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1 Definitions

Let k be an algebraically closed field. Throughout A will denote a finite-dimensional,
basic, connected, hereditary k-algebra. Recall that a module M € mod —A is
called a brick, provided End(M) = k.

An indecomposable regular module M is called quasi-simple, if in the Auslander-
Reiten sequence 0 — 7M — X — M — 0, X is indecomposable, where 7 denotes
the Auslander-Reiten translate. If A is a tame algebra, then quasi-simple modules
lie at the mouth of the tubes in the regular components of the Auslander-Reiten
quiver. If A is wild, the quasi-simple modules lie at the bottom of the ZA.
components.

Definition 1.1. Let A be a representation-infinite, hereditary algebra. A reqular
module E # 0 is called elementary, if there exists no short exact sequence 0 —
U— FE—V — 0, with UV nonzero reqular A-modules.

W. Crawley-Boevey suggested the study of elementary modules. First results
were published by F. Lukas and O. Kerner in [L2] and [KL]. The following are
easy to show:

1. If E is elementary, then so is 7" F, for all n € Z.

2. Elementary modules are quasi-simple.
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3. If Aistame and F is a quasi-simple, regular A-module, then F is elementary.

Elementary modules are of intereset, since any nonzero regular module has a
filtration whose subfactors are elementary: If A is a representation-infinite, hered-
itary algebra, let R be a nonzero regular A-module. Let Ug = {all proper regular
submodules U C R, such that R/U is regular}. Choose a maximal submodule
from Ug, say R; and consider Ur, = {all proper regular submodules U C Ry,
such that R;/U is regular}. Continuing we get a descending chain of regular
submodules of R :

R:RoDRlD...DRlDRH_l:O

For1 <i<Il+1,let X = R;_1/R;. Then X is nonzero regular and not a middle
term of a short exact sequence of regular modules, i.e., there is no exact sequence
0-85—-X—->T—0,5%#0,T #0 and both S, T regular. So X is elementary.

2 Properties

Lemma 2.1. Let A be a wild, hereditary algebra.

(a) Let X # 0 be reqular. Then there exists N € Ny, such that for all regular
modules R and all f € Hom(7'X, R), with | > N, Ker f is reqular.

(a') Let X" # 0 be regular. Then there exists M € Ny, such that for all reqular
modules S and all f € Hom(S,77™X"), with m > N, Cok f is regular.

(b) LetY be regular. If Y has no nontrivial reqular factor modules, then so has
7Y, for all | > 0.

Proof. (a) It is well-known that the dimensions dimy, 7' P grow expoentially with
| for P projective. So there exists an N € N such that dimy, 77'P > dimy X, for all
[ > N and for all nonzero projective modules P. For [ > N and R regular, consider
a nonzero f € Hom(7'X, R). We have a short exact sequence 0 — Ker f —
' — Imf — 0 with Imf regular and Ker f without nonzero preinjective direct
summand. Apply 77 :

0—7'Kerf—- X —7"Imf—0

But 77! Ker f being a regular submodule of X, is, by the dimension inequality,
only possible, if Ker f is regular.

(a") This is dual to (a).

(b) Assume, to get a contradiction, 7'Y has a nontrivial regular factor module
Z. Then we get an exact sequence:

0—=U—=7Y -2Z—0

Apply 77
07U —-Y—>71'Z-50

contradicting the fact that Y has no nontrivial regular factor module. ]
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Proposition 2.2. Let A be a representation-infinite, hereditary algebra. Let E
be an indecomposable reqular A-module. Then the following are equivalent:

1. E s elementary.

2. There exists N € Ny, such that T'E has no nontrivial reqular factor module
foralll > N.

3. There exists M € Ny, such that T~'E has no nontrivial reqular submodule
for alll > M.

4. If Y # 0 is a reqgular submodule of E, then E/Y is preinjective.
5. If X is a proper submodule of E with E/X regular, then X is preprojective.

Proof. (4) = (1) and (5) = (1) are clear by definition of elementary modules.

(1) = (2) : Assume V is a nontrivial regular factor module of 7'E for [ > N.
Then in 0 — U — 7'E — V — 0, U is regular by the lemma. So, by applying
77!, we get an exact sequence 0 — 7!/U — E — 77V — 0 with 7='U and 7'V
nonzero regular, contradicting that E is elementary.

(1) = (3) is dual to (1) = (2) and we immediately get (2) = (1) and
(3) = (1).

(1) = (4) : E is elementary and suppose E/Y = Z; @ Zy with Z; # 0 regular
and Z, preinjective. We get the following diagram:

Z
0 Y E E)Y —— 0
I
0 K E 7, —— 0
7y 0

0

Since K is a submodule of FE, it has no nonzero preinjective direct summand.
From dim K = dimY + dim Z; we have that K is regular. But this contradicts
the fact that E is elementary. So E/Y is preinjective.

(1) = (5) is the dual situation to (1) = (4). O

Corollary 2.3. If E is elementary, Y reqular with dimY = dim E, then either
Y = F orY and E are orthogonal, i.e., Hom(E,Y) = 0 = Hom(Y, E).



If S is indecomposable and regular, such that dim .S or dimy .S is minimal
among all nonzero regular modules, then S is elementary. One can further show
that if £ is elementary, then E' is a brick. Note that in contrast to the tame case,
if A is wild hereditary, then there are quasi-simple modules which are not bricks,
thus cannot be elementary.

3 Different lengths

Let K(2) be the Kronecker quiver with path algebra B = kK (2). Let K(3) be
the extended Kronecker quiver with three arrows («, 3,7) in the same direction,
and let A = kK (3) be its path algebra. A is wild hereditary, whereas B is tame
hereditary. Note that any representation over K (2) can be considered as a repre-
sentation over K (3) by letting one arrow correspond the zero map (e.g. v = 0).
There is an embedding mod —B — mod —A.

Consider the following two representations P»(B), R(B) in mod —B :

E — k3

@10] | B|c

k2 k?)

0
where C' = 0 | . Py(B) with dim P»(B) = (}

;) is projective over K(2),

whereas R(B) with dim R(B) = (3) is a regular B-module and we have P5(B) —
R(B) with cokernel I;(B), preinjective, of dimension vector (). Now look at the

exact sequence:

0— P(B)— R(B) — I1(B) —0

Considered as A-modules, P»(B) and I;(B) are regular and elementary. So 0 C
Py(B) C R(B) is a chain of regular submodules of R(B), with elementary factor
module R(B)/Py(B) = I,(B). But in mod —B, since R(B) has quasi-length 3,
there exists a chain of regular modules with elementary factor modules of greater
length.

4 Finiteness condition

If A is tame hereditary, the set of dimension vectors of elementary (i.e. quasi-
simple modules) is finite. If A is wild hereditary, then we have dimT'E #
dim 7/ E, for i # j. Let ® be the Coxeter transformation (corresponding to 7).
Then ®/(dim E) = dim 7/ E for all j € Z.

For z € Z", (®?(z)) ez is called the Cozeter orbit of x.

Theorem 4.1 (Lukas, 1991). If A is hereditary, then there exists only finitely
many Cozxeter orbits of dimension vectors of elementary modules.
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Proof. We want to show that the set {(dim 7/ E);cz, E elementary} is finite.

If A is tame hereditary, this is clear. So let A be wild herediary. The idea
consists of constructing a vector ¢ € N, such that each 7-orbit (7°E) of any
elementary module E contains some 7/F with dim7/E < c¢. ¢ can be chosen
depending only on the quiver, not on the base field.

For the proof first note that each regular component conatins only finitely
many non-sincere modules. So choose an indecomposable regular module R,
such that 77" R is sincere for all n > 0. If X is elementary, then using the
lemma, one can show that there exists F = 77X, such that Hom(R, E) = 0, but
Hom(7~ R, E) # 0. Take a nonzero f € Hom(7" R, E) and let U = Imf, K =
Ker f,C" = Cok f. Then we get two exact sequences:

0O—-K—=7R—-U=0
0—-U—-E—-=C—=0
Applying Hom(R, _) we get:
. — Ext(R,7"R) — Ext(R,U) — 0
. — Hom(R, F) — Hom(R,C) — Ext(R,U) — 0
But Hom(R, E) =0, so
dimy Hom(R, C') < dimy, Ext(R,U) < dimy Ext(R, 7" R) =: s.

Since F is elementary, C' is preinjective by the lemma. So C' can be written as

C=BPr1i).

ieNg j=1

where I(1),...,I(n) are indecomposable injective and almost all ;; = 0. By
above inequality one can show:

Z Zli’j - dimy Hom(77'R, I(j)) < s

1€Ng j=1

Since the components of the dimension vectors grow exponentially, there exists
io with dim Hom(77°R, I(j)) > s, for all i > ig and all j = 1,...,n. Sol;; = 0 for
all i > ip and for all j. Since Hom(7 R, I(j)) # 0 for all # > 0 and for all j, only
finitely many [; ; satisfy the condition of the second inequality. Therefore we get
an upper bound ¢ for dim C' = dim Cok f, only depending on R. In particular,
dim F < dim R + ¢, and there are only finitely many roots smaller or equal to
dim R+ c. [
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