Gabriel-Roiter inclusions and irreducible monomorphisms.

Claus Michael Ringel

Let Λ be an artin algebra, and mod Λ the category of Λ -modules of finite length.

1. Proposition. Assume $X \subset Y$ is a Gabriel-Roiter inclusion. Then there is an irreducible monomorphism $X \to M$ with M indecomposable and an epimorphism $M \to Y$ such that the composition $X \to M \to Y$ is injective (and therefore also a Gabriel-Roiter inclusion.)

Proof: Let $u: X \to Y$ be the given Gabriel-Roiter inclusion. Let $f = (f_i): X \to \bigoplus M_i$ be the source map, with all M_i indecomposable. We obtain maps $h_i: M_i \to Y$ such that $\sum h_i f_i = u$. The indices are $1 \le i \le t$. Assume $h_i f_i$ is not a monomorphism, for i > s, and a monomorphism for the remaining $1 \le i \le s$. Then also $v = \sum_{i > s} h_i f_i$ is in $\operatorname{Sing}(X,Y)$, whereas u is not, thus $u' = u - v = \sum_{1 \le i \le s} h_i f_i$ is outside of $\operatorname{Sing}(X,Y)$, thus a monomorphism.

Let Y_i be the image of $h_i f_i$, for $1 \leq i \leq s$. All the following indices are $1 \leq i \leq s$. Assume that none of the maps h_i is surjective. Let Y_i be the image of h_i . Then $\mu(Y_i) < \mu(Y)$. Now under u' the module X embeds into $\bigoplus Y_i$, thus $\mu(X) \leq \max \mu(Y_i) < \mu(Y)$. Since X is a Gabriel-Roiter submodule of Y, we must have $\mu(X) = \max \mu(Y_i)$, thus this embedding $X \to \bigoplus M_i \to \bigoplus Y_i$ is a split monomorphism, but then f itself is a split monomorphism — impossible. This shows that at least one of the h_i is surjective. But then f_i is a monomorphism (as an irreducible map, it is either mono or epi: if f_i would be epi, then $|X| > |M_i| \geq |Y|$, in contrast to the fact that X embeds into Y.)

2. Applications.

The proposition implies in particular the following: If X is a Gabriel-Roiter submodule of some module Y, then there has to exist an irreducible monomorphism $X \to M$ with M indecomposable. Consider for example the four-subspace quiver and let X be indecomposable preprojective of length 7: then all the irreducible maps starting in X are epimorphisms, thus X cannot be a Gabriel-Roiter submodule of any module.

Let p be the maximal length of an indecomposable projective module, let q be the maximal length of an indecomposable injective module, then we know that $|\tau^{-1}(X)| \le (pq-1)|X|$.

Corollary 1. Let $X \to Y$ be a Gabriel-Roiter inclusion. Then $|Y| \le pq|X|$.

Proof: The middle term X' of the Auslander-Reiten sequence starting in X has length at most pq|X|, and Y is a factor module of X'.

Another proof can be found in [R2], there it is shown that it implies the **Successor Lemma.**

Corollary 2. Let M be an indecomposable module and $1 \le a < |M|$ a natural number. Then there exists an indecomposable submodule M' of M with length in the intervall [a+1,pqa].

Proof: Take a Gabriel-Roiter filtration $M_1 \subset \cdots \subset M_n = M$. Let i be maximal with $|M_i| \leq a$. Then $1 \leq i < n$, thus M_{i+1} exists and $a < |M_{i+1}| \leq pq|M_i| \leq pqa$.

Corollary 3. Let M be an indecomposable module and assume all indecomposable proper submodules of M are of length at most b. Then $|M| \leq pqb$.

Proof: Let X be a Gabriel-Roiter submodule of M. By assumption, $|X| \leq b$, thus $|M| \leq pq|X| \leq pqb$.

Reformulation: Let \mathcal{N} be a class of indecomposable modules. Recall that a module M is said to be \mathcal{N} -critical provided it does not belong to add \mathcal{N} , but any proper indecomposable submodule of M belongs to \mathcal{N} . Corollary 3 asserts the following: if all the modules in \mathcal{N} are of length at most b, then any \mathcal{N} -critical module is of length at most pqb.

Observe that the last two corollaries do not refer at all to Gabriel-Roiter notions.

3. Examples: The take-off part of a generalised Kronecker algebra. We consider the finite dimensional hereditary algebras with s=2, where s denotes the number of simple modules. We assume that Λ is representation-infinite. Let P_1, P_2, \ldots be the sequence of preprojectives, with non-zero maps $P_i \to P_{i+1}$.

Proposition. For $n \geq 2$, $\mathcal{A}(I_n) = \{P_n\}$.

For n = 2, the assertion is true according to the general description of I_2 . For n > 2, we use induction. We have to consider three cases:

Case 1. Consider first a bimodule ${}_FM_G$ with dimensions (a,b) where $a,b \geq 2$. Then all the non-zero maps $P_n \to P_{n+1}$ are monomorphisms. Also, since all the irreducible maps ending in P_n are monomorphisms, the monomorphisms $P_{n-1} \to P_n$ are Gabriel-Roiter inclusions.

Consider some n > 2 and assume the assertion is true for n - 1. Since there is a Gabriel-Roiter inclusion $P_{n-1} \to P_n$, it follows that $I_n = I_{n-1} \cup \{t\}$ with $t \ge |P_n|$. Thus let Y be indecomposable with $\mu(Y) = I_n$, let X be a Gabriel-Roiter submodule of Y. Then $\mu(Y) = I_{n-1}$, thus by induction $X = P_{n-1}$. But now we can apply proposition 1 above which shows that Y is a factor module of P_n . Since $|Y| = t \ge |P_n|$, we see that $Y = P_n$.

Case 2. $G \subset F$, and $M = {}_{G}F_{F}$. Let a = [F : G]. Then we deal with the preprojectives

$$P_1 = (1,0) \to P_2 = (a,1) \to P_3 = (a-1) \to \cdots$$

with $\operatorname{End}(P_{2i-1}) = G$, and $\operatorname{End}(P_{2n}) = F$.

- The non-zero maps $P_{2n-1} \to P_{2n}$ are injective and are Gabriel-Roiter inclusions.
- The non-zero maps $P_{2n} \to P_{2n+1}$ are surjective.
- The non-zero maps $P_{2n-1} \to P_{2n+1}$ are injective and are Gabriel-Roiter inclusions.

Consider some 2n and assume the assertion is true for 2n-1. The argument is the same as in Case 1, using Proposition 1.

Also, consider some 2n+1 and assume the assertion is true for 2n-1 and 2n. Since the irreducible maps starting in P_{2n} are epi, we see that I_{2n+1} cannot start with I_{2n} . Since there are Gabriel-Roiter inclusions $P_{2n-1} \to P_{2n+1}$, we see that $I_{2n+1} = I_{2n-1} \cup \{t\}$ with $|P_{2n}| > t \ge |P_{2n}| > t \ge |P_{2n}| > t$.

Thus let Y be indecomposable with $\mu(Y) = I_{2n+1}$, let X be a Gabriel-Roiter submodule of Y. Then $\mu(Y) = I_{2n-1}$, thus by induction $X = P_{2n-1}$. But now we can apply proposition 2 above which shows that Y is a factor module of P_{2n1} . Since $|Y| = t \ge |P_{2n+1}|$, we see that $Y = P_{2n+1}$.

Case 3. $G \subset F$, and $M = {}_FF_G$. Let a = [F : G]. Then we deal with the preprojectives

$$P_1 = (1,0) \to P_2 = (1,1) \to P_3 = (a-1,a) \to P_4 = (a-2,a-1) \cdots$$

with $\operatorname{End}(P_{2i-1}) = F$, and $\operatorname{End}(P_{2n} = G)$.

The non-zero maps $P_{2n-1} \to P_{2n}$ are surjective, for $n \ge 2$, whereas $P_1 \to P_2$ is injective (and this is a Gabriel-Roiter inclusion).

- The non-zero maps $P_{2n} \to P_{2n+1}$ are injective and are Gabriel-Roiter inclusions.
- The non-zero maps $P_{2n} \to P_{2n+2}$ are injective and are Gabriel-Roiter inclusions.

Proof: As in case 2, but taking into account the additional Gabriel-Roiter inclusion $P_1 \rightarrow P_2$.

Consequence. Consider for example the 3-Kronecker quiver. Let \mathcal{N} be the class of projective modules. A module M is said to be \mathcal{N} -critical provided it does not belong to \mathcal{N} , but any proper submodule of M belongs to \mathcal{N} . Claim: any \mathcal{N} -critical module is a factor module of P_3 , thus of length at most 11 and its top is of length at most 3. (Note that the proper factor modules of P_2 are also factor modules of P_3 .)

4. A further example: Calculation of I_4 for the algebra with vertices a, b, c, two arrows $a \leftarrow b$, and two arrows $b \leftarrow c$.

Let Y be indecomposable with $\mu(Y) = I_4$. Then Y is a factor module of the preprojective module M = (12,7,2). This modules has a submodule U which is the direct sum of two copies of (3,2,0). Under the epimorphism $M \to Y$, the socle of U has to go to zero, since the socle of U is contained in the kernel of any map $U \to Y$ (since Y is \mathcal{N} -critical, with \mathcal{N} the class of projective modules). Now $Y/(\sec U)$ is the direct sum of two copies of P(c) and S(b), thus M is a factor module of $P(c) \oplus P(c)$, say $P(c) \oplus P(c)/V$. If V is of length 1, then Y would contain $P(b)^4/V$ and this contains a submodule (3,2,0), impossible. Thus V is of length at least 2. However, there is such an indecomposable module which is \mathcal{N} -critical, namely the module (6,4,2) with 7-dimensional socle - it lies in the component which contains (0,1,0) - actually, there is an Auslander-Reiten sequence $(0,1,0) \to (6,4,2) \to (6,3,2)$.

5. Remarks. The proposition asserts that for any Gabriel-Roiter inclusion $X \to Y$, there exists an irreducible monomorphism $X \to M$ with M indecomposable and an epimorphism $M \to Y$ such that the composition $X \to M \to Y$ is a Gabriel-Roiter inclusion.

Assume conversely that an irreducible monomorphism $X \to M$ is given.

(a) Then there does not have to exist an epimorphism $M \to Y$ such that the composition $X \to M \to Y$ is a Gabriel-Roiter inclusion.

Example 1: Here is an example of an irreduble monomorphism $X \to M$, with M/X simple such that $\mu(X) = \{1, 2, 3, 5\}, \mu(M) = \{1, 2, 3, 4, 6\}$. The quiver and the dimension vectors:

$$X = \begin{bmatrix} 0 & & & 1 \\ 2 & 1 & & M = \end{bmatrix}$$

Here is the start of the Auslander-Reiten quiver:

The fat arrow indicates an irreducible monomorphism $X \to M$, and this is not a Gabriel-Roiter inclusion, since $\mu(M) = \{1, 2, 3, 4, 6\}$. Since Y/X is simple, there cannot exist any proper epimorphism $M \to Y$ such that that the composition $X \to M \to Y$ is still a monomorphism.

Example 2. Consider the D_4 -quiver with one sink, the sink being a leaf. Let X be the simple module for the branching point, Y the largest indecomposable. Then $X \subset Y$ is irreducible, but not a Gabriel-Roiter inclusion (with respect to the ordinary weights), the factor modules Y/U do not yield Gabriel-Roiter inclusions $X \to Y \to Y/U$.

(b) In case there is an irreducible monomorphism $X \to M$, there may be several epimorphisms $M \to Y_i$ such that the compositions $X \to M \to Y_i$ are Gabriel-Roiter inclusions, as follows:

The fat arrow indicates an irreducible monomorphism $X \to M$ which is not a Gabriel-Roiter inclusion, since $\mu(M) = \{1, 2, 3, 5\}$. There are two proper epimorphism $M \to Y_i$ such that the composition $X \to M \to Y_i$ is still a monomorphism, with $|Y_i| = 2$. Both these monomorphisms $X \to Y_i$ are Gabriel-Roiter inclusions.

References.

- [R1] Ringel: The Gabriel-Roiter measure. Bull. Sci. math. 129 (2005), 726-748.
- [R2] Ringel: Foundation of the Representation Theory of Artin Algebras, Using the Gabriel-Roiter Measure. To appear in the Proceedings of the Queretaro Workshop 2004. Contemporary Mathematics. Amer.Math.Soc.

4