0 → U → τ lY → Z → 0

Apply τ−l :
0 → τ−lU → Y → τ−lZ → 0

contradicting the fact that Y has no nontrivial regular factor module.
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Proposition 2.2. Let A be a representation-infinite, hereditary algebra. Let E
be an indecomposable regular A-module. Then the following are equivalent:

1. E is elementary.

2. There exists N ∈ N1, such that τ lE has no nontrivial regular factor module
for all l ≥ N.

3. There exists M ∈ N1, such that τ−lE has no nontrivial regular submodule
for all l ≥ M.

4. If Y 6= 0 is a regular submodule of E, then E/Y is preinjective.

5. If X is a proper submodule of E with E/X regular, then X is preprojective.

Proof. (4) ⇒ (1) and (5) ⇒ (1) are clear by definition of elementary modules.
(1) ⇒ (2) : Assume V is a nontrivial regular factor module of τ lE for l ≥ N.

Then in 0 → U → τ lE → V → 0, U is regular by the lemma. So, by applying
τ−l, we get an exact sequence 0 → τ−lU → E → τ−lV → 0 with τ−lU and τ−lV
nonzero regular, contradicting that E is elementary.

(1) ⇒ (3) is dual to (1) ⇒ (2) and we immediately get (2) ⇒ (1) and
(3) ⇒ (1).

(1) ⇒ (4) : E is elementary and suppose E/Y = Z1⊕Z2 with Z1 6= 0 regular
and Z2 preinjective. We get the following diagram:

Z2y
0 −−−→ Y −−−→ E −−−→ E/Y −−−→ 0y ‖

y
0 −−−→ K −−−→ E −−−→ Z1 −−−→ 0y y

Z2 0y
0

Since K is a submodule of E, it has no nonzero preinjective direct summand.
From dimK = dimY + dimZ2 we have that K is regular. But this contradicts
the fact that E is elementary. So E/Y is preinjective.

(1) ⇒ (5) is the dual situation to (1) ⇒ (4).

Corollary 2.3. If E is elementary, Y regular with dimY = dimE, then either
Y ∼= E or Y and E are orthogonal, i.e., Hom(E, Y ) = 0 = Hom(Y,E).
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If S is indecomposable and regular, such that dimS or dimk S is minimal
among all nonzero regular modules, then S is elementary. One can further show
that if E is elementary, then E is a brick. Note that in contrast to the tame case,
if A is wild hereditary, then there are quasi-simple modules which are not bricks,
thus cannot be elementary.

3 Different lengths

Let K(2) be the Kronecker quiver with path algebra B = kK(2). Let K(3) be
the extended Kronecker quiver with three arrows (α, β, γ) in the same direction,
and let A = kK(3) be its path algebra. A is wild hereditary, whereas B is tame
hereditary. Note that any representation over K(2) can be considered as a repre-
sentation over K(3) by letting one arrow correspond the zero map (e.g. γ = 0).
There is an embedding mod−B ↪→ mod−A.

Consider the following two representations P2(B), R(B) in mod−B :

k −−−→ k3(
1
0

)y(
0
1

)y y I3

yC

k2 −−−→ k3

where C =

 1 0 0
1 1 0
0 1 1

 . P2(B) with dimP2(B) =
(
1
2

)
is projective over K(2),

whereas R(B) with dimR(B) =
(
3
3

)
is a regular B-module and we have P2(B) ↪→

R(B) with cokernel I1(B), preinjective, of dimension vector
(
2
1

)
. Now look at the

exact sequence:
0 → P2(B) → R(B) → I1(B) → 0

Considered as A-modules, P2(B) and I1(B) are regular and elementary. So 0 ⊂
P2(B) ⊂ R(B) is a chain of regular submodules of R(B), with elementary factor
module R(B)/P2(B) ∼= I1(B). But in mod−B, since R(B) has quasi-length 3,
there exists a chain of regular modules with elementary factor modules of greater
length.

4 Finiteness condition

If A is tame hereditary, the set of dimension vectors of elementary (i.e. quasi-
simple modules) is finite. If A is wild hereditary, then we have dim τ iE 6=
dim τ jE, for i 6= j. Let Φ be the Coxeter transformation (corresponding to τ).
Then Φj(dimE) = dim τ jE for all j ∈ Z.

For x ∈ Zn, (Φj(x))j∈Z is called the Coxeter orbit of x.

Theorem 4.1 (Lukas, 1991). If A is hereditary, then there exists only finitely
many Coxeter orbits of dimension vectors of elementary modules.
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Proof. We want to show that the set {(dim τ jE)j∈Z, E elementary} is finite.
If A is tame hereditary, this is clear. So let A be wild herediary. The idea

consists of constructing a vector c ∈ Nn, such that each τ -orbit (τ iE) of any
elementary module E contains some τ jE with dim τ jE < c. c can be chosen
depending only on the quiver, not on the base field.

For the proof first note that each regular component conatins only finitely
many non-sincere modules. So choose an indecomposable regular module R,
such that τ−nR is sincere for all n ≥ 0. If X is elementary, then using the
lemma, one can show that there exists E = τ jX, such that Hom(R,E) = 0, but
Hom(τ−R,E) 6= 0. Take a nonzero f ∈ Hom(τ−R,E) and let U = Imf, K =
Ker f, C = Cok f. Then we get two exact sequences:

0 → K → τ−R → U → 0

0 → U → E → C → 0

Applying Hom(R, ) we get:

. . . → Ext(R, τ−R) → Ext(R,U) → 0

. . . → Hom(R,E) → Hom(R,C) → Ext(R,U) → 0

But Hom(R,E) = 0, so

dimk Hom(R,C) ≤ dimk Ext(R,U) ≤ dimk Ext(R, τ−R) =: s.

Since E is elementary, C is preinjective by the lemma. So C can be written as

C =
⊕
i∈N0

n⊕
j=1

τ iI(j)li,j ,

where I(1), . . . , I(n) are indecomposable injective and almost all li,j = 0. By
above inequality one can show:

∑
i∈N0

n∑
j=1

li,j · dimk Hom(τ−iR, I(j)) ≤ s

Since the components of the dimension vectors grow exponentially, there exists
i0 with dim Hom(τ−iR, I(j)) ≥ s, for all i ≥ i0 and all j = 1, . . . , n. So li,j = 0 for
all i ≥ i0 and for all j. Since Hom(τ−iR, I(j)) 6= 0 for all i ≥ 0 and for all j, only
finitely many li,j satisfy the condition of the second inequality. Therefore we get
an upper bound c for dimC = dimCok f, only depending on R. In particular,
dimE ≤ dimR + c, and there are only finitely many roots smaller or equal to
dimR + c.
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