Burnside’s p“g’-theorem

Let G be finite group, and let Irr(G) denote the set of complex irreducible characters of G. Also, let
x € Irr(G).

Central characters: Let V be a CG-module affording x. By Schur’s lemma, any z € Z(CG)
acts as a scalar on V. This scalar is % =: w,(z2). The wy, where ¥ runs the irreducible characters
of G, form a complete set of isomorphism classes of the irreducible representations of Z(CG). They
are called the central characters of G.

Let C € G be a conjugacy class, and let C := de@ g be the corresponding class sum. Recall

that the class sums form a basis of Z(CG).

Proposition 1
Pick g € C. Then w, (C) = X'%X (g) is an algebraic integer.

Proof: Let Cy, ..., C, be the class sums of G. Then C;C; = Zle a;j;C; with
aiji=|{(x,y) € C; x Cj|xy =z} €Ny

for any z € ¢;. Since w, (C;C;) = erzl ajjiwy (Cp), the Z-span (w, (C;) | 1 <i < r)zis a subring
of C (which contains 1 as w, (1) = 1). O

Corollary 2
x (1) divides |G]|.

Proof: By the first orthogonality relation, |G| = Y, s x(&)x(g™") = Xi_; x (D, CHx g™,
where g; € C;. Character values are sums of roots of unity, hence algebraic integers. This implies

that % = Zle w, (Ci)x (gi_l) is an algebraic integer. U
Definition 3
Z(x):={g € G|lIx(g)| = x(1)} is called the centre of G. U

Since x (g) is a sum of y (1) roots of unity, Z () consists of those elements of G which act as scalars
on the module V affording x. In particular, Z(G) < Z(x).

Proposition 4
Z(G) = mgbelrr(G) Z(lﬂ)

Proof: Pick g € ﬂwem(@ Z (). By the second orthogonality relation,
ICo@l= Y W@l= Y WD =IGl
yelr(G) yelr(G)
Hence g € Z(G). O
Theorem 5 (Burnside, 1904)

Let C C G be a conjugacy class. If |C| and x (1) are coprime, then either © C Z(x) or x vanishes
on C.



Proof: Pick a, b € Z such that 1 = ax (1) + b|C|. Then

x(@ _ x(g)
bwy(C) = —ax(D))=—==——"=—ax(g)
g x(@  x(d)
is an algebraic integer, where ¢ € C and C := )  _.x. Hence % is an algebraic integer.

Suppose that ¢ ¢ Z(x). Then |x(g)] < x(1). Hence |HG€G&1(Q(X(g))/Q) o(%ﬂ < 1. But
O'(M) is an algebraic integer and lies in Q, thus it this an integer. Hence it is

o GalQx )/ Z () g £ &
zero, which is only possible if x (g) = 0, as desired. ]

Corollary 6
If G is simple and for some 1 # g € G, the size of ©g is a power of a prime p, then G is the group
of order p.

Proof: Suppose not. Let 1 # x be an irreducible character of G. Then Z () is trivial, since it is a
proper normal subgroup of G. If p 1 x(1), then x(g) = 0. Thus

O=o0@= Y xMx@=1+ Y  x(x(,

x €lrr(G) x€lr(G), plx (1)

where 0 = xc¢ denotes the regular character of G. But this implies —% => xel(G), plx(1) % x(g)
which is impossible, since the right hand side is an algebraic integer.

Theorem 7 (Burnside, 1904)
If |G| = p“q" for some primes p, q, then G is solvable.

Proof: If G has a non-trivial normal subgroup, the claim follows by induction. Assume G to be
simple. Let 1 ## P < G be a Sylow subgroup of G. Since the centre of P is non-trivial, we may
pick 1 # g € Z(P). Then |9g| = [G : C5(g)]|[G : P]is a prime power, and the claim follows,
using the above corollary. O

Not only the theorem is due to Burnside, the above proof is as well. It is still the standard proof
one finds in any textbook. The first purely group-theoretic proof of the p®g’-theorem is due to
Bender and appeared in 1972. Some simplifications of Bender’s proof were found, but it is still way
more complicated than Burnside’s argument.



