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Gabriel-Roiter inclusions and irreducible monomorphisms.
Claus Michael Ringel

Let A be an artin algebra, and mod A the category of A-modules of finite length.

1. Proposition. Assume X C Y is a Gabriel-Roiter inclusion. Then there is an
irreducible monomorphism X — M with M indecomposable and an epimorphism M — 'Y
such that the composition X — M — Y is injective (and therefore also a Gabriel-Roiter
inclusion. )

Proof: Let u: X — Y be the given Gabriel-Roiter inclusion. Let f = (f;): X —
P M; be the source map, with all M; indecomposable. We obtain maps h;: M; — Y such
that > h;f; = w. The indices are 1 < ¢ < ¢. Assume h;f; is not a monomorphism, for
i > s, and a monomorphism for the remaining 1 < ¢ < s. Then also v = ) ;. h;f; is in
Sing(X,Y’), whereas u is not, thus v’ = u—v = ), ., hif; is outside of Sing(X,Y’), thus
a monomorphism. o

Let Y; be the image of h;f;, for 1 < ¢ < s. All the following indices are 1 < i < s.
Assume that none of the maps h; is surjective. Let Y; be the image of h;. Then u( i) <
1(Y). Now under u' the module X embeds into @Y;, thus u(X) < max pu(Y;) < u(Y).
Since X is a Gabriel-Roiter submodule of Y, we must have p(X) = max u(Y;), thus this
embedding X — P M,; — Y, is a split monomorphism, but then f itself is a split
monomorphism — impossible. This shows that at least one of the h; is surjective. But
then f; is a monomorphism (as an irreducible map, it is either mono or epi: if f; would be
epi, then | X| > |M;| > |Y], in contrast to the fact that X embeds into Y".)

2. Applications.

The proposition implies in particular the following: If X is a Gabriel-Roiter submo-
dule of some module Y, then there has to exist an irreducible monomorphism X — M
with M indecomposable. Consider for example the four-subspace quiver and let X be in-
decomposable preprojective of length 7: then all the irreducible maps starting in X are
epimorphisms, thus X cannot be a Gabriel-Roiter submodule of any module.

Let p be the maximal length of an indecomposable projective module, let ¢ be the
maximal length of an indecomposable injective module, then we know that |[771(X)| <
(pg — 1)1 X].

Corollary 1. Let X — Y be a Gabriel-Roiter inclusion. Then |Y| < pq|X]|.

Proof: The middle term X’ of the Auslander-Reiten sequence starting in X has length
at most pq| X |, and Y is a factor module of X’.

Another proof can be found in [R2], there it is shown that it implies the Successor
Lemma.



Corollary 2. Let M be an indecomposable module and 1 < a < |M| a natural number.
Then there exists an indecomposable submodule M’ of M with length in the intervall [a +

1, pqal.

Proof: Take a Gabriel-Roiter filtration M; C --- C M,, = M. Let i be maximal with
|M;| < a. Then 1 <i < mn, thus M;; exists and a < |M;41| < pq|M;| < pqa.

Corollary 3. Let M be an indecomposable module and assume all indecomposable
proper submodules of M are of length at most b. Then |M| < pgb.

Proof: Let X be a Gabriel-Roiter submodule of M. By assumption, |X| < b, thus
| M| < pglX| < pgb.

Reformulation: Let A be a class of indecomposable modules. Recall that a module M is
said to be N -critical provided it does not belong to add NV, but any proper indecomposable
submodule of M belongs to N. Corollary 3 asserts the following: if all the modules in N/
are of length at most b, then any N -critical module is of length at most pgb.

Observe that the last two corollaries do not refer at all to Gabriel-Roiter notions.

3. Examples: The take-off part of a generalised Kronecker algebra. We con-
sider the finite dimensional hereditary algebras with s = 2, where s denotes the number of
simple modules. We assume that A is representation-infinite. Let Py, Ps, ... be the sequence
of preprojectives, with non-zero maps P; — P;y.

Proposition. For n > 2, A(1,,) = {P,}.

For n = 2, the assertion is true according to the general description of I5. For n > 2,
we use induction. We have to consider three cases:

Case 1. Consider first a bimodule pM¢ with dimensions (a,b) where a,b > 2. Then
all the non-zero maps P,, — P,, 11 are monomorphisms. Also, since all the irreducible maps
ending in P, are monomorphisms, the monomorphisms P,_1 — P, are Gabriel-Roiter
inclusions.

Consider some n > 2 and assume the assertion is true for n — 1. Since there is a
Gabriel-Roiter inclusion P,_; — P, it follows that I,, = I,,_; U {t} with ¢ > |P,|. Thus
let Y be indecomposable with u(Y) = I,,, let X be a Gabriel-Roiter submodule of Y. Then
uw(Y) = I,,_q, thus by induction X = P,,_;. But now we can apply proposition 1 above
which shows that Y is a factor module of P,,. Since |Y| =t > |P,|, we see that Y = P,.

Case 2. G C F,and M = FF. Let a = [F' : G]. Then we deal with the preprojectives
P1:(1,())—>P2:(CL,1)—>P3:(CL—1)—>-'-

with End(PQi_l) = G, and End(Pgn) = F.
o The non-zero maps Pop_1 — Pay, are injective and are Gabriel-Roiter inclusions.
e The non-zero maps Ps,, — P»,4+1 are surjective.
o The non-zero maps Poyp_1 — Poyp11 are injective and are Gabriel-Roiter inclusions.

Consider some 2n and assume the assertion is true for 2n — 1. The argument is the
same as in Case 1, using Proposition 1.



Also, consider some 2n + 1 and assume the assertion is true for 2n — 1 and 2n. Since
the irreducible maps starting in P, are epi, we see that 5,1 cannot start with I5,,. Since
there are Gabriel-Roiter inclusions Pa,,_1 — Paj,11, we see that Io, 11 = Io,—1 U {t} with

Thus let Y be indecomposable with p(Y) = Is,41, let X be a Gabriel-Roiter sub-
module of Y. Then u(Y) = Is,_1, thus by induction X = P, _;. But now we can apply
proposition 2 above which shows that Y is a factor module of Py,;. Since |Y| =1t > |Pay, 41|,
we see that Y = Po,,11.

Case 3. G C F,and M = pFg. Let a = [F : G]. Then we deal with the preprojectives
P1:(1,0)HP2:(1,1)—>P3:(6L—1,CL)—>P4:<CL—2,CL—1)"'

with EHd(PQi_l) = F, and End(Pgn =G.
The non-zero maps Ps,,_1 — P5, are surjective, for n > 2, whereas P, — P, is injective
(and this is a Gabriel-Roiter inclusion).
o The non-zero maps Psy,, — Payy1 are injective and are Gabriel-Roiter inclusions.
o The non-zero maps Psy,, — Payyo are injective and are Gabriel-Roiter inclusions.

Proof: As in case 2, but taking into account the additional Gabriel-Roiter inclusion
P 1 — PQ.

Consequence. Consider for example the 3-Kronecker quiver. Let N be the class of
projective modules. A mdoule M is said to be NV -critical provided it does not belong to N,
but any proper submodule of M belongs to N. Claim: any N -critical module is a factor
module of Ps, thus of length at most 11 and its top is of length at most 3. (Note that the
proper factor modules of P, are also factor modules of Ps.)

4. A further example: Calculation of Iy for the algebra with vertices a,b,c, two
arrows a < b, and two arrows b « c.

Let Y be indecomposable with pu(Y) = I4. Then Y is a factor module of the pre-
projective module M = (12,7,2). This modules has a submodule U which is the direct
sum of two copies of (3,2,0). Under the epimorphism M — Y, the socle of U has to go
to zero, since the socle of U is contained in the kernel of any map U — Y (since Y is
N-critical, with A/ the class of projective modules). Now Y/(socU) is the direct sum of
two copies of P(c) and S(b), thus M is a factor module of P(c) @ P(c), say P(c)® P(c)/V.
If V is of length 1, then Y would contain P(b)*/V and this contains a submodule (3,2, 0),
impossible. Thus V is of length at least 2. However, there is such an indecomposable mo-
dule which is N -critical, namely the module (6,4,2) with 7-dimensional socle - it lies in
the component which contains (0, 1,0) - actually, there is an Auslander-Reiten sequence
(0,1,0) — (6,4,2) — (6,3, 2).

5. Remarks. The proposition asserts that for any Gabriel-Roiter inclusion X — Y,
there exists an irreducible monomorphism X — M with M indecomposable and an epi-
morphism M — Y such that the composition X — M — Y is a Gabriel-Roiter inclusion.

Assume conversely that an irreducible monomorphism X — M is given.
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(a) Then there does not have to exist an epimorphism M — Y such that the compo-
sition X — M — Y is a Gabriel-Roiter inclusion.

Example 1: Here is an example of an irreduble monomorphism X — M, with M/X
simple such that p(X) = {1,2,3,5}, u(M) = {1,2,3,4,6}. The quiver and the dimension
vectors:

Here is the start of the Auslander-Reiten quiver:
SN
SN
NN

The fat arrow indicates an irreducible monomorphism X — M, and this is not a Gabriel-
Roiter inclusion, since pu(M) = {1,2,3,4,6}. Since Y/ X is simple, there cannot exist any
proper epimorphism M — Y such that that the composition X — M — Y is still a
monomorphism.

Example 2. Consider the D4-quiver with one sink, the sink being a leaf. Let X be
the simple module for the branching point, Y the largest indecomposable. Then X C Y is
irreducible, but not a Gabriel-Roiter inclusion (with respect to the ordinary weights), the
factor modules Y/U do not yield Gabriel-Roiter inclusions X — Y — Y/U.

(b) In case there is an irreducible monomorphism X — M, there may be several
epimorphisms M — Y, such that the compositions X — M — Y, are Gabriel-Roiter

inclusions, as follows:
3 2
2 3 / 5 2
1 1 4
The fat arrow indicates an irreducible monomorphism X — M which is not a Gabriel-
Roiter inclusion, since pu(M) = {1,2,3,5}. There are two proper epimorphism M — Y;

such that that the composition X — M — Yj is still a monomorphism, with |Y;| = 2. Both
these monomorphisms X — Y; are Gabriel-Roiter inclusions.
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