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The ladder construction of Priifer modules.
Claus Michael Ringel

Let R be any ring. We deal with (left) R-modules. Our aim is to consider pairs of maps
w,v: U — V with w a proper monomorphism.

Let M be a module. If there exists an endomorphism ¢ of M which is surjective, locally
nilpotent, and with non-zero kernel W of finite length, then M will be said to be a Priifer
module (with respect to ¢, and with basis W).

1. The basic construction. A pair of exact sequences

0—>U0&>U1—>W—>O and 0—>K—>U0ﬂ>U1—>Q—>O
yields a module U, and a pair of exact sequences

0—->U; -5 U, —-W —0 and 0—>K—>U1£>U2—>Q—>O

by forming the induced exact sequence of 0 — Uy —% U; — W — 0 using the map vo:

0 0
K — K
0 Uy —2 1 1% 0
ST
0 U, —2 U, W 0
Q Q
0 0

2. The ladder. Using induction, we obtain in this way modules U; and pairs of exact
sequences

0—>Uiﬂ>U¢+1—>W—>O and 0—>K—>Uii>Ui+1—>Q—>O
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for all 7 > 0.

We may combine the pushout diagrams constructed inductively and obtain the follo-
wing ladder of commutative squares:

wo

Uy Uy

vol Ull vzl Ugl

w w w w
l’]1 1 U2 2 U3 3 U4 4

We form the inductive limit Uy = |J; U; (along the maps w;).

Since all the squares commute, the maps v; induce a map Uy, — U, which we denote
by vo:

Uy —2 Uy —2 Uy —2 Us —2 ... |, U; =Uy
vol l l vgl lvm
Uy —2— Uy —2= Uy —2= Uy —— - U, Ui =Ux

We also may consider the factor modules Uy, /Uy and Uy, /U;. The map voo: Uy — Uso
maps Uy into Uy, thus it induces a map

U: U /Uy — U /Uj.

Claim. The map v is an isomorphism. Namely, the commutative diagrams

Wi—1

0 — Ui—l — Uz w 0

can be rewritten as

0 —— Uy —% U —— U/U_- —— 0

0 — Ui —— U1 —— Uin/Ui —— 0
with an isomorphism v;: U; /U;_1 — U;4+1/U;. The map v is a map from a filtered module
with factors U;/U;_1 (where i > 1) to a filtered module with factors U; 1 /U; (again with
i > 1), and the maps 7; are just those induced on the factors.
It follows: The composition of maps

Us /Uy —F— Un U, —s U /Up

with p the projection map is an epimorphism ¢ with kernel Uy /Uy. It is easy to see that ¢
is locally nilpotent.



Summery. The maps v; yield a map
Voo ' Uso — Uso

with kernel K and cokernel Q. This map v induces an isomorphismv: Uy /Uy — Uso /U .
Composing the inverse of this isomorphism with the canonical projection p, we obtain an
endomorphism ¢

—1
Uso /Uy 2 Uso /U ~— Use /U
and Uy, /Uy is a Priifer module with respect to ¢, with basis W.

(Using a terminology introduced for string algebras, we also can say: Uy, is ezpanding,
Uso /Uy is contracting.)

If necessary, we will use the following notation: U;(w;v) = U;, for all i € N and also for
i = 00, and P(w;v) = Uy /Uy for the Priifer module (here, w = wq, v = vy). Since P(w;v)
is a Priifer module with basis the cokernel W of w, we will sometimes write Wn] = U, /Uy.

Examples.

(1) The classical example: Let R = Z, and also Uy = U; = Z. Maps Z — 7Z
are given by the multiplication with some integer n, thus we denote it just by n. Let
wo = 2 and vg = n. If n is odd, then P(2;n) is the ordinary Priifer group for the prime
2, and U (2;n) = Z[3] (the subring of Q generated by 3). If n is even, then P(2;n) is an
elementary abelian 2-group.

(2) Let R = K(2) be the Kronecker algebra over some field k. Let Uy be simple
projective, U; indecomposable projective of length 3 and wg: Uy — U; a non-zero map
with cokernel W (one of the indecomposable modules of length 2). The module P(wq;vg)
is the Priifer module for W if and only if vy ¢ kwg, otherwise it is a direct sum of copies

of W.

(3) Trivial cases: First, let w be a split monomorphism. Then the Priifer module with
respect to any map «: Uy — Uj is just the countable sum of copies of W. Second, let
w: Uy — Uy be an arbitrary monomorphism, let §: U; — U; be an endomorphism. Then
P(w; fw) is the countable sum of copies of W.

(4) Assume there exists a split monomorphism a: Uy — Uy, say Uy = Uy @ X and
o= [(1)] : Uy — U;y. Then

0—-Uy—=UydX —-W —0

is a Riedtmann-Zwara sequence, thus W is a degeneration of X. According to Zwara, there
is ng such that Wn + 1] ~ Wn] @ X for all n > ny.
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The chessboard. Assume now that both maps wg, vg: Uy — U; are monomorphisms.
Then we get the following arrangement of commutative squares:

Uy —2 U, —2 5 Uy —225 U —2 ...

Vo U1 'UQJ( UgJ/

w w w
U, L U, 2 Ug —— ...

Vo V1 v2l

Vo

We see both horizontally as well as vertically ladders: the horizontal ladders yield U (wq; vg)
(and its endomorphism v, ); the vertical ladders yield U (vo; wo) (and its endomorphism
Weo)-

Let A be an artin algebra.
3. First application: Degenerations.

Proposition 1. Let U,V be modules, and let W and W' be cokernels of monomor-
phisms U — V. If Extl(VV, W) = 0, then there exists a module X and an eract sequence

0= X—->XoW ->W —0.

Note that the existence of an exact sequence of the form 0 - X - X W — W' — 0
may be interpreted as asserting that W’ is a degeneration of W, according to Riedtmann
and Zwara [Z].

Corollary. Let U,V be modules, and let W and W' be cokernels of monomorphisms
U — V. Assume that both Ext'(W, W) = 0 and Ext'(W’,W’) = 0. Then the modules W
and W' are isomorphic.

Both assertions are well-known in case k is an algebraically closed field: in this case,
the conclusion of proposition 1 just asserts that W’ is a degeneration of W in the sense
of algebraic geometry. The main point here is to deal with the general case when A is
an arbitrary artin algebra. Our interest in this question was raised by a series of lectures
by Sverre Smalg at the Mar del Plata conference, March 2006. The corollary stated above
(under the additional assumptions that V' is projective and that w(U),w’(U) are contained
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in the radical of V') is due to Bautista and Perrez [BP] and this result was presented by
Smalg with a new proof [S] at Mar del Plata.

Lemma. Let W be a module with Ext'(W,W) = 0. Let Uy C Uy C Uy C --- be a
sequence of inclusions of modules with U;/U;—y = W for all i > 1. Then there is a natural
number ng such that U, C U,11 s a split monomorphism for all n > ny.

Lemma is well-known, it is based on the fact that Ext' (W, Uy) when considered as a
k-module is of finite length. A proof will be given below. Let us use it in order to finish
the proof of proposition 1.

We apply Lemma to the chain of inclusions

w w w
UO 0 l']1 ! U2 2 ...

and see that there is n such that w,, : U,, — U, 11 splits. This shows that U,,; is isomorphic
to U, & W. But we also have the exact sequence

O—>Unﬂ>Un+1—>W'—>O.
Replacing U,,4+1 by U, & W, we see that we get an exact sequence of the form
0—=U, U, @W =W —0

(a Riedtmann-Zwara sequence), as asserted.

Proof of Corollary. It is well-known that the existence of exact sequences
0-X—-XOoW-—-W -0 and 0—=Y YW —W —0

implies that the modules W- and W’ are isomorphic. But in our case we just have to
change one line in the proof of proposition 1 in order to get the required isomorphism.
Thus, assume that both Ext'(W, W) = 0 and Ext'(W’,W’) = 0. Choose n such that
both the inclusion maps

Wp: Uy —Upy1 and v,: U, — Upyq
split. Then U, 11 is isomorphic both to U,, & W and to U,, & W', thus it follows from the
Krull-Remak-Schmidt theorem that W and W' are isomorphic.

Remark. Assume that w,w’: U,V are monomorphisms with cokernels W and W,
respectively, and that Ext' (W, W) = 0 and Ext" (W', W') = 0. Then w splits if and only if
w' splits.

Proof: According to the corollary, we can assume W = W’. Assume that w splits, thus

V' is isomorphic to U @& W. Look at the exact sequence 0 — U . V — W — 0. If it does
not split, then dim End(V') < dim End(U & W), but V' is isomorphic to U & W.

Proof of Lemma. An assertion equivalent to Lemma was used for example by Roiter
in his proof of the first Brauer-Thrall conjecture, a corresponding proof can be found in

[R]. We include here a slightly different proof.
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Wi—1

Applying the functor Hom(W, —) to the short exact sequence 0 — U,y —— U; —
W — 0, we obtain the exact sequence

Ext'(W,U;_,) — Ext'(W,U;) — Ext'(W, W).
Since the latter term is zero, we see that we have a sequence of surjective maps
Ext!(W,Uy) — Ext'(W,U;) — --- = Ext'(W,U;) — - - -,

being induced by the inclusion maps Uy — U; — --- — U; — ---. The maps between
the Ext-groups are k-linear. Since Extl(W, Uy) is a k-module of finite length, the sequence
of surjective maps must stabilize: there is some ngy such that the inclusion U,, — U,41
induces an isomorphism

Ext'(W,U,) — Ext' (W, Up,41)

for all n > ng. Now we consider also some Hom-terms: the exactness of
Hom(W, U,,11) — Hom(W, W) — Ext*(W, U,,) — Ext* (W, U,41)

shows that the connecting homomorphism is zero, and thus that the map Hom(W, U,,41) —
Hom (W, W) (induced by the projection map p: U, +1 — W) is surjective. But this means
that there is a map h € Hom(W,U,,+1) with ph = 1y, thus p: U,;1 — W is a split
epimorphism and therefore the inclusion map U,, — U, 41 is a split monomorphism.

Remark. In general, there is no actual bound on the number ng. However, in case of
dealing with the chain of inclusions

w w W
Uy —>= U, — U,

such a bound exists, namely the length of Extl(VV, Uy) as a k-module, or, even better, the
length of Ext' (W, Up) as an E-module, where E = End(W).

Proof: Look at the surjective maps
Eth(W, U()) — Eth(W, Ul) — e — Extl(W, Uz) —

being induced by the maps U,, —= U,,+1 (and these maps are not only k-linear, but even
E-linear). Assume that Ext* (W, U,,) — Ext' (W, U, 1) is bijective, for some n. As we have
seen above, this implies that the sequence

(%) 0— U, = Ups1 — W —0

splits. Now the map w,, 11 is obtained from (x) as the induced exact sequence using the map
w! . With (x) also any induced exact sequence will split. Thus w;, 41 is a split monomorphism
(and Ext*(W,U,41) — Ext'(W, U, ,2) will be bijective, again). Thus, as soon as we get
a bijection Ext'(W,U,) — Ext'(W,U,4,) for some n, then also all the following maps
Ext' (W, U,,) — Ext" (W, U,,+1) with m > n are bijective.
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Example. Consider the Dy4-quiver with subspace orientation:

b

a<—=C

d

and let A be its path algebra over some field k. We denote the indecomposable A-modules
by the corresponding dimension vectors. Let

0 1 1 ) 0 1
Up=10, Uy=21, W=11, W =116400.
0 1 1 1 0

Note that a map wg: Uy — U; with cokernel W exists only in case the base-field k£ has at
least 3 elements; of course, there is always a map w(,: Uy — Uy with cokernel W’.
We have dim Ext! (W, Uy) = 2, and it turns out that the module Us is the following:

0 1 1
Up=11910D11.
1 1 0

The pushout diagram involving the modules Uy, U; (twice) and U is construc-
ted as follows: denote by piq, iy, fte monomorphisms Uy — U; which factor through the
indecomposable projective modules P(a), P(b), P(c), respectively. We can assume that
e = —lq — Mp, SO that a mesh relation is satisfied. Denote the 3 summands of U; by
M, My, M., with non-zero maps v,: Uy — M,, vy: Uy — My, v.: Uy — M., such that
Valta = 0, vpppy = 0, vepe = 0. There is the following commutative square, for any q € k,
we are interested when ¢ ¢ {0,1}:

Wo=fta+
UO 0=HaTqHp U1
0
vozuaJ( J/U1_|:Vb:|
Ve
U1 U2

wi= 1/2
[(1_Q)Vc:|

(the only calculation which has to be done concerns the third entries: v.(uq + qus) =
(1 — q)vepa). Note that wy (as well as w)) does not split.

But now we deal with a module Us such that Ext'(W, Uy) = 0. This implies that Us
is isomorphic to Uy & W. Thus the next pushout construction yields an exact sequence of

the form
0—-U;—Us®dW — W — 0.



4. Second application: Non-degeneration.

Proposition 2. Let w,w': U — V be monomorphisms with cokernel W, W', re-
spectively. Assume End(W) is a brick, W, W' are non-isomorphic, and dimEnd(W) =
dim End(W’). Then A is not of finite representation type.

Proof: Let F = F(W) be the full category of modules with a filtration with factors
isomorphic to W. This is an abelian category nwith a unique simple object. It is sufficient
to show that F has infinitely many isomorphism clases of indecomposable objects. If not,
then F is a serial category, say with [ indecomposable objects. It follows that the F-length
of any object in F is bounded by [ times its socle length.

We consider the chain of inclusions Uy C Uy C Us C --- corresponding to w (thus,
with all factors isomorphic to W). Claim: one of the inclusions has to split! Note that
U; /Uy is an object of F-length i. Denote by s(i) the F-socle length of U;/Uy. We see

1=s5(1)<s(2)<---

with ¢ <[ -s(i), thus s(i) > i/l. In particular, this is an unbounded sequence. Let U/ be
the submodule of U; containing Uy such that U//Up is the F-socle of U;/Uy. The chain
Uy C Ul CU,CU;C--- is a sequence of extensions of Uy by direct sums of copies of
W, thus after a while all the inclusions split. Let n be an index such that U], C U, is a
proper inclusion which splits. Then U,, + U}, ,; = Up41 and the splitting of the inclusion
U, C U,,., implies the splitting of U,, C U,,41 as we wanted to show.

But the splitting of w,, implies that W’ is a degeneration of . Since dim End(W') =
dim End(W”), it follows that W and W' are isomorphic, a contradiction.
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