
Burnside’s paqb-theorem

Let G be finite group, and let Irr(G) denote the set of complex irreducible characters of G. Also, let
χ ∈ Irr(G).

Central characters: Let V be a CG-module affording χ . By Schur’s lemma, any z ∈ Z(CG)
acts as a scalar on V . This scalar is χ(z)

χ(1) =: ωχ (z). The ωψ , where ψ runs the irreducible characters
of G, form a complete set of isomorphism classes of the irreducible representations of Z(CG). They
are called the central characters of G.

Let C ⊆ G be a conjugacy class, and let C :=
∑

g∈C g be the corresponding class sum. Recall
that the class sums form a basis of Z(CG).

Proposition 1
Pick g ∈ C. Then ωχ (C) =

|C|

χ(1)χ(g) is an algebraic integer.

Proof: Let C1, . . . ,Cr be the class sums of G. Then Ci C j =
∑r

l=1 ai jlCl with

ai jl = |{(x, y) ∈ Ci × Cj | xy = z}| ∈ N0

for any z ∈ Cl . Since ωχ (Ci C j ) =
∑r

l=1 ai jlωχ (Cl), the Z-span 〈ωχ (Ci ) | 1 ≤ i ≤ r〉Z is a subring
of C (which contains 1 as ωχ (1) = 1). �

Corollary 2
χ(1) divides |G|.

Proof: By the first orthogonality relation, |G| =
∑

g∈G χ(g)χ(g
−1) =

∑r
i=1 χ(1)ωχ (Ci )χ(g−1

i ),
where gi ∈ Ci . Character values are sums of roots of unity, hence algebraic integers. This implies
that |G|

χ(1) =
∑r

i=1 ωχ (Ci )χ(g−1
i ) is an algebraic integer. �

Definition 3
Z(χ) := {g ∈ G | |χ(g)| = χ(1)} is called the centre of G. �

Since χ(g) is a sum of χ(1) roots of unity, Z(χ) consists of those elements of G which act as scalars
on the module V affording χ . In particular, Z(G) ≤ Z(χ).

Proposition 4
Z(G) =

⋂
ψ∈Irr(G) Z(ψ).

Proof: Pick g ∈
⋂
ψ∈Irr(G) Z(ψ). By the second orthogonality relation,

|CG(g)| =

∑
ψ∈Irr(G)

|ψ(g)|2 =

∑
ψ∈Irr(G)

|ψ(1)|2 = |G|.

Hence g ∈ Z(G). �

Theorem 5 (Burnside, 1904)
Let C ⊆ G be a conjugacy class. If |C| and χ(1) are coprime, then either C ⊆ Z(χ) or χ vanishes
on C.
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Proof: Pick a, b ∈ Z such that 1 = aχ(1)+ b|C|. Then

bωχ (C) = (1 − aχ(1))
χ(g)
χ(1)

=
χ(g)
χ(1)

− aχ(g)

is an algebraic integer, where g ∈ C and C :=
∑

x∈C x . Hence χ(g)
χ(1) is an algebraic integer.

Suppose that g /∈ Z(χ). Then |χ(g)| < χ(1). Hence |
∏
σ∈Gal(Q(χ(g))/Q) σ(

χ(g)
χ(1) )| < 1. But∏

σ∈Gal(Q(χ(g))/Q) σ(
χ(g)
χ(1) ) is an algebraic integer and lies in Q, thus it this an integer. Hence it is

zero, which is only possible if χ(g) = 0, as desired. �

Corollary 6
If G is simple and for some 1 6= g ∈ G, the size of G g is a power of a prime p, then G is the group
of order p.

Proof: Suppose not. Let 1 6= χ be an irreducible character of G. Then Z(χ) is trivial, since it is a
proper normal subgroup of G. If p - χ(1), then χ(g) = 0. Thus

0 = %(g) =

∑
χ∈Irr(G)

χ(1)χ(g) = 1 +

∑
χ∈Irr(G), p|χ(1)

χ(1)χ(g),

where % = χCG denotes the regular character of G. But this implies −
1
p =

∑
χ∈Irr(G), p|χ(1)

χ(1)
p χ(g)

which is impossible, since the right hand side is an algebraic integer. �

Theorem 7 (Burnside, 1904)
If |G| = paqb for some primes p, q, then G is solvable.

Proof: If G has a non-trivial normal subgroup, the claim follows by induction. Assume G to be
simple. Let 1 6= P ≤ G be a Sylow subgroup of G. Since the centre of P is non-trivial, we may
pick 1 6= g ∈ Z(P). Then |

G g| = [G : CG(g)]|[G : P] is a prime power, and the claim follows,
using the above corollary. �

Not only the theorem is due to Burnside, the above proof is as well. It is still the standard proof
one finds in any textbook. The first purely group-theoretic proof of the paqb-theorem is due to
Bender and appeared in 1972. Some simplifications of Bender’s proof were found, but it is still way
more complicated than Burnside’s argument.
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