
BURNSIDE’S THEOREM FOR HOPF ALGEBRAS

ROLF FARNSTEINER

In our lecture [1] we have introduced Burnside’s Theorem for complex representations of finite
groups, whose original proof employed characters of finite groups. It took about 50 years until the
subject was taken up again by Steinberg [5], who produced a precursor to the modern account using
Hopf algebras [4, 3]. This broader point of view is suggested by results of a similar flavor, such as
the realization of the finite dimensional simple sl(2, C)-modules via polynomials in two variables.

Throughout, we will be working over an arbitrary field k. Let us informally recall the notion of
a Hopf algebra. Given an algebra H, we consider the algebra H ⊗k H, whose product is defined on
simple tensors via

(a ⊗ b)(c ⊗ d) := ab ⊗ cd ∀ a, b, c, d ∈ H.

If V and W are H-modules, then

(a ⊗ b).(v ⊗ w) := a.v ⊗ c.w ∀ a, b ∈ H, v ∈ V, w ∈ W

endows V ⊗k W with the structure of an H ⊗k H-module. Letting annH(M) denote the annihilator
of the H-module M , we obtain

(∗) annH⊗kH(V ⊗k W ) = annH(V ) ⊗k H + H ⊗k annH(W ).

One key ingredient of a Hopf algebra is the presence of an algebra homomorphism ∆ : H −→
H ⊗k H, the so-called comultiplication. Here are three examples to bear in mind:

• If H = kG is the group algebra of a group G, then ∆ is given by

∆(g) = g ⊗ g ∀ g ∈ G.

• Let H = U(g) be the universal enveloping algebra of a Lie algebra g. Then ∆ is the unique
algebra homomorphism extending

∆(x) = x ⊗ 1 + 1 ⊗ x ∀ x ∈ g.

• Let (g, [p]) be a restricted Lie algebra over a field of characteristic p. Then

U0(g) := U(g)/({xp − x[p] ; x ∈ g})

is a Hopf algebra, whose comultiplication is inherited from that of U(g).

Returning to H, we note that pull-back along ∆ endows V ⊗kW with the structure of an H-module.
Equation (∗) now implies

(∗∗) ∆(annH(V ⊗k W )) ⊂ annH(V ) ⊗k H + H ⊗k annH(W ).

Definition. Let H be a Hopf algebra. An ideal I � H is called a bi-ideal if

∆(I) ⊂ I ⊗k H + H ⊗k I.
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If M is an H-module such that

annH(M) ⊂ annH(M ⊗k M),

then (∗∗) shows that annH(M) is a bi-ideal.
The coassociativity of the comultiplication gives rise to isomorphisms

(U ⊗k V ) ⊗k W ∼= U ⊗k (V ⊗k W )

of H-modules. This fact is used in the proof of the following basic result:

Lemma 1. Let V be an H-module. Then annH(
⊕

m≥1 V ⊗m) is a bi-ideal of H.

Proof. Setting M :=
⊕

m≥1 V ⊗m, we obtain

M ⊗k M ∼=
⊕

m,n≥1

V ⊗m ⊗k V ⊗n ∼=
⊕

m≥2

(m − 1)V ⊗m,

so that the inclusion
annH(M) =

⋂

m≥1

annH(V ⊗m) ⊂ annH(M ⊗k M)

implies our assertion. �

Theorem 2. Let V be a module for a finite dimensional Hopf algebra H. If annH(V ) does not

contain any non-zero bi-ideals, then every simple H-module S is a submodule of a tensor power

V ⊗m for some m ≥ 1.

Proof. Thanks to Lemma 1, the H-module M :=
⊕

m≥1 V ⊗m is faithful. Let I ⊂ H be a minimal

left ideal. Then I.M 6= (0), and there exist m ∈ N and v ∈ V ⊗m such that I.v 6= (0). Since I is a
simple H-module, the map x 7→ x.v thus defines an embedding I →֒ V ⊗m.

As a result, every simple module belonging to Soc(H) is a submodule of a suitable tensor power
of V . By the Theorem of Larson-Sweedler [2], the algebra H is self-injective. Consequently, every
simple H-module occurs in Soc(H), so that our assertion follows. �

Remark. Let eS ∈ S be an idempotent corresponding to the simple H-module S. Since M is
faithful, we have

(0) 6= eSM ∼= HomH(HeS ,M).

Consequently, the occurrence of S as a composition factor of some V ⊗m can be shown without
reference to [2].

To retrieve Burnside’s Theorem from the above result, we require further structural ingredients
of Hopf algebras. By definition, there exists an algebra homomorphism ε : H −→ k such that
V ⊗k kε

∼= V for every H-module V . The map ε, which turns out to be the unit element of the
dual algebra H∗, is called the counit of H. Another important map, which corresponds to g 7→ g−1

in case H = kG, is the antipode η : H −→ H of H. By definition, we have
∑

(h)

η(h(1))h(2) = ε(h)1 =
∑

(h)

h(1)η(h(2)) ∀ h ∈ H,

where ∆(h) =
∑

(h) h(1) ⊗ h(2).

Definition. A bi-ideal satisfying η(I) ⊂ I is referred to as a Hopf ideal.
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Note that every Hopf ideal I ( H is contained in the augmentation ideal H† := ker ε. We require
the following Lemma.

Lemma 3. Let H be a finite dimensional Hopf algebra. Then every bi-ideal is a Hopf ideal. 2

Let H be a Hopf algebra. An element is h 6= 0 is group-like if ∆(h) = h ⊗ h. The set G(H)
of group-like elements is linearly independent and forms a subgroup of the group of invertible
elements of H. Every homomorphism f : H −→ H ′ of Hopf algebras induces a homomorphism
f : G(H) −→ G(H ′) of groups. Burnside’s Theorem now follows from Theorem 2, Lemma 3 and
the determination of the Hopf ideals of group algebras.

Lemma 4. Let H = kG be the group algebra of a finite group, I ( H a Hopf ideal. Then there

exists a normal subgroup N � G such that I = (kG)(kN)†.

Proof. The canonical projection π : H −→ H/I is a homomorphism of Hopf algebras, and H/I is
generated by π(G(H)) ⊂ G(H/I). Thus, G(H) = G and G(H/I) = π(G), so that dimk H/I =
|G/N |, where N := ker π|G is a normal subgroup of G. On the other hand, JN := (kG)(kN)† is a
Hopf ideal of H with JN ⊂ I. Thus, π induces a surjection

kG/JN −→ H/I

of Hopf algebras. The left-hand side, being isomorphic to the group algebra k(G/N), has dimension
dimk H/I. As a result, I = (kG)(kN)†. �

Remarks. (1) Passing to dual modules, one can show that every simple module occurs as a factor
of some tensor power of a “Hopf-faithful” H-module.

(2) Lemma 4 generalizes to finite dimensional cocommutative Hopf algebras. By general theory
[6], such an algebra is the “group algebra” H = kG of a finite group scheme G, and one can prove
that every proper Hopf ideal I ⊂ kG is of the form I = (kG)(kN )†, for a suitable normal subgroup
scheme N ⊂ G.

In particular, if V is a finite dimensional faithful restricted module of the finite dimensional
restricted Lie algebra (g, [p]), then every simple restricted g-module occurs in a suitable tensor
power of V .

(3) In view of (2), the comments of [1] pertaining to McKay quivers readily generalize to the
context of linearly reductive group schemes (semisimple cocommutative Hopf algebras).

(4) If g is a finite dimensional Lie algebra, then its universal enveloping algebra U(g) is free of zero
divisors, so that 0 and 1 are the only idempotents of U(g). Thus, the arguments of Theorem 2 and
its succeeding remark do not carry over to this context. For the classical case g = sl(2), V = L(1),
the analog of Burnside’s Theorem for finite dimensional modules follows from the Clebsch-Gordan
formula, which implies that the McKay quiver ΨL(1) is the double of a quiver with underlying graph
A∞.
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