BURNSIDE’S THEOREM: STATEMENT AND APPLICATIONS

ROLF FARNSTEINER

Let k be a field, G a finite group, and denote by mod G the category of finite dimensional G-
modules. This category coincides mod kG, the category of finite dimensional modules of the group
algebra kG. Given M € mod G, we let xp; : M — M denote the multiplication effected by the
element z € kG. The linear map

xXum kG —k 5 x—tr(zy)

is referred to as the character of the G-module M. The linear function yjs is determined on the
basis G C kG. We introduce a multiplication on (kG)*: Given linear forms ¢, 1 € (kG)*, we define
their product ¢ - 9 to be the linear form satisfying

(p-¥)(9) =¢(g)¥(g) VgeG.
In this fashion (kG)* obtains the structure of a commutative k-algebra. We let
Ac = kl{xy ; M € mod G}]
be the subalgebra of (kG)*, generated by the characters of G.

Problem. For which characters xps : kG — k is
Ac = k[{xs ; xs is a summand of x¥, for some £ > 1}]

the subalgebra of (kG)* generated by the summands of powers of /7

In his book [2] Burnside gave an affirmative answer in case k = C is the field of complex numbers.
Subsequently, his proof was simplified and generalized in several directions [1, 6, 5, 4].

Since characters are given by modules, let us try to understand the above problem in terms of
module theory. Given G-modules M, N the tensor product M ®; N obtains the structure of a
G-module via

g.(m®n) = (g.m) ® (g.n) VgeG, meM, neN.
We have the following properties:
(1) If (0) — M' — M — M" — (0) is an exact sequence of G-modules, then

XM = XM + XM
(2) If M and N are G-modules, then
XM@iN = XM * XN-

In fact, these two properties may be summarized by saying that M +— xjs induces a homomor-
phism from the Grothendieck algebra onto Ag. Moreover, if {Sy,...,S,} is a complete set of
representatives of the simple G-modules, then (1) implies

XM = Z[MSZ] XS;»
=1
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so that Ag is generated by the characters of the simple modules. Accordingly, our problem has
an affirmative answer if we can produce a G-module V such that each simple G-module S; is a
composition factor of some tensor power V& of V.

If V is a G-module, we let gy : G — GL(V') be the representation afforded by V. Since

ker oy C kergpyoe V€21,

we obtain

n
ker gy C ﬂ ker og,
i=1
as a necessary condition. If char(k) = 0, then Maschke’s Theorem implies the semisimplicity of
kG, so that the right-hand side is trivial. In that case V has to be a faithful G-module, that is,

ker oy = {e}.

Theorem (Burnside). Let G be a finite group, V' a faithful, complex G-module. Then each simple
G-module is a direct summand of some tensor power V. O

Ideally, results of this type lead to concrete realizations of simple modules. In the context of
complex Lie algebras the familiar s[(2)-theory provides an example: Every simple s[(2)-module is
a composition factor of some tensor power of the 2-dimensional standard module L(1). In fact, the
simple modules are just the homogeneous parts of the symmetric algebra S(L(1)).

Example. Let G be an abelian group. Then all simple CG-modules are one dimensional, with
each of them corresponding to a group homomorphism \ : G — C* (or, equivalently to an algebra
homomorphism A : CG — C). If one of these modules, k) say, is faithful, then Burnside’s Theorem
in conjunction with k, ®j k, = k., implies that every homomorphism y : G — C* is of the form
u = A'. This corresponds to the fact that the finite subgroups of C* are cyclic.

Burnside’s Theorem also provides information on McKay quivers. Let GG be a finite group. We fix a
complete set {S7,...,S,} of representatives of the complex, simple G-modules. Given a G-module
V', we define an integral (n x n)-matrix A := (a;;) via

Vv ®k Sj = @CLZ’]’SZ'.

i=1
In other words, A is the matrix representing multiplication by V' in the Grothendieck ring (relative
to the standard basis).

Definition. The quiver ¥y with underlying set of vertices {1,...,n} and a;; arrows ¢ — j is called
the McKay quiver of G relative to V.

Given any quiver @, we let Q(7, j;m) be the set of paths of length m starting at i and terminating
at j.

Lemma 1. Let V be a complex G-module. Then we have

(VO™ @ S;:8:] = Wy (i, 5;m)].
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Proof. Using induction on m, we assume that m > 2. Note that
(%) Uy (i,5;m) |_|\va Cjim —1) x Uy (i, 4;1).
The inductive hypothesis provides a decomposmon

vern-1 g, g; = @btst,

t=1
where b; = |¥y (¢, 7;m — 1)|. Consequently,
n n
VO @) S = @bt(v ®k St) = artbt T
t=1 r= 1 t=1

and () implies
[V®m ® Sj 5] Zaztbt | Wy (i, j;m),

as desired. (]

Corollary 2. If V is a faithful, complex G-module, then the McKay quiver Uy is connected.
Proof. Let S1 = k be the trivial G-module. Then we have V€™ @, S; = V®™ V¥V m > 1. Given a

vertex i € {1,...,n}, Burnside’s Theorem provides m € N with
0# [V 8] = [V @y, S1:8i] = [Wy (i, 1;m)|.
Hence there is a path from i to 1. O

Remarks. (1) The McKay quiver also tells us that the first m with [V®™:S;] # 0 is the length of
the shortest path from ¢ to the vertex corresponding to the trivial module.

(2) In many interesting cases, the structure of the McKay quiver is well-understood. If V' is a
self-dual, two-dimensional, faithful representation, then the matrix defining ¥y is symmetric, and
the underlying graph is a Euclidean diagram [3].
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