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1 Introduction

This talk is about infinite-dimensional A-modules, where A is a finite-dimensional con-
nected hereditary k-algebra, and k a field. We will thus work in Mod−A, with a capi-
tal “M”, since in this category the modules are not necessarily finitely generated. I will
present some results and examples of infinite-dimensional modules from a paper by Frank
Lukas [L1].1

1.1 Background

One should be interested to know in which way the structure of modules of finite length
determines the behaviour of arbitrary modules.

Recall that a finite-dimensional algebra is said to be of finite representation type if there
are only finitely many indecomposable modules of finite length. Then any module is the
direct sum of modules of finite length (Ringel-Tachikawa, 1974), and such a decomposition
is unique up to isomorphism.

M. Auslander has shown (in “Large modules over artin algebras”, 1976) that if A
is not of finite representation type, then there exist indecomposable modules which are
not of finite length. Auslander gave an existence proof and C. M. Ringel gave a general
structure theory for modules of arbitrary length in his “Rome Lectures” (1977, published
1979 [R3]). He showed that there always will be certain important infinite-dimensional
representations, and the investigation of these modules also gives some new insight into
the behaviour of the modules of finite length. Note also that in general one cannot dualize
results for arbitrary modules, since the dual functor D = Homk(−, k) is only an equivalence
between the categories mod−A and A − mod.

Most definitions are motivated by the structure theory of C. M. Ringel for the tame
hereditary case, but there is not enough time to present the details for infinite-dimensional
A-modules, when A is tame. [R3] is worth reading.

1.2 Aims

Let A be a finite-dimensional connected wild hereditary algebra over a field k. Mod−A

denotes the category of right A-modules and mod−A the category of finitely generated
right A-modules. The finite-dimensional indecomposable modules divide into three classes:
preprojective, regular and preinjective modules. These terms always imply finitely gener-
ated modules (but not necessarily indecomposable) in contrast to the conventions used in
the Rome Lectures [R3].

1Frank Lukas was a PhD-student of O. Kerner. Surprisingly he wrote this paper before even handing
in his Diploma thesis. Two years later he handed in his PhD thesis on elementary modules [L2].
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Definition 1.1. An arbitrary module M is said to be divisible if Hom(M, R) = 0, for
every regular module R (R finite-dimensional).

One can show (using Auslander-Reiten theory) that this is equivalent to Ext(X, M) = 0
for all preprojective and all regular2 modules X or, equivalently, for any module X without
indecomposable preinjective direct summand.

Aim 1. The category of divisible modules has enough projective objects, called D-projectives.

Here already one can see that restricting only to finite-dimensional modules hides a part
of the structure: a finite-dimensional divisible module M is preinjective (A is hereditary)
and then Ext(M, τM) 6= 0.

Aim 2. If M is non-zero D-projective, then the class Add(M) of direct summands of (not
necessarily finite) direct sums of copies of M contains all D-projective modules.

The following is due to O. Kerner:

Aim 3. We will construct an example of an infinite-dimensional module, actually a inde-
composable divisible module which does not have any preinjective direct summand, but
every proper factor of this module is a direct sum of preinjective modules.

2 Definitions

Recall that a subfunctor of the identity functor on Mod−A is a functor t : Mod−A →
Mod−A that assigns to each module M a submodule tM ⊆ M such that each homomor-
phism M → N restricts to a homomorphism tM → tN .

Definition 2.1. A subfunctor t of the identity functor on Mod−A is called an idempotent
radical if, for every module M , we have t(tM) = tM and t(M/tM) = 0.

Let us define the subfunctor P of the identity functor as follows:
Let π be a predecessor closed set of indecomposable preprojective modules, i.e. for

every indecomposable module P with Hom(P, P ′) 6= 0 for some P ′ ∈ π, the set π contains
a module isomorphic to P . Define for every M ∈ Mod−A the submodule

PπM :=
⋂

f :M→P

ker f,

where the intersection is taken over all P ∈ π. So PπM is the intersection of the kernels
of all maps M → P with P ∈ π.

The following theorem was originally stated for modules of finite length, but is also
valid for arbitrary modules.

Theorem 2.1 (Ringel). Let π be a finite predecessor closed set of preprojective modules.
Then every module M ∈ Mod−A has a decomposition M = PπM⊕M ′ with M ′ ∈ Add(π).

For the dual case we have a successor closed set θ of indecomposable preinjective
modules, i.e. for every indecomposable module I with Hom(I ′, I) 6= 0 for some I ′ ∈ θ, the
set θ contains a module isomorphic to I . We then define the following subfunctor I of the
identity functor:

IθM :=
∑

f :I→M

Im f,

where the sum is taken over all modules I ∈ θ. So IθM is the sum of the images of all
maps I → M with I ∈ θ. We have a similar result:

2Note that a module is called regular, if it has no indecomposable preprojective or preinjective direct
summands.
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Theorem 2.2 (Ringel). Let θ be a finite successor closed set of preinjective modules.
Then every module M ∈ Mod−A has a decomposition M = IθM⊕M ′ with IθM ∈ Add(θ).

We will just write I instead of Iθ if θ is the class of all (isomorphism classes of)
indecomposable preinjective modules. Similar for P and π being the set of all (isomorphism
classes of) indecomposable preprojective modules.

Definition 2.2. The largest submodule U of M with PU = U is denoted by P∞M .

There is a lot of structure theory for properties of the modules PM and IM in the tame
case, which C.M. Ringel showed in [R3]. But not everything is true in the wild setting.
For example IM is not always a direct summand of M for A of wild representation type.
But there is an important difference between the functors P and I, which we will explain
next.

2.1 Some torsion theory

Recall that a pair (T ,F) of full subcategories of a module category is called a torsion pair
(or torsion theory) if the following conditions are satisfied:

(i) Hom(M, N) = 0 for all M ∈ T , N ∈ F .

(ii) Hom(M,−)|F = 0 implies M ∈ T .

(iii) Hom(−, N)|T = 0 implies N ∈ F .

So there is no non-zero homomorphism from an object in T to an object in F and the
two subcategories are maximal with respect to this property. T is called the torsion class,
F the torsion-free class.

Each torsion pair induces an idempotent radical, called torsion radical, and conversely:
T is a torsion class of some (T ,F) if and only if there exists an idempotent radical t such
that T = {M | tM = M}. So for M ∈ Mod−A, tM ∈ T and M/tM ∈ F . Also there is
always the canonical short exact sequence 0 → tM → M → M/tM → 0.

A torsion pair (T ,F) is called splitting if each indecomposable module M either lies
in T or in F . Then the canonical sequence above splits.

The functor I induces a torsion class: M is I-torsion if IM = M . However the functor
P does not induce a torsion-free class, therefore the functor P does not split. (The problem
is that there exits modules M , such that P(PM) are proper submodules of PM .) But the
functor P∞ induces a torsion pair and the torsion modules M are characterised by the
property that Hom(M, P ) = 0 for all preprojective modules P .

This leads to the torsion class of divisible modules. Recall from above that M is
divisible if Hom(M, R) = 0 for every regular module R. This gives us a torsion pair and
the radical of this torsion class is denoted by D.

Definition 2.3. M is reduced, if M is torsion-free in this torsion pair; that is, M is
reduced if DM = 0.

Now, given M ∈ Mod−A define

T M :=
∑

f :R→M

f(R),

where the sum is taken over all regular modules R.

Definition 2.4. (i) M is a torsion module if T M = M .
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(ii) M is torsion-free if T M = 0.

By definition, (ii) is the case when Hom(R, M) = 0 for all regular modules R.

The investigation of the above modules and classes of infinite-dimensional modules was
initiated by C.M. Ringel [R3], who carried over ideas from he theory of abelian groups,
where the notions of torsion, torsion-free, divisible and reduced come from.

To summarize: We defined the functors Pπ, Iθ and their generalisation to the set of
all preprojective resp. preinjective modules P , I. We then denoted the largest submodule
U ⊆ M such that PU = U by P∞M . Finally defined similar functors T , D. We will use
those in section 3.3 to prove Aim 1 and Aim 2.

2.2 Prüfer modules

The usual examples of artinian modules which are not of finite length are the so called
Prüfer groups: For any prime number p, there are embeddings

Z/pZ ↪→ Z/p2Z ↪→ Z/p3Z ↪→ . . .

and by forming the union (or direct limit) we get such a Prüfer group: Prp =
⋃

i Z/piZ.
Prp is artinian and its submodule lattice looks as follows:

Prp

Z/p2Z
Z/pZ
0

...

And one has Q/Z =
⊕

p Prp, where the direct sum is taken over all prime numbers p.

3 Examples

3.1 Tame case

C. M. Ringel showed that for A tame there exists a unique indecomposable torsion-free
divisible module Q ∈ Mod−A (up to isomorphism). Its endomorphism ring is a field (al-
gebraically closed case), and Q is finite dimensional over End(Q).3 In the tame case the
divisible modules are direct sums of indecomposable divisible modules, and indecompos-
able divisible are the indecomposable preinjective modules, Prüfer modules, and Q.

Example. The classical example of an infinite-dimensional module is the following: Let A

be the Kronecker algebra, that is, the path algebra of the tame hereditary quiver with
two vertices and two arrows in the same direction. Then Q := (k(X), k(X), ·id, ·X), with
k(X) being the field of rational functions in one variable, is the unique indecomposable
torsion-free divisible module.

Recall that the totally ordered set of all the Gabriel-Roiter measures can be drawn as
follows:

S P1 P2 P3
. . . Q1Q2Q3. . .R1(λ)R2(λ)R3(λ) . . .

3This is also referred to as being endo-finite. Indecomposable infinite length modules which are endo-
finite have been called generic by W. Crawley-Boevey.
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There are precisely two accumulation points, which are drawn as dotted vertical lines.
They correspond to the only Gabriel-Roiter measures for infinitely generated modules.
The first one to the left is the Gabriel-Roiter measure {1, 3, 5, 7, . . .} for all indecomposable
torsion-free modules. The second one to the right is {1, 2, 4, 6, 8, . . .} corresponds to the
Prüfer modules.

Example. Let A be tame hereditary and S(1) a simple regular module. If

S(1) ↪→ S(2) ↪→ S(3) ↪→ . . .

is a chain of irreducible monomorphisms, then the module S :=
⋃

n S(n) is an indecompos-
able torsion divisible module with local endomorphism ring. This is a Prüfer module4. In
the tame case every torsion divisible module is a direct sum of indecomposable preinjective
modules and Prüfer modules.

3.2 Wild case

In contrast to the tame case, there are no non-zero torsion-free divisible modules if A is
a wild hereditary algebra. The following example of an indecomposable divisible module
was originally constructed by O. Kerner:

Example. Let X 6= 0 be a regular module with O(X) a regular mono-orbit5. Then by
Baer’s theorem (see [L1], Prop. 1.6) there is a non-zero map f : X → τnX for some n.
Considering the following chain of monomorphisms

X
f
↪→ τnX

τnf
↪→ τ2nX

τ2nf
↪→ τ3nX ↪→ . . . ,

define M :=
⋃

r τ rnX. Let U be a non-zero finitely generated submodule of M with U ⊂
τ rnX ⊂ M for some r ∈ N. Since O(X) is a regular mono-orbit the modules (τ (r+i)nX)/U
are preinjective for all i ∈ N, otherwise we have the epimorphism and thus an isomorphism
from τ (r+i)nX onto a regular direct summand of (τ (r+i)nX)/U , which is a contradiction.
The factor module M/U is an epimorphic image of

⊕
(τ (r+i)nX)/U and therefore a direct

sum of preinjective modules.
Let I be an indecomposable preinjective module. Look at the short exact sequence

0 → U → M → M/U → 0 and apply Hom(I,−) to get:

. . . → Hom(I, M) → Hom(I, M/U) → Ext(I, U) → . . .

Since Hom(I, M) = 0 the module M/U has only finitely many direct summands isomorphic
to I . So we can write M/U as

⊕
n Ikn

n with pairwise non-isomorphic indecomposable
preinjective modules In and kn ∈ N. Since every proper factor of M is a direct sum of
preinjective modules, a non-zero map M → N has to be a monomorphism if IM = 0.
This finishes Aim 3. Considering Aim 1 and Aim 2, one can show that this module is not
D-projective.

3.3 Divisible module construction

As already mentioned, there are no non-zero torsion-free divisible modules if A is a wild
hereditary algebra. Let us now consider Aim 1 and Aim 2. Thus given the class of divisible
modules, we are looking for D-projective modules.

Let (T ,F) be the torsion pair in Mod−A with T being the torsion class of divisible
modules. Let S be the class of all submodules of direct sums of regular modules. Then

4This is also a Prüfer module in the sense of Ringel, as used in his Topics-Lectures in Bielefeld 2006.
5This means, that for all R regular and n ∈ N0, all non-zero maps in Hom(τnX,R) are monomorphisms.
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by definition and Auslander-Reiten theory, Ext(S, D) = 0 for every divisible module D.
We will construct divisible modules in the class E(S), defined as follows: Let E(S) be the
class of all modules M which are the well-ordered union of submodules Mλ, such that
M0 = 0, Mλ+1/Mλ ∈ S and Mλ =

⋃
µ<λ, if λ is a limit ordinal6. So the modules in E(S)

have a S-filtration. For this class we have the following crucial result by F. Lukas:

Theorem 3.1. Given a torsion pair (T ,F) in Mod−A and let S be a class of modules
with Ext(S, T ) = 0. If there exists a short exact sequence 0 → A → T1 → T2 → 0 with
T1, T2 T -projective7, then Ext(M, T ) = 0 for every M ∈ E(S).

We also need the following important result by D. Baer:

Theorem 3.2 (D. Baer, 1986). If A is a wild hereditary algebra, then

(i) there exists a short exact sequence 0 → A → R1 → R2 → 0 with regular modules
R1, R2.

(ii) for a regular module R, there exist k, n ∈ N and a universal short exact sequence
0 → A → X → τnRk → 0 with Hom(X, R) = 0.

The proofs can be found in [L1].

Let us construct a divisible module AD in E(S): Fix a regular module R 6= 0. By Baer’s
theorem there exists a short exact sequence

0 → A → A1 → A1/A → 0

with A1/A regular and Hom(A1, R) = 0. Recursively taking An and τnR (write A0 := A),
define An+1 as the middle term of a short exact sequence 0 → An → An+1 → An+1/An → 0
with An+1/An regular and Hom(An+1, τ

nR) = 0.8

Considering the monomorphisms as inclusions define

AD :=
⋃

n∈N0

An.

By construction AD , AD/A ∈ E(S), so by above theorem AD and AD/A are T -projective,
if AD is a divisible module. Since D is the radical of the above torsion pair, the module is
also called D-projective.

Proposition 3.3. AD is a divisible module.

Proof. Let X be a regular module and f : AD → X . Since X is finitely generated we can
find N ∈ N with f(An) = f(AD) for all n ≥ N . Since Hom(An+1, τ

nR) = 0, the module
f(AD) has the property that Hom(f(AD), τnR) = 0 for all n ≥ N . But this is only possible
if f(AD) = 0. We have shown that Hom(AD, X) = 0 for all regular modules X , thus AD
is divisible.

So we have proven:

Theorem 3.4. For a wild hereditary algebra A there exists a short exact sequence
0 → A → AD → AD/A → 0 with D-projective modules AD , AD/A.

6A limit ordinal is an ordinal number which is neither zero nor a successor ordinal, i.e. has no immediate
predecessor. It is equal to the supremum of all the ordinals below it, but not zero.

7A torsion module N is called T -projective if Ext(N,T ) = 0.
8This is similar to the tower/ladder construction used by C.M. Ringel in his 2006 Topics-Lectures in

Bielefeld.
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We have Ext(M, D) = 0 for every divisible module D, if M ∈ E(S). The converse is
also true, i.e. if M satisfies Ext(M, D) = 0 for all divisible D, then M ∈ E(S).

Furthermore one can show the following:

Proposition 3.5. (i) AD generates all divisible modules D, i.e. there is an I and an
epimorphism A

(I)
D → D.

(ii) Every D-projective module is contained in Add(AD). Furthermore, if M 6= 0 is D-
divisible, then every D-projective module is contained in Add(M).

This completes Aim 1 and Aim 2.
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