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Abstract. These are preliminary notes from a course ”Introduction to algebraic
geometry” which I taught in the Winter term 04/05. The plan is that they should
finally become an appendix to an introductory book on Algebraic Transformation
Groups. But it is unclear if this project will ever be completed!

In this appendix we concentrate on affine algebraic geometry which simplifies
a lot the notational part and makes the subject much easier to access in a first
attempt. One part, the relation between the Zariski topology and the C-topology
is still missing. With its help we are able to use certain compactness arguments
replacing the corresponding results from projective geometry.

The appendix assumes a basic knowledge in commutative algebra. We give
complete and quite elementary proofs for almost all statements. There is just one
exception: I could not find an elementary proof that smooth points are normal.
Also, the famous and very useful Serre Criterion for normality is stated without
proof.

The notes are still in a very preliminary form. There are certainly a lot of
misprints and some inaccuracies which have to be eliminated in the future versions.
Of course, remarks and suggestions from all readers are very well-come.
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APPENDIX A

BASICS FROM ALGEBRAIC GEOMETRY

1. AFFINE VARIETIES

Regular functions. Our base field is the field C of complex numbers. Every
polynomial p ∈ C[x1, . . . , xn] can be regarded as a C-valued function on Cn in the
usual way:

a = (a1, . . . , an) 7→ p(a) = p(a1, . . . , an).

These functions will be called regular. More generally, let V be a C-vector space of
dimension dimV = n <∞.

Definition 1.1. A C-valued function f : V → C is called regular if f is given
by a polynomial p ∈ C[x1, . . . , xn] with respect to one and hence all bases of V . This
means that for a given basis v1, . . . , vn of V we have

f(a1v1 + · · ·+ anvn) = p(a1, . . . , an)

for a suitable polynomial p. The algebra of regular functions on V will be denoted
by O(V ).

By our definition, every choice of a basis (v1, v2, . . . , vn) of V defines an isomor-
phism C[x1, . . . , xn]

∼→ O(V ) by identifying xi with the ith coordinate function on
V defined by the basis, i.e.,

xi(a1v1 + a2v2 + · · ·+ anvn) := ai.

Another way to express this is by remarking that the linear functions on V are regular
and thus the dual space V ∗ := Hom(V,C) is a subspace of O(V ). So if (v1, v2, . . . , vn)
is a basis of V and (x1, x2, . . . , xn) the dual basis of V ∗ then O(V ) = C[x1, x2, . . . , xn]
and the linear functions xi are algebraically independent.

Example 1.1. Denote by Mn = Mn(C) the complex n × n-matrices so that
O(Mn) = C[xij | 1 ≤ i, j ≤ n]. Consider det(tEn−X) as a polynomial in C[t, xij , i, j =
1, . . . , n] where X := (xij). Developing this as a polynomial in t we find

det(tEn −X) = tn − s1t
n−1 + s2t

n−2 − · · ·+ (−1)nsn

with polynomials sk in the variables xij . This defines regular functions sk ∈ O(Mn)
which are homogeneous of degree k. Of course, we have s1(A) = tr(A) = a11+· · ·+ann

and sn(A) = det(A) for any matrix A ∈ Mn.
The same construction applies to End(V ) for any finite dimensional vector space

V and defines regular function sk ∈ O(End(V )).

Example 1.2. Consider the vector space Pn of unitary polynomials of degree n:

Pn := {tn − a1t
n−1 + a2t

n−2 − · · ·+ (−1)nan | a1, · · · , an ∈ C} ≃ Cn.

5



6 A. BASICS FROM ALGEBRAIC GEOMETRY

There is a regular functionD ∈ O(Pn), the discriminant , with the following property:
D(p) = 0 for a p ∈ Pn if and only if p has a multiple root.

Proof. Expanding
∏n

i=1(t − yi) = tn − σ1(y)t
n−1 + · · · + (−1)nσn(y) we see

that the polynomials σj(y) are the elementary symmetric polynomials in n variables
y1, . . . , yn, i.e.

sk :=
∑

i1<i2<···<ik

yi1yi2 · · · yik .

Define D̃ :=
∏

i<j(yi − yj)
2. Since D̃ is symmetric it can be (uniquely) written as

a polynomial in the elementary symmetric functions (see [Ar91, Chap. 14, Theo-

rem 3.4]): D̃(y1, . . . , yn) = D(σ1, . . . , σn) with a suitable polynomial D. By construc-
tion, D has the required property. �

Example 1.3. We denote by Altn ⊆Mn the subspace of alternating matrices:

Altn := {A ∈Mn | At = −A}.
There is a regular function Pf ∈ O(Alt2m), the Pfaffian, with the following property:
det(A) = Pf(A)2 for all A ∈ Alt2m. Usually, the sign of the Pfaffian is determined by

requiring that Pf(

[
J

...
J

]
) = 1 where J :=

[
0 −1
1 0

]
.

Proof. It is well-known that for any alternating matrix A with entries in an
arbitrary field K there is a g ∈ GLn(K) such that

(1) gAgt =




J
. . .

J
0

. . .



.

Now take K = C(xij | 1 ≤ i < j ≤ n = 2m) and put

A :=




0 x12 x13 · · · x1n

−x12 0 x23 · · · x2n

−x13 −x23 0 · · · x3n
...

...
. . .

...
−x1n −x2n −x3n · · · 0



.

Then there is a g ∈ GLn(K) such that gAgt has the form given in (1). It follows
that the polynomial det(A) ∈ K[xij | 1 ≤ i < j ≤ n] equals det(g)−2, the square of
a rational function, and the claim follows. �

Exercise 1.1. For a = (a1, a2, . . . , an) ∈ Cn denote by eva : O(Cn)→ C the evaluation

map f 7→ f(a). Then the kernel of eva is the maximal ideal

ma := (x1 − a1, x2 − a2, . . . , xn − an).

Exercise 1.2. Let W ⊆ O(V ) a finite dimensional subspace. Then the linear functions
evv |W for v ∈ V span the dual space W ∗.
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Zero sets and Zariski topology. We now define the basic object of algebraic
geometry, namely the zero set of regular functions. Let V be a finite dimensional
vector space.

Definition 1.2. If f ∈ O(V ) then we define the zero set of f by

V(f) := {v ∈ V | f(v) = 0} = f−1(0).

More generally, the zero set of f1, f2, . . . , fs ∈ O(V ) or of a subset S ⊆ O(V ) is
defined by

V(f1, f2, . . . , fs) :=
s⋂

i=1

V(fi) = {v ∈ V | f1(v) = · · · = fs(v) = 0}

or

V(S) := {v ∈ V | f(v) = 0 for all f ∈ S}.
Remark 1.1. The following properties of zero sets follow immediately from the

definition.

(1) Let S ⊆ O(V ) and denote by a := (S) ⊆ O(V ) the ideal generated by S.
Then V(S) = V(a).

(2) If S ⊆ T ⊆ O(V ) then V(S) ⊇ V(T ).
(3) For any family (Si)i∈I of subset Si ⊆ O(V ) we have

⋂

i∈I

V(Si) = V(
⋃

i∈I

Si).

Example 1.4. (1) SLn(C) = V(det−1) ⊆Mn(C).
(2) On(C) = V(

∑n
ν=1 xiνxjν − δij | 1 ≤ i ≤ j ≤ n).

(3) If f = f(x, y) ∈ C[x, y] is a non-constant polynomial in 2 variables, then
V(f) ⊆ C is called a plane curve. In order to visualize a plane curve, we
usually draw a real picture ⊆ R2.

Lemma 1.1. Let V be a finite dimensional vector space and let a, b be ideals in
O(V ) and (ai | i ∈ I) a family of ideals of O(V ).

(1) If a ⊆ b then V(a) ⊇ V(b).
(2)

⋂
i∈I V(ai) = V(

∑
i∈I ai).

(3) V(a) ∪ V(b) = V(a ∩ b) = V(a · b).
(4) V(0) = V and V(1) = ∅.

Proof. Properties (1) and (2) follow from Remark 1, and property (4) is easy.
So we are left with property (3). Since a ⊇ a ∩ b ⊇ a · b, it follows from (1) that
V(a) ⊆ V(a ∩ b) ⊆ V(a · b). So it remains to show that V(a · b) ⊆ V(a) ∪ V(b). If
v ∈ V does not belong to V(a)∪V(b) then there are functions f ∈ a and h ∈ b such
that f(v) 6= 0 6= h(v). Since f · h ∈ a · b and (f · h)(v) 6= 0 we see that v /∈ V(a · b),
and the claim follows. �

Definition 1.3. The lemma shows that the subsets V(a) where a runs through
the ideals of O(V ) form the closed sets of topology on V which is called Zariski
topology . From now on all topological terms like “open”, “closed”, “neighborhood”,
“continuous”, etc. will refer to the Zariski topology.
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Example 1.5. (1) The nilpotent cone N ⊆ Mn consisting of all nilpotent
matrices is closed and is a cone, i.e. stable under multiplication with scalars.
E.g. for n = 2 we have

N = V(x11 + x22, x11x22 − x12x21) ⊆M2.

(2) The subset M
(r)
n ⊆Mn of matrices of rank ≤ r are closed cones.

(3) The set of polynomials f ∈ Pn with a multiple root is closed (see Exam-
ple 1.2).

(4) The closed subsets of C are the finite sets together with C. So the non-empty
open sets of C are the cofinite sets.

Exercise 1.3. A regular function f ∈ O(V ) is called homogeneous of degree d if
f(tv) = tdf(v) for all t ∈ C and all v ∈ V .

(1) A polynomial f ∈ C[x1, . . . , xn] is homogeneous of degree d as a regular function
on Cn if and only if all monomials occurring in f have degree d.

(2) Assume that the ideal a ⊆ O(V ) is generated by homogeneous functions. Then
the zeros set V(a) ⊆ V is a cone.

(3) Conversely, if X ⊆ V is a cone, then the ideal I(X) can be generated by homo-
geneous functions.

Exercise 1.4. Show that the subset A := {(n,m) ∈ C2 | n,m ∈ Z and m ≥ n ≥ 0} is
Zariski-dense in C2.

Definition 1.4. Let X ⊆ V be a closed subset. A regular function on X is
defined to be the restriction of a regular function on V :

O(X) := {f |X | f ∈ O(V )}.
The kernel of the (surjective) restriction map res : O(V )→ O(X) is called the ideal
of X:

I(X) := {f ∈ O(V ) | f(x) = 0 for all x ∈ X}.
Thus we have a canonical isomorphism O(V )/I(X)

∼→ O(X).

Remark 1.2. Every finite dimensional C-vector space V carries a natural topol-
ogy given by the choice of a norm or a hermitian scalar product. We will call it the
C-topology. Since all polynomials are continuous with respect to the C-topology we
see that the C-topology is finer than the Zariski topology.

Exercise 1.5. Show that every non-empty open set in Cn is dense in the C-topology.
(Hint: Reduce to the case n = 1 where the claim follows from Example 1.5(4).)

Remark 1.3. In the Zariski topology the finite sets are closed. This follows from
the fact that for any two different points v, w ∈ V one can find a regular function
f ∈ O(V ) such that f(v) = 0 and f(w) 6= 0. (One says that the regular functions
separate the points.) But the Zariski topology is not Hausdorff (see the following
exercise).

Exercise 1.6. Let U,U ′ ⊆ Cn be two non-empty open sets. Then U ∩U ′ is non-empty,
too. In particular, the Zariski topology is not Hausdorff.

Exercise 1.7. Consider a polynomial f ∈ C[x0, x1, . . . , xn] of the form f = x0 −
p(x1, . . . , xn), and letX = V(f) be its zero set. Then I(X) = (f) andO(X) ≃ C[x1, . . . , xn].
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Hilbert’s Nullstellensatz. The famous Nullstellensatz of Hilbert appears in
many different forms which are all more or less equivalent. We will give some of
them which are suitable for our purposes.

Definition 1.5. If a is an ideal of an arbitrary ring R, its radical
√

a is defined
by √

a := {r ∈ R | rm ∈ a for some m > 0}.
The ideal a is perfect if a =

√
a.

It is easy to see that
√

a is an ideal and that
√√

a =
√

a. Moreover,
√

a = R
implies that a = R.

Theorem 1.1 (Hilbert’s Nullstellensatz). Let a ⊆ O(V ) be an ideal and X :=
V(a) ⊆ V its zero set. Then

I(X) = I(V(a)) =
√

a.

A first consequence is that every strict ideal has a non-empty zero set, because
X = V(a) = ∅ implies that

√
a = I(X) = O(V ) and so a = O(V ).

Corollary 1.1. For every ideal a 6= O(V ) we have V(a) 6= ∅.
If m ⊆ C[x1, . . . , xn] is a maximal ideal and a = (a1, . . . , an) ∈ V(m) then m ⊇

(x1 − a1, . . . , xn − an) and so these two are equal.

Corollary 1.2. Every maximal ideal m of C[x1, . . . , xn] is of the form

m = (x1 − a1, . . . , xn − an).

Another way to express this is by using the evaluation map evv (see Exercise 1.1).

Corollary 1.3. Every maximal ideal of O(V ) equals the kernel of the evaluation
map evv : O(V )→ C at a suitable v ∈ V .

Exercise 1.8. If X ⊆ V is a closed subset and m ⊆ O(X) a maximal ideal then
O(X)/m = C. Moreover, m = ker(evx : f 7→ f(x)) for a suitable x ∈ X.

Proof of Theorem 1.1. Let m ⊆ C[x1, . . . , xn] be a maximal ideal and de-
note by K := C[x1, . . . , xn]/m its residue class field. Then K contains C and has a
countable C-basis, because C[x1, . . . , xn] does. If K 6= C and p ∈ K \ C then p is
transcendental over C. It follows that the elements ( 1

p−a
| a ∈ C) from K form a

non-countable set of linearly independent elements over C. This contradiction shows
that K = C. Thus xi + m = ai + m for a suitable ai ∈ C (for i = 1, . . . , n), and so
m = (x1 − a1, . . . , xn − an). This proves Corollary 1.2 (and Corollary 1.3).

To get the theorem, we use the so-called trick of Rabinowich. Let a ⊆ C[x1, . . . , xn]
be an ideal and assume that the polynomial f vanishes on V(a). Now consider the
polynomial ring R := C[x0, x1, . . . , xn] in n+1 variables and the ideal b := (a, 1−x0f)
generated by 1 − x0f and the elements of a. Clearly, V(b) = ∅ and so 1 ∈ b. This
means that we can find an equation of the form

∑

i

hifi + h(1− x0f) = 1
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where fi ∈ a and hi, h ∈ R. Now we substitute 1
f

for x0 and find

∑

i

hi(
1

f
, x1, . . . , xn)fi = 1.

Clearing denominators finally gives
∑

i h̃ifi = fm, i.e., fm ∈ a, and the claim follows.
�

Corollary 1.4. For any ideal a ⊆ O(V ) and its zero set X := V(a) we have
O(X) = O(V )/

√
a.

Exercise 1.9. Let a ⊆ R be an ideal of a (commutative) ring R. Then a is perfect if
and only if the residue class ring R/a has no nilpotent elements different from 0.

Example 1.6. Let f ∈ C[x1, . . . , xn] be an arbitrary polynomial and consider its

decomposition into irreducible factors: f = pr1

1 p
r2

2 · · · prs
s . Then

√
(f) = (p1p2 · · · ps)

and so the ideal (f) is perfect if and only if the polynomial f it is square-free. In
particular, if f ∈ C[x1, . . . , xn] is irreducible, then O(V(f)) ≃ C[x1, . . . , xn]/(f). A
closed subset of the form V(f) is called a hypersurface.

Example 1.7. We have O(SLn(C)) ≃ O(Mn)/(det−1) because the polynomial
det−1 is irreducible.
In fact, if det−1 = f1 · f2 then each factor fi is linear in the variables which occur.
But if xi0j0 occurs in f1 then all the variables xij0 and xi0j have to occur in f1, too,
since det−1 does not contain products of the form xij0xi′j0 and xi0jxi0j′. This implies
that all variables occur in f1, hence f2 is a constant.

Example 1.8. Consider the plane curve C := V(y2 − x3) which is called Neil’s

parabola. Then O(C) ≃ C[x, y]/(y2−x3)
∼→ C[t2, t3] ⊆ C[t] where the second isomor-

phism is given by ρ : x 7→ t3, y 7→ t2.

Proof. Clearly, y2 − x3 ∈ ker ρ. For any f ∈ C[x, y] we can write f = f0(x) +
f1(x)y + h(x, y)(y2 − x3). If f ∈ ker ρ then 0 = ρ(f) = f0(t

2) + f1(t
2)t3 and so

f0 = f1 = 0. This shows that ker ρ = (y2 − x3), and the claim follows. �

Exercise 1.10. Let C ⊆ C2 be the plane curve defined by y − x2 = 0. Then I(C) =
(y − x2) and O(C) is a polynomial ring in one variable.

Exercise 1.11. Let D ⊆ C2 be the zero set of xy − 1. Then O(D) is not isomorphic

to a polynomial ring, but there is an isomorphism O(D)
∼→ C[t, t−1].

Exercise 1.12. Consider the “parametric curve”

Y := {(t, t2, t3) ∈ C3 | t ∈ C}.
Then Y is closed in C3. Find generators for the ideal I(Y ) and show thatO(Y ) is isomorphic
to the polynomial ring in one variable.

Another important consequence of the “Nullstellensatz” is a one-to-one corre-
spondence between closed subsets of Cn and perfect ideals of the coordinate ring
C[x1, . . . , xn].

Corollary 1.5. The map X 7→ I(X) defines a inclusion-reversing bijection

{X ⊆ V closed} ∼→ {a ⊆ O(V ) perfect ideal}
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whose inverse map is given by a 7→ V(a). Moreover, for any finitely generated reduced
C-algebra R there is a closed subset X ⊆ Cn for some n such that O(X) is isomorphic
to R

Proof. The first part is clear since V(I(X)) = X and I(V(a)) =
√

a for any
closed subset X ⊆ V and any ideal a ⊆ O(V ).

If R is a reduced and finitely generated C-Algebra, R = C[f1, . . . , fn], then R ≃
C[x1, x2, . . . , xn]/a where a is the kernel of the homomorphism defined by xi 7→ fi.
Since R is reduced we have

√
a = a and so O(V(a)) ≃ C[x1, . . . , xn]/a ≃ R. �

Exercise 1.13. Let X ⊆ V be a closed subset and f ∈ O(X) a regular function such
that f(x) 6= 0 for all x ∈ X. Then f is invertible in O(X), i.e. the C-valued function
x 7→ f(x)−1 is regular on X.

Exercise 1.14. Every closed subset X ⊆ Cn is quasi-compact, i.e., every covering of
X by open sets contains a finite covering.

Exercise 1.15. Let X ⊆ Cn be a closed subset. Assume that there are no non-constant
invertible regular function on X. Then every non-constant f ∈ O(X) attains all values in
C, i.e. f : X → C is surjective.

Affine varieties. We have seen in the previous section that every closed subset
X ⊆ V (or X ⊆ Cn) is equipped with an algebra of C-valued functions, namely the
coordinate ring O(X). We first remark that O(X) determines the topology of X. In
fact, define for every ideal a ⊆ O(X) the zero set in X by

VX(a) := {x ∈ X | f(x) = 0 for all f ∈ a}.
Clearly, we have VX(a) = V(ã) ∩ X where ã ⊆ O(V ) is an ideal which maps sur-
jectively onto a under the restriction map. This shows that the sets VX(a) are the
closed sets of the topology on X induced by the Zariski-topology of V . Moreover, the
coordinate ring O(X) also determines the points of X since they are in one-to-one
correspondence with the maximal ideals of O(X):

x ∈ X 7→ mx := ker evx ⊆ O(X)

where evx : O(X) → C is the evaluation map f 7→ f(x). This leads to the following
definition of an “abstract” zero set, not embedded in a vector space.

Definition 1.6. A set Z together with a C-algebra O(Z) of C-valued functions
on Z is called an affine variety if there is a closed subset X ⊆ Cn for some n and a
bijection ϕ : Z

∼→ X which identifies O(X) with O(Z), i.e., ϕ∗ : O(X)→ O(Z) given
by f 7→ f ◦ ϕ, is an isomorphism.

The functions from O(Z) are called regular , and the algebra O(Z) is called co-
ordinate ring of Z or algebra of regular functions on Z.

The affine variety Z has a natural topology, the Zariski-topology, the closed sets
being the zero sets

VZ(a) := {z ∈ Z | f(z) = 0 for all f ∈ a}
where a runs through the ideals of O(Z). If follows from what we said above that

the bijection ρ : Z
∼→ X is a homeomorphism with respect to the Zariski-topology.
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Clearly, every closed subset X ⊆ V or X ⊆ Cn together with its coordinate ring
O(X) is an affine variety. More generally, if X is an affine variety and Y ⊆ X a
closed subset, then Y together with the restrictions O(Y ) := {f |Y | f ∈ O(X)} is
an affine variety, called a closed subvariety.

Less trivial examples are the following.

Example 1.9. Let M be a finite set and define O(M) := Maps(M,C) to be the
set of all C-valued functions on M . Then (M,O(M)) is an affine variety and O(M)
is isomorphic to a product of copies of C. This follows immediately from the fact
that any finite subset N ⊆ Cn is closed and that O(N) = Maps(N,C).

Example 1.10. Let X be a set and define the symmetric product Symn(X) to
be the set of unordered n-tuples of elements from X, i.e.,

Symn(X) = X ×X × · · · ×X/ ∼
where (a1, a2, . . . , an) ∼ (b1, b2, . . . , bn) if and only if one is a permutation of the
other.

In case X = C we define O(Symn(C)) to be the symmetric polynomials in n
variables and claim that Symn(C) is an affine variety.

To see this consider the map

Φ: Cn → Cn, a = (a1, . . . , an) 7→ (σ1(a), σ2(a), . . . , σn(a))

where σ1, . . . , σn are the elementary symmetric polynomials (see Example 1.2). It is
easy to see that Φ is surjective and that Φ(a) = Φ(b) if and only if a ∼ b. Thus, Φ
defines a bijection ϕ : Symn(C)

∼→ Cn, and the pull-back of the regular functions on

Cn are the symmetric polynomials: ϕ∗ : C[x1, . . . , xn]
∼→ O(Symn(C)).

Exercise 1.16. Let Z be an affine variety with coordinate ring O(Z). Then every
polynomial f ∈ O(Z)[t] with coefficients in O(Z) defines a function on the product Z ×C
in the usual way:

f =

m∑

k=0

fkt
k : (z, a) 7→

m∑

k=0

fk(z)a
k ∈ C

Show that Z × C together with O(Z)[t] is an affine variety.

(Hint: For any ideal a ⊆ C[x1, . . . , xn] there is a canonical isomorphism C[x1, . . . , xn, t]/(a)
∼→

(C[x1, . . . , xn]/a)[t].)

Exercise 1.17. For any affine variety Z there is a inclusion-reversing bijection

{A ⊆ Z closed} ∼→ {a ⊆ O(Z) perfect ideal}
given by A 7→ I(A) := {f ∈ O(Z) | f |A = 0} (cf. Corollary 1.5).

For the last example we start with a reduced and finitely generated C-algebra R.
Denote by specR the set of maximal ideas of R:

specR := {m | m ⊆ R a maximal ideal}.
We know from the “Nullstellensatz” (see Exercise 1.8) that R/m = C for all max-
imal ideals m ∈ specR. This allows to identify the elements from R with C-valued
functions on specR: For f ∈ R and m ∈ specR we define

f(m) := f + m ∈ R/m = C.
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Proposition 1.1. Let R be a reduced and finitely generated C-algebra. Then the
set of maximal ideals specR together with the algebra R considered as functions on
specR is an affine variety.

Proof. We have already seen earlier that every such algebra R is isomorphic to
the coordinate ring of a closed subset X ⊆ Cn. The claim then follows by using the
bijection X

∼→ specO(X), x 7→ mx = ker evx, and remarking that for f ∈ O(X) and
x ∈ X we have f(x) = evx(f) = f + mx, by definition. �

Exercise 1.18. Denote by Cn the n-tuples of complex numbers up to sign, i.e., Cn :=
Cn/ ∼ where (a1, . . . , an) ∼ (b1, . . . , bn) if ai = ±bi for all i. Then every polynomial
in C[x2

1, x
2
2, . . . , x

2
n] is a well-defined function on Cn. Show that Cn together with these

functions is an affine variety.
(Hint: Consider the map Φ: Cn → Cn, (a1, . . . , an) 7→ (a2

1, . . . , a
2
n) and proceed like in

Example 1.10.)

Although every affine variety is “isomorphic” to a closed subset of Cn for a suitable
n, there are many advantages to look at these objects and not only at closed subsets.
In fact, an affine variety can be identified with many different closed subsets of this
form (see the following Exercise 1.19), and depending on the questions we are asking
one of them might be more useful than another. We will even see in the following
section that certain open subsets are affine varieties in a natural way.

On the other hand, whenever we want to prove some statements for an affine
variety X we can always assume that X = V(a) ⊆ Cn so that the regular functions
on X appear as restrictions of polynomial functions. This will be helpful in the future
and quite often simplify the arguments.

Exercise 1.19. Let X be an affine variety. Show that every choice of a generating
system f1, f2, . . . , fn ∈ O(X) of the algebra O(X) consisting of n elements defines an
identification of X with a closed subset V(a) ⊆ Cn.
(Hint: Consider the map X → Cn given by x 7→ (f1(x), f2(x), . . . , fn(x)).)

Special open sets. Let X be an affine variety and f ∈ O(X). Define the open
set Xf ⊆ X by

Xf := X \ VX(f) = {x ∈ X | f(x) 6= 0}.
An open set of this form is called a special open set.

Lemma 1.2. The special open sets of an affine variety X form a basis of the
topology.

Proof. If U ⊆ X is open and x ∈ U , then X \U is closed and does not contain
x. Thus, there is a regular function f ∈ O(X) vanishing on X \U such that f(x) 6= 0.
This implies x ∈ Xf ⊆ U . �

Given a special open set Xf ⊆ X we see that f(x) 6= 0 for all x ∈ Xf and so the
function 1

f
is well-defined on Xf .

Proposition 1.2. Denote by O(Xf) the algebra of functions on Xf generated by
1
f

and the restrictions h|Xf
of regular functions h on X:

O(Xf) := C[
1

f
, {h|Xf

| h ∈ O(X)}] = O(X)|Xf
[
1

f
].
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Then (Xf ,O(Xf)) is an affine variety and O(Xf )
∼→ O(X)[t]/(f · t− 1).

Proof. Let X = V(a) ⊆ Cn and define

X̃ := V(a, f · xn+1 − 1) ⊆ Cn+1.

It is easy to see that the projection pr : Cn+1 → Cn onto the first n coordinates
induces a bijective map X̃

∼→ Xf whose inverse ϕ : Xf
∼→ X̃ is given by

ϕ(x1, . . . , xn) = (x1, . . . , xn, f(x1, . . . , xn)−1).

The following commutative diagram now shows that ϕ∗(O(X̃)) is generated by
ϕ∗(xn+1) = 1

f
and the restrictions h|Xf

(h ∈ O(X)).

X̃ X̃
⊆−−−→

closed
Cn+1

ϕ

x≃
y

ypr

Xf
⊆−−−→

open
X

⊆−−−→
closed

Cn

This proves the first claim. For the second, we have to show that the canonical
homomorphism O(X)[t]/(f · t − 1) → O(X̃) is an isomorphism. In other words,
every function h =

∑m
i=0 hit

i ∈ O(X)[t] which vanishes on X̃ is divisible by f · t− 1.
Since f |X̃ is invertible we first obtain

∑
i hif

m−i = 0 which implies

h = h− tm
m∑

i=0

hif
m−i =

m−1∑

i=0

hit
i(1− fm−itm−i),

and the claim follows. �

Example 1.11. The group GLn(C) is a special open set of Mn(C), hence GLn(C)
is an affine variety with coordinate ring O(GLn(C)) = C[{xij | 1 ≤ i, j ≤ n}, 1

det
]. In

particular, C∗ := GL1 = C \ {0} is an affine variety with coordinate ring C[x, x−1].

Exercise 1.20. Let R be an arbitrary C-algebra. For any element s ∈ R define Rs :=
R[x]/(s · x− 1).

(1) Describe the kernel of the canonical homomorphism ι : R→ Rs.
(2) Prove the universal property: For any homomorphism ρ : R → A such that ρ(s)

is invertible in A there is a unique homomorphism ρ̄ : Rs → A such that ρ̄◦ ι = ρ.
(3) What happens if s is a zero divisor and what if s is invertible?

Decomposition into irreducible components. We start with a purely topo-
logical notion.

Definition 1.7. A topological space T is called irreducible if it cannot be decom-
posed in the form T = A∪B where A,B $ T are strict closed subsets. Equivalently,
every non-empty open subset is dense.

Lemma 1.3. Let X ⊆ Cn be a closed subset. Then the following are equivalent:

(i) X is irreducible.
(ii) I(X) is a prime ideal.
(iii) O(X) is a domain, i.e., has no zero-divisor.
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Proof. (i)⇒(ii): If I(X) is not prime we can find two polynomials f, h ∈
C[x1, . . . , xn] \ I(X) such that f · h ∈ I(X). This implies that X ⊆ V(f · h) =
V(f) ∪ V(h), but X is neither contained in V(f) nor in V(h). Thus X = (V(g) ∩
X) ∪ (V(h) ∩ X) is a decomposition into strict closed subsets, contradicting the
assumption.

(ii)⇒(iii): This is clear since O(X) = C[x1, . . . , xn]/I(X).
(iii)⇒(i): If X = A ∪ B is a decomposition into strict closed subsets there are

non-zero functions f, h ∈ O(X) such that f |A = 0 and h|B = 0. But then f · h
vanishes on all of X and so f · h = 0. This contradicts the assumption that O(X)
does not contain zero-divisor. �

Example 1.12. Let f ∈ C[x1, . . . , xn]. Then the hypersurface V(f) is irreducible
if and only if f is a power of an irreducible polynomial. This follows from Example 1.6
and the fact that the ideal (f) is prime if and only if f is irreducible. More generally,
if f = pr1

1 p
r2

2 · · ·prs
s is the primary decomposition, then

V(f) = V(p1) ∪ V(p2) ∪ · · · ∪ V(pn)

where each V(pi) is irreducible, and this decomposition is irredundant, i.e., no term
can be dropped.

Theorem 1.2. Every affine variety X is a finite union of irreducible closed sub-
sets Xi:

(2) X = X1 ∪X2 ∪ · · · ∪Xs.

If this decomposition is irredundant, then the Xi’s are the maximal irreducible subsets
of X and are therefore uniquely determined.

The unique irredundant decomposition of an affine variety X in the form (2) is
called irreducible decomposition and the Xi’s are called the irreducible components.

For the proof of the theorem above we first recall that a C-algebra R is called
Noetherian if the following equivalent conditions hold:

(i) Every ideal of R is finitely generated.
(ii) Every strictly ascending chain of ideals of R terminates.
(iii) Every non-empty set of ideals of R contains maximal elements.

(The easy proofs are left to the reader; for the equivalence of (ii) and (iii) one has to
use Zorn’s Lemma.)

The famous “Basissatz” of Hilbert implies that every finitely generated C-algebra
is Noetherian (see [Ar91, Chap. 12, Theorem 5.18]). In particular, this holds for
the coordinate ring O(X) of any affine variety X. Using the inclusion reversing
bijection between closed subsets of X and perfect ideals of O(X) (see Corollary 1.5
and Exercise 1.17) we get the following result.

Proposition 1.3. Let X be an affine variety. Then

(1) Every closed subset A ⊆ X is of the form VX(f1, f2, . . . , fr).
(2) Every strictly descending chain of closed subsets of X terminates.
(3) Every non-empty set of closed subsets of X contains minimal elements.

Remark 1.4. It is easy to see that for an arbitrary topological space T the
properties (2) and (3) from the previous proposition are equivalent. If they hold then
T is called Noetherian.
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Proof of Theorem 1.2. We first show that such a decomposition exists. Con-
sider the following set

M := {A ⊆ X | A closed and not a finite union of irreducible closed subsets}.
IfM 6= ∅ then it contains a minimal element A0. Since A0 is not irreducible, we can
find strict closed subset B,B′ ( A0 such that A0 = B ∪ B′. But then B,B′ /∈ M
and so both are finite unions of irreducible closed subsets. Hence A0 is a finite union
of irreducible closed subsets, too, contradicting the assumption.

To show the uniqueness let X = X1 ∪X2 ∪ · · · ∪Xs where all Xi are irreducible
closed subsets and assume that the decomposition is irredundant. Then, clearly,
every Xi is maximal. Let Y ⊆ X be a maximal irreducible closed subset. Then
Y = (Y ∩X1) ∪ (Y ∩X2) ∪ · · · ∪ (Y ∩Xs) and so Y = Y ∩Xj for some j. It follows
that Y ⊆ Xj and so Y = Xj because of maximality. �

Remark 1.5. The algebraic counterpart to the decomposition into irreducible
components is the following statement about radical ideals in finitely generated al-
gebras R: Every radical ideal a ⊆ R is a finite intersection of prime ideals:

a = p1 ∩ p2 ∩ · · · ∩ ps.

If this intersection is irredundant then the pi’s are the minimal prime ideals contain-
ing a. (The easy proof is left to the reader.)

Example 1.13. Consider the two hypersurfaces H1 := V(xy − z), H2 := V(xz −
y2) in C3 and their intersection X := H1 ∩H2. Then

X = V(y, z) ∪ C where C := {(t, t2, t3) | t ∈ C},
and this is the irreducible decomposition.

In fact, it is obvious that the x-axis V(y, z) is closed and irreducible and belongs
to X, and the same holds for the curve C (see Exercise 1.12). If (a, b, c) ∈ X \V(y, z)
then either b or c is 6= 0. But then b 6= 0 because ab = c. Hence a = cb−1 and so
b2 = ac = c2b−1 which implies that c2 = b3. Thus b = (cb−1)2 and c = (cb−1)3, i.e.
(a, b, c) ∈ C.

Another way to see this is by looking at the coordinate ring:

C[x, y, z]/(xy − z, xz − y2)
∼→ C[x, y]/(x2y − y2).

Now (x2y− y2) = y(x− y2) = (y)∩ (x− y2) and the ideals (y) and (x− y2) are obvi-
ously prime with residue class ring isomorphic to a polynomial ring in one variable.
This shows again that X has two irreducible components, both with coordinate ring
isomorphic to C[t].

Exercise 1.21. The closed subvariety X := V(x2 − yz, xz − x) ⊆ C3 has three irre-
ducible components. Describe the corresponding prime ideals in C[x, y, z].

Example 1.14. The group O2 := {A ∈ M2 | AAt = E} has two irreducible

components, namely SO2 := O2 ∩ SL2 and

[
0 1
1 0

]
·SO2, and the two components are

disjoint.
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In fact, the condition AAt = E for A =

[
a b
c d

]
implies that

[
a
b

]
= ±

[
d
−c

]
. Since

det

[
a b
−b a

]
= a2 + b2 we see that SO2 = {

[
a b
−b a

]
| a2 + b2 = 1} is irreducible as

well as

[
0 1
1 0

]
· SO2 = {

[
a b
b −a

]
| a2 + b2 = 1} and the claim follows immediately.

Exercise 1.22. Let G ⊆ GLn be a closed subgroup.

(1) The irreducible components of G are disjoint.
(2) The irreducible component of G containing E is a normal subgroup G0.
(3) The irreducible components are the cosets of G0.

Exercise 1.23. Let X =
⋃
Xi be the decomposition into irreducible components and

let Ui ⊆ Xi be open subsets. Then U :=
⋃
Ui is open in X. It is dense in X if and only if

all Ui are non-empty.

Rational functions and local rings. If X is an irreducible affine variety then
O(X) is a domain by Lemma 1.3. Therefore, we can form the field of fractions of
O(X) which is called the field of rational functions on X and will be denoted by
C(X). Clearly, if X = Cn then C(X) = C(x1, x2, . . . , xn), the rational function field.
An irreducible affine variety X is called rational if its field of rational functions C(X)
is isomorphic to a rational function field.

A rational function f ∈ C(X) can be regarded as a function “defined almost
everywhere” on X. In fact, we say that f is defined in x ∈ X if there are p, q ∈ O(X)
such that f = p

q
and q(x) 6= 0.

Exercise 1.24. If f ∈ C(C2) = C(x, y) is defined in C2 \ {(0, 0)} then f is regular.

Exercise 1.25. Let f be a rational function on the irreducible affine variety X and
denote by Def(f) ⊆ X the set of points where f is defined.

(1) The set Def(f) is open in X.
(2) If Def(f) = X then f is regular on X. (Hint: Look at the “ideal of denominators”

a := {p ∈ O(X) | p · f ∈ O(X)}.)

Example 1.15. Consider the irreducible plane curve C := V(y2 − x3) ⊆ C2 and
put x̄ := x|C and ȳ := y|C. Then the rational function f := ȳ

x̄
∈ C(C) is not defined

in (0, 0). The interesting point here is that f has a continuous extension to all of C
with value 0 at (0, 0), even in the C-topology.

Proof. There is an isomorphism O(C)
∼→ C[t2, t3] (see Example 1.8) which

maps x̄ to t2 and ȳ to t3, and so f = ȳ
x̄

is mapped to t. Since t /∈ C[t2, t3] the first
claim follows from Exercise 1.25(2) above. The second part is easy because the map
C→ C : t 7→ (t2, t3) is a homeomorphism even in the C-topology. �

Assume that X is irreducible and let x ∈ X. Define

OX,x := {r ∈ C(X) | f is defined in x}.
It is easy to see that OX,x is the localization of O(X) at the maximal ideal mx. (For
the definition of the localization of a ring at a prime ideal and, more generally, for the
construction of rings of fractions we refer to [Eis95, I.2.1].) This example motivates
the following definition.
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Definition 1.8. Let X be an affine variety and x ∈ X an arbitrary point. Then
the localization O(X)mx

of the coordinate ring O(X) at the maximal ideal in x is
called the local ring of X at x. It will be denoted by OX,x, its unique maximal ideal
by mX,x.

We will see later that the local ring of X at x completely determines X in a
neighborhood of x.

Exercise 1.26. If X is irreducible, then O(X) =
⋂

x∈X OX,x.

Exercise 1.27. Let X be an affine variety, x ∈ X a point and X ′ ⊆ X the union of
irreducible components of X passing through x. Then the restriction map induces a natural
isomorphism OX,x

∼→ OX′,x.

Exercise 1.28. Let R be an algebra and µ : R→ RS the canonical map r 7→ r
1 where

RS is the localization at a multiplicatively closed subset 1 ∈ S ⊆ R (0 /∈ S).

(1) If a ⊆ R is an ideal and aS := RS µ(a) ⊆ RS then

µ−1(µ(a)) = µ−1(aS) = {b ∈ R | sb ∈ a for some s ∈ S}.
Moreover, (R/a)S̄

∼→ RS/aS where S̄ is the image of S in R/a.
(Hint: For the second assertion use the universal property of the localization.)

(2) If m ⊆ R is a maximal ideal and S := R \m, then mS is the maximal ideal of RS

and the natural maps R/mk ∼→ RS/m
k
S are isomorphisms for all k ≥ 1.

(Hint: The image S̄ in R/mk consists of invertible elements.)

Exercise 1.29. Let p < q be positive integers with no common divisor and define
Cp,q := {(tp, tq) | t ∈ C} ⊆ C2. Then Cp,q is a closed irreducible plane curve which is
rational, i.e. C(Cp,q) ≃ C(t). Moreover, O(Cp,q) is a polynomial ring if and only if p = 1.

Exercise 1.30. Consider the elliptic curve E := V(y2−x(x2− 1)) ⊆ C2. Show that E
is not rational, i.e. that C(E) is not isomorphic to C(t). (Hint: If C(E) = C(t) then there
are rational functions f(t), h(t) which satisfy the equation f(t)2 = h(t)(h(t)2 − 1).)
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2. MORPHISMS

Morphisms and comorphisms. In the previous sections we have defined and
discussed the main objects of algebraic geometry, the affine varieties. Now we have
to introduce the “regular maps” between affine varieties which should be compatible
with the concept of regular functions.

Definition 2.1. Let X, Y be affine varieties. A map ϕ : X → Y is called regular
or a morphism if the pull-back of a regular function on Y is regular on X:

f ◦ ϕ ∈ O(X) for all f ∈ O(Y ).

Thus we obtain a homomorphism ϕ∗ : O(Y )→ O(X) of C-algebras given by ϕ∗(f) :=
f ◦ ϕ, which is called comorphism of ϕ.

A morphism ϕ is called an isomorphism if ϕ is bijective and the inverse map ϕ−1

is also a morphism. If, in addition, Y = X then ϕ us called an automorphism.

Exercise 2.1. Let g ∈ GLn be an invertible matrix. Then left multiplication A 7→ gA,
right multiplication A 7→ Ag and conjugation A 7→ gAg−1 are automorphisms of Mn.

Example 2.1. A map ϕ = (f1, f2, . . . , fm) : Cn → Cm is regular if and only if
the components fi are polynomials in C[x1, . . . , xn]. This is clear, since ϕ∗(yj) = fj

where y1, y2, . . . , ym are the coordinate functions on Cm.
More generally, let X be an affine variety and a ϕ = (f1, . . . , fm) : X → Cm a

map. Then ϕ is a morphism if and only if the components fj are regular functions
on X. (This is clear since fj = ϕ∗(yj).)

If a morphism ϕ = (f1, f2, . . . , fm) : Cn → Cm maps a closed subset X ⊆ Cn into
a closed subset Y ⊆ Cm then the induced map ϕ̄ : X → Y is clearly a morphism,
just by definition. This holds in a slightly more general setting, as claimed in the
next exercise.

Exercise 2.2. Let ϕ : X → Y be a morphism. If X ′ ⊆ X and Y ′ ⊆ Y are closed
subvarieties such that ϕ(X ′) ⊆ Y ′ then the induced map ϕ′ : X ′ → Y ′, x 7→ ϕ(x), is again
a morphism. The same holds if X ′ and Y ′ are special open sets.

These examples have the following converse which will be useful in many appli-
cations.

Lemma 2.1. Let X ⊆ Cn and Y ⊆ Cm be closed subvarieties and let ϕ : X → Y
be a morphism. Then there are polynomials f1, . . . , fm ∈ C[x1, . . . , xn] such that the
following diagram commutes:

Cn Φ:=(f1,...,fm)−−−−−−−−→ Cm

x⊆
x⊆

X
ϕ−−−→ Y

Proof. Let y1, . . . , ym denote the coordinate functions on Cm. Put ȳj := yj|Y
and define f̄j := ϕ∗(ȳj) ∈ O(X), j = 1, . . . , m. Since O(X) = C[x1, . . . , xn]/I(X) we
can find representatives fj ∈ C[x1, . . . , xn], i.e. f̄j = fj + I(X). We claim that the
morphism Φ := (f1, . . . , fm) : Cn → Cm satisfies the requirements of the lemma. In
fact, let a ∈ X ⊆ Cn and set ϕ(a) =: b = (b1, . . . , bm). Then

bj = yj(b) = ȳj(b) = ȳj(ϕ(a)) = ϕ∗(ȳj)(a) = f̄j(a) = fj(a),



20 A. BASICS FROM ALGEBRAIC GEOMETRY

and so ϕ(a) = Φ(a). �

Example 2.2. The morphism t 7→ (t2, t3) from C → C2 induces a bijective
morphism C→ C := V(y2 − x3) which is not an isomorphism (see Example 1.8).

Similarly there is a morphism ψ : C→ D := V(y2 − x2 − x3) given by t 7→ (t2 −
1, t(t2− 1)). This time ψ is surjective, but not injective since ψ(1) = ψ(−1) = (0, 0).

Exercise 2.3. (1) Every morphism C→ C∗ is constant.
(2) Describe all morphisms C∗ → C∗.
(3) Every non-constant morphism C→ C is surjective.
(4) An injective morphism C → C is an isomorphism, and the same holds for mor-

phisms C∗ → C∗.

Exercise 2.4. The graph of a morphism. Let ϕ : Cn → Cm be a morphism and
define

Γϕ := {(a, ϕ(a)) ∈ Cn+m}.
which is called the graph of the morphism ϕ. Show that Γϕ is closed in Cn+m, that the pro-
jection prCn : Cn+m → Cn induces an isomorphism p : Γϕ

∼→ Cn and that ϕ = prCm ◦p−1.

Proposition 2.1. Let X, Y be affine varieties. The map ϕ 7→ ϕ∗ induces a
bijection

Mor(X, Y )
∼→ AlgC(O(Y ),O(X)).

between the morphisms from X to Y and the algebra homomorphism from O(Y ) to
O(X).

Remark 2.1. The mathematical term used in the situation above is that of a con-
travariant functor from the category of affine varieties and morphisms to the category
of finitely generated reduced C-algebras and homomorphism, given by X 7→ O(X)
and ϕ 7→ ϕ∗. In particular, we have ϕ∗(IdX) = IdO(X) and (ϕ◦ψ)∗ = ψ∗◦ϕ∗ whenever
the expressions make sense. The proposition above then says that this functor is an
equivalence, the inverse functor being R 7→ specR defined in Proposition 1.1. It will
be helpful to keep this “functorial point of view” in mind although it will not play
an important role in the following.

Proof. (a) If ϕ∗1 = ϕ∗2 then, for all f ∈ O(Y ) and all x ∈ X, we get

f(ϕ1(x)) = ϕ∗1(f)(x) = ϕ∗2(f)(x) = f(ϕ2(x)).

Hence, ϕ1(x) = ϕ2(x) since the regular functions separate the points (Remark 1.3).
(b) Let ρ : O(Y ) → O(X) be an algebra homomorphism. We want to construct

a morphism ϕ : X → Y such that ϕ∗ = ρ. For this we can assume that Y ⊆ Cm is a
closed subvariety. Let ȳj := yj|Y be the restrictions of the coordinate functions on Cm

and define fj := ρ(ȳj) ∈ O(X). Then we get a morphism Φ := (f1, . . . , fm) : X → Cm

such that Φ∗(yj) = fj (see Example 2.1). If h = h(y1, . . . , ym) ∈ I(Y ) then

h(f1, . . . , fm) = h(ρ(ȳ1), . . . , ρ(ȳm)) = ρ(h(ȳ1, . . . , ȳm)) = 0

because h(ȳ1, . . . , ȳm) = h|Y = 0 by assumption. Therefore h(Φ(a)) = 0 for all
a ∈ X and all h ∈ I(Y ) and so Φ(X) ⊆ Y . This shows that Φ induces a morphism
ϕ : X → Y such that ϕ∗(ȳj) = Φ∗(yj) = fj = ρ(ȳj), and so ϕ∗ = ρ. �
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Example 2.3. Let X be an affine variety, V a finite dimensional vector space and
ϕ : X → V a morphism. The linear functions on V form a subspace V ∗ ⊆ O(V ) which
generates O(X). Therefore, the induced linear map ϕ∗|V ∗ : V ∗ → O(X) completely
determines ϕ∗, and we get a bijection

Mor(X, V )
∼→ Hom(V ∗,O(X)) ϕ 7→ ϕ∗|V ∗ .

The second assertion follows from Proposition 2.1 and the well-known “Substi-
tution Principle” for polynomials rings (see [Ar91, Chap. 10, Proposition 3.4]).

Exercise 2.5. Show that for an affine variety X the morphisms X → C∗ correspond
bijectively to the invertible functions on X.

Exercise 2.6. Let X,Y be affine varieties and ϕ : X → Y , ψ : Y → X morphisms such
that ψ ◦ ϕ = IdX . Then ϕ(X) ⊆ Y is closed and ϕ : X

∼→ ϕ(X) is an isomorphism.

Images, pre-images and fibers. It is easy to see that morphisms are contin-
uous. In fact, the Zariski topology is the finest topology such that regular functions
are continuous, and since morphisms are defined by the condition that the pull-back
of a regular function is again regular, it immediately follows that morphisms are con-
tinuous. We will get this result again from the next proposition where we describe
images and preimages of closed subsets under morphisms.

Proposition 2.2. Let ϕ : X → Y be a morphism of affine varieties.

(1) If B := VY (S) ⊆ Y is the closed subset defined by S ⊆ O(Y ) then ϕ−1(B) =
VX(ϕ∗(S)). In particular, ϕ is continuous.

(2) Let A := V(a) ⊆ X be the closed subset defined by the ideal a ⊆ O(X). Then
the closure of the image ϕ(A) is defined by ϕ∗−1(a) ⊆ O(Y ):

ϕ(A) = VY (ϕ∗−1(a)).

Proof. For x ∈ X we have

x ∈ ϕ−1(B) ⇐⇒ ϕ(x) ∈ B ⇐⇒ f(ϕ(x)) = 0 for all f ∈ S,
and this is equivalent to ϕ∗(f)(x) = 0 for all f ∈ S, hence to x ∈ VX(ϕ∗(S)), proving
the first claim.

For the second claim, let f ∈ O(Y ). Then

f |ϕ(A) = 0 ⇐⇒ f |ϕ(A) = 0 ⇔ ϕ∗(f)|A = 0 ⇐⇒ ϕ∗(f) ∈ I(A) =
√

a

The latter is equivalent to the condition that a power of f belongs to ϕ∗−1(a). Thus

the zero set of ϕ∗−1(a) equals the closed set ϕ(A). �

Exercise 2.7. If ϕ1, ϕ2 : X → Y are two morphisms, then the “kernel of coincidence”

ker(ϕ1, ϕ2) := {x ∈ X | ϕ1(x) = ϕ2(x)} ⊆ X
is closed in X

Exercise 2.8. Let ϕ : X → Y be a morphism of affine varieties.

(1) If X is irreducible, then ϕ(X) is irreducible.
(2) Every irreducible component of X is mapped into an irreducible component of Y .

Exercise 2.9. Let ϕ : X
∼→ X be an automorphism and Y ⊆ X a closed subset such

that ϕ(Y ) ⊆ Y . Then ϕ(Y ) = Y and ϕ|Y : Y → Y is an automorphism, too.
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A special case of pre-images are the fibers of a morphism ϕ : X → Y . Let y ∈ Y .
Then

ϕ−1(y) := {x ∈ X | ϕ(x) = y}
is called the fiber of y ∈ Y . By the proposition above, the fiber of y is a closed
subvariety of X defined by ϕ∗(my):

ϕ−1(y) = VX(ϕ∗(my)).

Of course, the fiber of a point y ∈ Y can be empty. In algebraic terms this means
that ϕ∗(my) generates the unit ideal (1) = O(X).

Exercise 2.10. Let ϕ : X → Y be a morphism of affine varieties. If U ⊆ Y is a special
open set then so is ϕ−1(U).

Exercise 2.11. Describe the fibers of the morphism ϕ : M2 → M2, A 7→ A2. (Hint:
Use the fact that ϕ(gAg−1) = gϕ(A)g−1 for g ∈ GL2.)

Definition 2.2. Let ϕ : X → Y be a morphism of affine varieties and consider
the fiber F := ϕ−1(y) of a point y ∈ ϕ(X) ⊆ Y . Then the fiber F is called reduced if
ϕ∗(my) generates a perfect ideal in O(X), i.e. if

√
O(X) · ϕ∗(my) = O(X) · ϕ∗(my).

The fiber F is called reduced in the point x ∈ F if this holds in the local ring OX,x,
i.e. √

OX,x · ϕ∗(my) = OX,x · ϕ∗(my).

Example 2.4. Look again at the morphism ϕ : C → C := V(y2 − x3) ⊆ C2,

t 7→ (t2, t3). Then ϕ∗ is the injection O(C)
∼→ C[t2, t3] →֒ C[t] and so

C[t] · ϕ∗(m(0,0)) = (t2, t3) (
√

(t2, t3) = (t).

Thus the zero fiber ϕ−1(0) is not reduced. On the other hand, all other fibers are
reduced since ϕ induces an isomorphism of C∗ with the special open set C\{(0, 0)}(=
Cx̄ = Cȳ), where the inverse map is given by (a, b) 7→ b

a
.

Exercise 2.12. Show that all fibers of the morphism ψ : C→ D := V(y2 − x2 − x3) ⊆
C2, t 7→ (t2 − 1, t(t2 − 1)), are reduced and that ψ induces an isomorphism C \ {1,−1} ∼→
D \ {(0, 0)}.

Exercise 2.13. Consider the following morphism ϕ : SL2 → C3, ϕ(

[
a b
c d

]
) := (ab, ad, cd).

(1) The image of ϕ is a closed hypersurface H ⊆ C3.

(2) The fibers of ϕ are the left cosets of the subgroup T := {
[
t
t−1

]
| t ∈ C∗}.

(3) All fibers are reduced.

(Hint: Show that the left multiplication with some g ∈ SL2 induces an automorphism λg

of H and isomorphisms ϕ−1(y)
∼→ ϕ−1(λg(y)) for all y ∈ H. This implies that it suffices to

study just one fiber, e.g. ϕ−1(ϕ(E)).)

Exercise 2.14. Consider the morphism ϕ : C2 → C2 given by ϕ(x, y) := (x, xy).

(1) ϕ(C2) = C2 \ {(0, y) | y 6= 0} which is not locally closed.
(2) What happens with the lines parallel to the x-axis or parallel to the y-axis?
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(3) ϕ−1(0) = y-axis. Is this fiber reduced?

(4) ϕ induces an isomorphism C2 \ y-axis
∼→ C2 \ y-axis

Dominant morphisms. Let ϕ : X → Y be a morphism of affine varieties, x a
point of X and y := ϕ(x) its image in Y . Then ϕ∗(my) ⊆ mx, and so ϕ∗ induces a
local homomorphism

ϕ∗x : OY,y → OX,x.

(A homomorphism between local rings is called local if it maps the maximal ideal
into the maximal ideal.)

The next proposition tells us that, in a neighborhood of a point x ∈ X, a mor-
phism ϕ is uniquely determined by the local homomorphism ϕ∗x.

Proposition 2.3. (1) If ϕ, ψ : X → Y are two morphisms such that ϕ(x) =
ψ(x) and ϕ∗x = ψ∗x for some x ∈ X, then ϕ and ψ coincide on every irre-
ducible component of X passing through x.

(2) If x ∈ X, y ∈ Y and if ρ : OY,y
∼→ OX,x is an isomorphism, then there exist

special open sets X ′ ⊆ X and Y ′ ⊆ Y containing x and y, respectively, and
an isomorphism ψ : X ′

∼→ Y ′ such that ψ∗x = ρ.

Proof. (1) Let R be a finitely generated reduced C-algebra and m ⊆ R a max-
imal ideal. The canonical map µ : R → Rm is injective if and only if m contains all
minimal prime ideals of R. (In fact, ker µ = {r ∈ R | sr = 0 for some s ∈ R \m}.)

Denote by X̄ ⊆ X the union of irreducible components passing through x and by
Ȳ ⊆ Y the union of irreducible components passing through ϕ(x). Then ϕ(X̄) ⊆ Ȳ ,
because the image of an irreducible component of X is contained in an irreducible
component of Y (see Exercise 2.8). Thus we obtain a morphism ϕ̄ : X̄ → Ȳ with
the following commutative diagram of C-algebras and homomorphisms which shows
that ϕ̄ is completely determined by ϕ∗x:

O(Y ) −−−→ O(Ȳ )
⊆−−−→ OȲ ,ϕ(x) = OY,ϕ(x)yϕ∗

yϕ̄∗

yϕ∗

x

O(X) −−−→ O(X̄)
⊆−−−→ OX̄,x = OX,x

(2) We can assume that all irreducible components of X pass through x and all
irreducible components of Y pass through y. Then

O(Y ) ⊆ OY,y
∼→ OX,x ⊇ O(X).

Let h1, . . . , hm ∈ O(Y ) be a set of generators and put fj := ρ(hj). Then we can find
an element q ∈ O(X) \ mx such that fj ∈ O(X)q for all j, i.e., ρ(O(Y )) ⊆ O(X)q.
Now q = ρ( r

s
) where r, s ∈ O(Y ), s /∈ my and so h := ρ(s)q = ρ(r) /∈ mx. But this

implies that ρ(O(Y )s) = O(X)h. Hence, there is an isomorphism ψ : Xh
∼→ Ys with

the required properties. �

Definition 2.3. Let X, Y be irreducible affine varieties. A morphism ϕ : X → Y
is called dominant if the image is dense in Y , i.e. ϕ(X) = Y . This is equivalent to
the condition that ϕ∗ : O(Y )→ O(X) is injective (see Proposition 2.2(2)).

It follows that every dominant morphism ϕ : X → Y induces a finitely generated
field extension ϕ∗ : C(Y ) →֒ C(X). If this is a finite field extension of degree d :=
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[C(X) : C(Y )] we will say that ϕ is a morphism of finite degree d. If d = 1, i.e. if ϕ∗

induces an isomorphism C(Y )
∼→ C(X) then ϕ is called a birational morphism.

Exercise 2.15. Let ϕ : C→ C be a non-constant morphism. Then ϕ has finite degree
d, and there is a non-empty open set U ⊆ C such that #ϕ−1(x) = d for all x ∈ U .

There is a similar result as the second part of Proposition 2.3 saying that affine
varieties with isomorphic function fields are locally isomorphic. The proof is similar
as the proof above and will be left to the reader.

Proposition 2.4. Let X, Y be irreducible affine varieties and let ρ : C(Y )
∼→

C(X) be an isomorphism. Then there exist special open sets X ′ ⊆ X and Y ′ ⊆ Y

and an isomorphism ψ : X ′
∼→ Y ′ such that ρ = ψ∗.

Products. If f is a function on X and h a function on Y then we denote by f ·h
the C-valued function on the product X × Y defined by (f · h)(x, y) := f(x) · h(y).

Proposition 2.5. The product X × Y of two affine varieties together with the
algebra

O(X × Y ) := C[f · h | f ∈ O(X), h ∈ O(Y )]

of C-valued functions is an affine variety. Moreover, the canonical homomorphism
O(X)⊗O(Y )→ O(X × Y ), f ⊗ h 7→ f · h, is an isomorphism.

Proof. Let X ⊆ Cn and Y ⊆ Cm be closed subvarieties. Then X × Y ⊆ Cn+m

is closed, namely equal to the zero set V(I(X) ∪ I(Y )). So it remains to show that
O(X × Y ) = C[x1, . . . , xn, y1, . . . , ym]/I(X × Y ) is generated by the products f · h
and that f · h ∈ O(X × Y ) for f ∈ O(X) and h ∈ O(Y ). But this is clear since
x̄i = xi|X×Y = xi|X · 1 and ȳj = yj|X×Y = 1 · yj|Y , and f |X · h|Y = (fh)|X×Y for
f ∈ C[x1, . . . , xn] and h ∈ C[y1, . . . , ym].

For the last claim, we only have to show that the map O(X)⊗O(Y )→ O(X×Y ),
f ⊗ h 7→ f · h, is injective. For this, let (fi | i ∈ I) be a basis of O(Y ). Then every
element s ∈ O(X) ⊗ O(Y ) can be uniquely written as s =

∑
finite si ⊗ fi. If s is in

the kernel of the map, then
∑
si(x)fi(y) = 0 for all (x, y) ∈ X × Y and so, for every

fixed x ∈ X,
∑
si(x)fi is the zero function on Y . This implies that si(x) = 0 for all

x ∈ X and so si = 0 for all i. Thus s = 0 proving the claim. �

Example 2.5. (1) The two projections prX : X × Y → X, (x, y) 7→ x, and
prY : X × Y → Y , (x, y) 7→ y, are morphisms with comorphisms pr∗X(f) =
f · 1 and pr∗Y (h) = 1 · h.

(2) If ϕ : X → X ′ and ψ : Y → Y ′ are morphisms, then so is

ϕ× ψ : X × Y → X ′ × Y ′, (x, y) 7→ (ϕ(x), ψ(y)).

(3) Diagonal: ∆: X → X ×X, x 7→ (x, x) is a morphism, ∆(X) ⊆ X ×X is a

closed subset defined by the set {f · 1− 1 · f | f ∈ O(X)}, and X
∼→ ∆(X)

is an isomorphism whose inverse is induced by the projection prX .
(4) Graph: Let ϕ : X → Y be a morphism. Then

Γ(ϕ) := {(x, ϕ(x)) | x ∈ X} ⊆ X × Y
is a closed subset. Moreover, the projection prX induces an isomorphism
p : Γ(ϕ)

∼→ X and ϕ = prY ◦p−1.
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(5) Matrix multiplication: The composition of linear maps

µ : Hom(U, V )×Hom(V,W )→ Hom(U,W ), (A,B) 7→ B ◦ A
is a morphism. Choosing coordinates we find µ∗(zij) =

∑
k yikxkj.

Exercise 2.16. Show that the ideal of the diagonal ∆(X) ⊆ X × X is generated by
the function f · 1− 1 · f , f ∈ O(X) (see Example 2.5(3)).

Lemma 2.2. The projection prX : X × Y → X is an open morphism, i.e. the
image of an open set under prX is open.

Proof. It suffices to show that the image of a special open set U := (X×Y )g is
open. Writing g =

∑
fi · hi with linearly independent hi one gets prX(U) =

⋃
iXfi

and the claim follows. �

Proposition 2.6. If X, Y are irreducible affine varieties then X × Y is irre-
ducible.

Proof. Assume that X × Y = A ∪ B with closed subsets A,B. Define

XA := {x ∈ X | {x} × Y ⊆ A} and XB := {x ∈ X | {x} × Y ⊆ B}
Since Y is irreducible we see that X = XA ∪XB. Now we claim that XA and XB are
both closed in X and so one of them equals X, say XA = X. But then A = X × Y
and we are done. To prove the claim we remark that X \XA = prX(X×Y \A) which
is open by Lemma 2.2 above. �

Corollary 2.1. If X =
⋃

iXi and Y =
⋃

j Yj are the irreducible decompositions

of X and Y , then X×Y =
⋃

i,j Xi×Yj is the irreducible decomposition of the product.
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3. DIMENSION

Definitions. If k is a field and A a k-algebra then a set a1, a2, . . . , an ∈ A of
elements from A are called algebraically independent over k if they do not satisfy
a non-trivial polynomial equation F (a1, a2, . . . , an) = 0 where F ∈ k[x1, . . . , xn].
Equivalently, the canonical homomorphism of k-algebras k[x1, . . . , xn] → A defined
by xi 7→ ai is injective.

In order to define the dimension of a variety we will need the concept of tran-
scendence degree tdegk K of a field extension K/k. It is defined to be the maximal
number of algebraically independent elements in K. We refer to [Ar91, Chap. 13,
Sect. 8] for the basic properties of transcendental extensions.

Definition 3.1. Let X be an irreducible affine variety and C(X) its field of
rational functions. Then the dimension of X is defined by

dimX := tdegC C(X).

If X is reducible and X =
⋃
Xi the irreducible decomposition (see 1) then

dimX := max
i

dimXi.

Finally, we define the local dimension of X in a point x ∈ X =
⋃
Xi to be

dimxX := max
Xi∋x

dimXi.

Exercise 3.1. Let X be an affine variety.

(1) dimX is the maximal number of algebraically independent elements in O(X).
(2) Assume that O(X) is generated by r elements. Then dimX ≤ r, and if dimX = r

then X ≃ Cr.

Exercise 3.2. The function x 7→ dimxX is upper semi-continuous on X. (This means
that for all α ∈ R the set {x ∈ X | dimxX < α} is open in X.)

Examples 3.1. (1) We have dim Cn = n. More generally, if V is a complex
vector space of dimension n then dimX = n.

(2) If U ⊆ X is a special open subset which is dense in X, then dimU = dimX.
(3) For affine varieties X, Y we have dimX × Y = dimX + dimY .

Lemma 3.1. Let f ∈ C[x1, . . . , xn] be a non-constant polynomial and X :=
V(f) ⊆ Cn its zero set. Then dimX = n− 1.

Proof. We can assume that f is irreducible and that the variable xn occurs
in f . Denote by x̄i ∈ O(X) = C[x1, . . . , xn]/(f) the restrictions of the coordinate
functions xi. Then C(X) = C(x̄1, x̄2, . . . , x̄n). Since f(x̄1, x̄2, . . . , x̄n) = 0 we see that
x̄n ∈ C(X) is algebraic over the subfield C(x̄1, x̄2, . . . , x̄n−1). Therefore, tdeg C(X) =
tdeg C(x̄1, x̄2, . . . , x̄n−1) ≤ n− 1. On the other hand, the composition

C[x1, . . . , xn−1] →֒ C[x1, . . . , xn]
res→ O(X)

is injective, since the kernel is the intersection (f) ∩ C[x1, . . . , xn−1] which is zero.
Thus, tdeg C(X) ≥ n− 1, and the claim follows. �

The first part of the proof above, namely that dimV(f) < n = dim Cn has the
following generalization.
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Lemma 3.2. If X is irreducible and Y ( X a proper closed subset then we have
dimY < dimX.

Proof. We can assume that Y is irreducible. If h1, . . . , hm ∈ O(Y ) are alge-

braically independent where m = dimY , and hi = h̃i|Y for h̃1, . . . , h̃m ∈ O(X) then

h̃1, . . . , h̃m are algebraically independent, too, and so dimX ≥ dim Y . If dim Y =
dimX then every f ∈ O(X) is algebraic over C(h̃1, . . . , h̃m). Choose f ∈ O(X) in
the kernel of the restriction map, i.e. f |Y = 0. Then f satisfies an equation of the
form

fk + p1f
k−1 + · · ·+ pk−1f + pk = 0

where pj ∈ C(h̃1, . . . , h̃m) and k is minimal. Multiplying with a suitable q ∈ C[h̃1, . . . , h̃m]

we can assume that pj ∈ C[h̃1, . . . , h̃m]. But this implies that pk|Y = 0. Thus pk = 0
and we end up with a contradiction. �

Example 3.2. We have dimX = 0 if and only if X is finite, and this is equivalent
to dimCO(X) < ∞. (This is clear: If X is irreducible of dimension 0 then C(X) is
algebraic over C and so C = O(X) = C(X), and the claim follows.)

Exercise 3.3. Let U ⊆ X be a dense open set. Then dimX \ U < dimX.

Lemma 3.3. Let X be an irreducible affine variety of dimension n. Then there is
a special open set U ⊆ X which is isomorphic to a special open set of a hypersurface
V(h) ⊆ Cn+1.

Proof. The field of rational functions C(X) has the form

C(X) = C(x1, . . . , xn)[f ]

where f satisfies a minimal equation: fm +p1f
m−1 + · · ·+pm = 0, pj ∈ C(x1, . . . , xn).

Multiplying with a suitable polynomial C[x1, . . . , xn] we can assume that all pj belong
to C[x1, . . . , xn]. Then the polynomial h := ym + p1y

n−1 + · · ·+ pm ∈ C[x1, . . . , xn, y]
is irreducible and defines a hypersurface H := V(h) ⊆ Cn+1 whose field of rational
functions C(H) is isomorphic to C(X) by construction. Now the claim follows from
Proposition 2.4. �

Finite morphisms. Finite morphisms will play an important role in the follow-
ing. In particular, they will help us to “compare” an arbitrary affine variety X with
an affine space Cn of the same dimension by using the famous Normalization Lemma
of Noether.

Definition 3.2. Let A ⊆ B be two rings. We say that B is finite over A if B is
a finite A-module, i.e.there are b1, . . . , bs ∈ B such that B =

∑
j Abj .

A morphism ϕ : X → Y between two affine varieties is called finite if O(X) is
finite over ϕ∗(O(Y )).

If A ⊆ B ⊆ C are rings such that B is finite over A and C is finite over B, then C
is finite over A. In particular, if ϕ : X → Y and ψ : Y → Z are finite morphisms then
the composition ψ ◦ϕ : X → Z is finite, too. Another useful remark is the following:
If ϕ : X → Y is finite and X ′ ⊆ X, Y ′ ⊆ Y closed subsets such that ϕ(X ′) ⊆ Y ′

then the induced morphism ϕ′ : X ′ → Y ′ is also finite.
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Example 3.3. Typical examples of finite morphisms are the ones given in Exam-
ple 2.2, namely ϕ : C→ C = V(y2−x3) ⊆ C2 and ψ : C→ D = V(y2−x2−x3) ⊆ C2.
In both cases, the morphisms are the so-called normalizations, a concept which we
will discuss later.

On the other hand, the inclusion of a special open set Xf →֒ X is not finite if f
is neither invertible nor zero.

Exercise 3.4. Every non-constant morphism ϕ : C → C is finite, and the same holds
for the non-constant morphisms ψ : C∗ → C∗.

The basic geometric property of a finite morphism is given in the next proposition.

Proposition 3.1. Let ϕ : X → Y be a finite morphism. Then ϕ is closed and
has finite fibers.

Proof. If y ∈ Y then ϕ−1(y) = VX(ϕ∗(my)) (see 2). If ϕ−1(y) 6= ∅ then the
induced morphism ϕ−1(y) → {y} is finite, too, and so O(ϕ−1(y)) is a finite dimen-
sional C-algebra. Thus, the fiber ϕ−1(y) is finite (Example 3.2) proving the second
claim.

For the first claim it suffices to show that ϕ(X) = ϕ(X). Hence we can as-

sume that ϕ(X) = Y , i.e. that ϕ∗ : O(Y ) → O(X) is injective. If ϕ−1(y) = ∅ then
O(X)my = O(X). (We identify my with its image ϕ∗(my).) The Lemma of Nakayama
(see the following Lemma 3.4) now implies that (1 + a)O(X) = 0 for some a ∈ my

which is a contradiction since 1 + a 6= 0. �

Lemma 3.4 (Lemma of Nakayama). Let R be a ring, a ⊆ R an ideal and M a
finitely generated R-module. If aM = M then there is an element a ∈ a such that
(1 + a)M = 0. In particular, if M is torsionfree and a 6= R then M = 0.

Proof. Let M =
∑k

j=1Rmj . Then mi =
∑

j aijmj for all i where aij ∈ a. If A

denotes the k × k-matrix (aij)i,j and m the column vector (m1, . . . , mk)
t this means

that m = A ·m. Thus (E −A)m = 0, and so det(E − A)mj = 0 for all j. But

det(E − A) = det




1− a11 −a12 · · ·
−a21 1− a22 · · ·

...
. . .


 = 1 + a where a ∈ a.

and the claim follows. �

Exercise 3.5. Let X be an affine variety and x ∈ X. Assume that f1, . . . , fr ∈ mx

generate the ideal mx modulo m2
x, i.e., mx = (f1, . . . , fr) + m2

x. Then {x} is an irreducible
component of VX(f1, . . . , fr).
(Hint: If C ⊆ VX(f1, . . . , fr) is an irreducible component containing x and m ⊆ O(C) the
maximal ideal of x then m2 = m. Hence m = 0 by the Lemma of Nakayama above.)

Exercise 3.6. Let ϕ : X → Y be a finite surjective morphism. Then dimX = dimY .

Exercise 3.7. LetX be an affine variety andX =
⋃

iXi the irreducible decomposition.
A morphism ϕ : X → Y is finite if and only if ϕ|Xi

: Xi → Y is finite for all i.

The following easy lemma will be very useful in sequel.
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Lemma 3.5. Let A ⊆ B be rings and b ∈ B. Assume that b satisfies an equation
of the form

bm + a1b
m−1 + a2b

m−2 + · · ·+ am = 0

where a1, a2, . . . , am ∈ A. Then the subring A[b] ⊆ B is finite over A.

Proof. It follows from the equation satisfied by b that for N ≥ m we have

(3) bN = −a1b
N−1 − a2b

N−2 − · · · − amb
N−m,

and so, by induction, that A[b] =
∑m−1

i=0 Abi. �

The next result is usually called the “Normalization Lemma”. It is due to Emmy

Noether, but was first formulated, in a special case, by David Hilbert.

Theorem 3.1 (Noether’s Normalization Lemma). Let K be an infinite field and
A a finitely generated K-algebra. Then there are algebraically independent elements
a1, . . . , an ∈ A such that A is finite over K[a1, . . . , an]

Proof. We proceed by induction on the number m of generators of A as a K-
algebra. If m = 0 then A = K and there is nothing to prove. If A = K[b1, . . . , bm]
and if b1, . . . , bm are algebraically independent, we are done, too. So let’s assume that
F (b1, . . . , bm) = 0 where F ∈ K[x1, . . . , xm] is a non-zero polynomial. We can also
assume that xm occurs in F . Write

F =
∑

r1,r2,...,rm

αr1,r2,...,rm
xr1

1 x
r2

2 · · ·xrm

m

and put r := max{r1 + r2 + · · ·+ rm | αr1,r2,...,rm
6= 0}. Substituting xj = x′j + γjxm

for j = 1, . . . , m− 1 and we find

(4) F = (
∑

r1+r2+···+rm=r

αr1,...,rm
γr1

1 · · ·γrm−1

m−1 ) xr
m +H(x′1, . . . , x

′
m−1, xm)

where xm occurs in H with an exponent < r. Since K is infinite we can find
γ1, . . . , γm−1 ∈ K such that

∑
r1+···+rm=r αr1,...,rm

γr1

1 · · ·γrm−1

m−1 6= 0. Setting b′j :=
bj − γjbm for j = 1, . . . , m − 1 we have A = K[b′1, b

′
2, . . . , b

′
m−1, bm]. Now equa-

tion (4) implies that bm satisfies an equation of the form (3), hence A is finite over
K[b′1, . . . , b

′
m−1] by Lemma 3.5, and the claim follows by induction. �

Remark 3.1. The proof above shows the following. If A = K[b1, . . . , bm] then
there is a number n ≤ m and n linear combinations ai :=

∑
j γijbj ∈ A such that

a1, . . . , an are algebraically independent overK and thatA is finite overK[a1, . . . , am].

A first consequence is the following result.

Proposition 3.2. Let X is an affine variety of dimension n. Then there is a
finite surjective morphism ϕ : X → Cn.

Proof. It follows from the Normalization Lemma (Theorem 3.1) that there exist
f1, . . . , fn ∈ O(X) such that O(X) is finite over the subring C[f1, . . . , fn]. It follows
that dimX = n (see Exercise 3.1) and that the morphism ϕ = (f1, . . . , fn) : X → Cn

is finite and surjective (Proposition 3.1). �

This result can be improved, using Remark 3.1 above.
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Proposition 3.3. Let X ⊆ Cm be a closed subvariety of dimension n ≤ m.
Then there is a linear projection λ : Cm → Cn such that λ|X : X → Cn is finite and
surjective.

In fact, more is true: There is an open dense set U ⊆ Hom(Cm,Cn) such that the
proposition above holds for any λ ∈ U . We will not give a proof here since it does
not follow immediately from our previous results.

Exercise 3.8. Let f1, f2, . . . , fm ∈ C[x1, . . . , xn] be non-constant homogeneous poly-
nomials and put A := C[f1, f2, . . . , fm]. Then the following statements are equivalent:

(i) C[x1, . . . , xn]/(f1, f2, . . . , fm) is a finite dimensional algebra;
(ii) There is a k ∈ N such that (x1, x2, . . . , xn)k ⊆ (f1, f2, . . . , fm);
(ii) C[x1, . . . , xn] is finite over A.

(Remark: The fact, that the fi’s are homogeneous is essential!)

Exercise 3.9. Assume that the morphism ϕ : Cn → Cm is given by homogeneous
polynomials f1, · · · , fm. If ϕ−1(0) is finite then ϕ−1(0) = {0} and ϕ is a finite morphism.
(Hint: This follows immediately from the previous exercise.)

Exercise 3.10. Let X ⊆ Cn be cone and λ : Cn → Cm a linear map. If X∩kerλ = {0}
then λ|X : X → Cm is finite. Moreover, the set of linear maps λ : Cn → Cm such that λ|X
is finite is open in Hom(Cn,Cm).

Krull’s principal ideal theorem. We have seen in Lemma 3.1 that the dimen-
sion of a hypersurface V(f) ⊆ Cn is equal to n− 1, i.e. codimCn V(f) = 1 where the
codimension of a closed subvariety Y ⊆ X is defined by codimX Y := dimX−dim Y .
We want to generalize this to arbitrary affine varieties X. First we prove a converse
of Lemma 3.5.

Lemma 3.6. Let A ⊆ B be rings. Assume that A is Noetherian and that B is
finite over A. Then every b ∈ B satisfies an equation of the form

bm + a1b
m−1 + a2b

m−2 + · · ·+ am = 0

where a1, a2, . . . , am ∈ A.

Proof. Since A is Noetherian the subalgebra A[b] ⊆ B is finite over A. There-
fore, the sequence A ⊆ A + Ab ⊆ A + Ab + Ab2 ⊆ · · · ⊆ A + Ab + · · ·+ Abk ⊆ · · ·
becomes stationary. Hence, there is a m ≥ 1 such that bm ∈ A+Ab+· · ·+Abm−1. �

Exercise 3.11. Let r ∈ C(x1, . . . , xn) satisfy an equation of the form

rm + p1r
m−1 + · · ·+ pm = 0 where pj ∈ C[x1, . . . , xn].

Then r ∈ C[x1, . . . , xn]. In particular, if A ⊆ C(a1, . . . , an) is a subalgebra which is finite
over C[a1, . . . , an] then A = C[a1, . . . , an].

Lemma 3.7. Let A be C-algebra without zero divisors and K its field of fractions.
Let a1, . . . , an ∈ A be algebraically independent elements such that A is finite over
C[a1, . . . , an] and denote by N : K → C(a1, . . . , an) the norm. Then

(1) N(A) ⊆ C[a1, . . . , an];

(2) For all a ∈ A we have
√
Aa ∩ C[a1, . . . , an] =

√
C[a1, . . . , an]N(a).
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Proof. Let L/K be a finite field extension containing all the conjugates a(1) :=
a, a(2), . . . , a(r) of a where r = [K : C(a1, . . . , an)]. Since a belongs to an alge-
bra which is finite over C[a1, . . . , an], namely A, the same holds for all a(j). Thus,
every a(j) satisfies an equation with coefficients in C[a1, . . . , an] and leading co-
efficient 1 (Lemma 3.6). This implies by Lemma 3.5 that the subalgebra Ã :=
C[a1, . . . , an][a(j)] ⊆ L is finite over C[a1, . . . , an] and contains all a(j). Therefore,

N(a) = a(1)a(2) · · ·a(r) belongs to Ã ∩ C(a1, . . . , an) which is equal to C[a1, . . . , an]
by the exercise above. This prove the first claim.

Now we have ∏

j

(t− a(j)) = tr + h1t
r−1 + · · ·+ hr−1t+ hr

where hj ∈ Ã ∩ C(a1, . . . , an) = C[a1, . . . , an] and hr = (−1)rN(a). It follows that
N(a) = ab where b = (−1)r−1(ar−1 + h1a

r−2 + · · · + hr−1) ∈ A and so N(a) ∈ Aa.
Thus, C[a1, . . . , an]N(a) ⊆ Aa ∩ C[a1, . . . , an].

In order to see that Aa ∩ C[a1, . . . , an] ⊆
√

C[a1, . . . , an]N(a) we choose an ele-
ment sa ∈ Aa ∩ C[a1, . . . , an]. Then N(sa) = (sa)r, and since N(sa) = N(s)N(a) ∈
C[a1, . . . , an]N(a) we finally get sa ∈

√
C[a1, . . . , an]N(a). �

Theorem 3.2 (Krull’s Principal Ideal Theorem). Let X be an irreducible affine
variety and f ∈ O(X), f 6= 0. Assume that VX(f) is non-empty. Then every irre-
ducible component of VX(f) has codimension 1 in X. In particular, dimVX(f) =
dimX − 1.

Proof. Let VX(f) = C1 ∪ C2 ∪ · · · ∪ Cr be the irreducible decomposition.
Choose an h ∈ O(X) vanishing on C2 ∪ C3 ∪ · · · ∪ Cr which does not vanish on
C1. Then VXh

(f) = C1 ∩ Xh is irreducible. Thus, it suffices to consider the case
where VX(f) ⊆ X is irreducible. By the Normalization Lemma (Theorem 3.1)
there is a finite surjective morphism ϕ : X → Cn, n = dimX. By Lemma 3.7(2)
we get ϕ(VX(f)) = V(N(f)), and so dimVX(f) = dimV(N(f)) = n − 1 (see
Lemma 3.1). �

It is easy to see that this result also holds for equidimensional varieties (i.e.
varieties X where all irreducible components have the same dimension) if f is a non-
zero divisor. For a general X and a non-zero divisor f ∈ O(X), we can only say that
every irreducible component of VX(f) has dimension ≤ dimX − 1.

A first consequence is the following result.

Proposition 3.4. Let X be an irreducible variety and f1, f2, . . . , fr ∈ O(X).
If VX(f1, . . . , fr) is non-empty then every irreducible component C of VX(f1, . . . , fr)
has dimension dimC ≥ dimX − r.

Proof. We proceed by induction on dimX. Define Y := VX(f1), and let Y =
Y1 ∪ · · · ∪ Ys be the decomposition into irreducible components. Then

VX(f1, · · · , fr) =
⋃

j

VYj
(f2, . . . , fr)

Since dimYj = dimX − 1 for all j we see, by induction, that every irreducible
component of VYj

(f2, . . . , fr) has dimension ≥ (dimX − 1) − (r − 1) = dimX − r,
and the claim follows. �
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Exercise 3.12. Let X be an affine variety and f ∈ O(X) a non-zero divisor. For any
x ∈ VX(f) we have dimx VX(f) = dimxX − 1.
(Hint: If f is a non-zero divisor, then f is non-zero on every irreducible component Xi of
X and so VXi

(f) is either empty or every irreducible component has codimension 1. Now
the claim follows easily.)

Another consequence of Krull’s PI-Theorem is the following which gives an
alternative definition of the dimension of a variety.

Proposition 3.5. Let X be an irreducible variety and Y $ X a closed irreducible
subset. Then there is a strictly decreasing chain of length n := dimX,

Xn = X % Xn−1 % · · · % Xd = Y % · · · % X1 % X0

of irreducible closed subsets Xj. In particular, dimX equals the length of a maximal
chain of irreducible closed subsets.

Proof. By induction, we only have to show that Y is contained in an irreducible
hypersurface H ⊆ X. Let f ∈ I(Y ) be a non-zero function. Then X ⊇ VX(f) ⊇ Y
and so Y is contained in an irreducible component of VX(f) which all have codimen-
sion 1 by Theorem 3.2. �

Remark 3.2. This result allows to define the dimension dimA of a C-algebra A
as the maximal length of a chain of prime ideal p0 ⊆ p1 ⊆ · · · ⊆ pm ⊆ A. If A is
finitely generated then dimA is finite, and every maximal chain has length dimA.
Moreover, dimA = dimAred where Ared := A/

√
(0), and so dimA = dimX where

X is an affine variety with coordinate ring isomorphic to Ared.
We also see that for a variety X and a point x ∈ X we have dimxX = dimOX,x.

Corollary 3.1. Let A be a finitely generated C-algebra and let a ∈ A be a non-
zero divisor. Then dimA/Aa ≤ dimA− 1, and equality holds if Ared is a domain.

Proof. Put Ā := A/(a) and denote by a′ ∈ Ared the image of a. Then a′ is a

non-zero divisor in Ared and so dimAred/
√

(a′) ≤ dimAred−1 by Theorem 3.2. Since

Āred ≃ Ared/
√

(a′) we finally get dim Ā = dim Āred ≤ dimAred − 1 = dimA− 1 �

Decomposition Theorem and dimension formula. Let ϕ : X → Y be a
dominant morphism where X, Y are both irreducible. We want to show that the
dimension of a non-empty fiber ϕ−1(y) is always ≥ dimX −dim Y and that we have
equality on a dense open set of Y . A crucial step is the following Decomposition
Theorem for a morphism.

Theorem 3.3. Let X and Y be irreducible varieties and ϕ : X → Y a dominant
morphism. There is a non-empty special open set U ⊆ Y and a factorization of ϕ of
the form

ϕ−1(U)
ρ //

ϕ
%%LLLLLLLLLLL

U × Cr

prU

��
U

where ρ is a finite surjective morphism and r := dimX − dimY . In particular,
the fibers ϕ−1(y) = ρ−1({y} × Cr) have the same dimension for all y ∈ U , namely
dimX − dimY .
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Remark 3.3. We will see later in Proposition 3.6 that the fibers ϕ−1(y) for
y ∈ U are equidimensional, i.e., all irreducible components have the same dimension,
namely dimX − dimY .

Proof. Since ϕ is dominant we will regard O(Y ) as a subalgebra of O(X). Let
K = C(Y ) be the quotient field of O(Y ) and put A := K · O(X) ⊆ C(X), the
K-algebra generated by K and O(X). Then A is finitely generated over K and so
we can find algebraically independent elements h1, . . . , hr ∈ A such that A is finite
over K[h1, . . . , hr] (Theorem 3.1). It follows that r = dimX − dimY .

We claim that there is an f ∈ O(Y ) such that hi = ai

f
with ai ∈ O(X) for all

i and that O(Xf ) = O(X)f is finite over O(Yf)[h1, . . . , hr]. The first statement is
clear, and we can therefore assume that h1, . . . , hr ∈ O(X).

For the second statement, let b1, . . . , bs be generators of A over K[h1, . . . , hr].
Multiplying with a suitable element ofO(Y ) ⊆ K we can first assume that bj ∈ O(X)
and then, by adding more elements if necessary, that b1, . . . , bs generate O(X) as a

C-algebra. Now bibj =
∑

k c
(ij)
k bk where c

(ij)
k ∈ K[h1, . . . , hr]. Thus we can find an

f ∈ O(Y ) such that f · c(ij)k ∈ O(Y )[h1, . . . , hr]. It follows that
∑

j

O(Yf)[h1, . . . , hr] bj ⊆ O(X)f = O(Xf )

is a subalgebra containing O(X), hence is equal to O(Xf ), and the claim follows.
Setting U := Yf we get ϕ−1(U) = Xf and obtain a morphism

ρ = ϕ× (h1, . . . , hr) : Xf → Yf ×Cr, x 7→ (ϕ(x), h1(x), . . . , hr(x))

which satisfies the requirements of the proposition.
The last statement is clear (see Exercise 3.6). �

Exercise 3.13. Work out the decomposition of Theorem 3.3 in the case of the following
morphisms:

(1) ϕ : M2 →M2, ϕ(A) := A2.

(2) ϕ : SL2 → C3, ϕ(

[
a b
c d

]
) := (ab, ad, cd) (see Exercise 2.13).

What is the degree of the finite morphism ρ in each case?

Corollary 3.2. If ϕ : X → Y is a morphism, then there is a set U ⊆ ϕ(X)

which is open and dense in ϕ(X).

Proof. If X is irreducible, this is an immediate consequence of Theorem 3.3
above. In general, we apply this proposition to every irreducible component of X,
and use Exercise 1.23. �

Proposition 3.6. Let X and Y be irreducible varieties and ϕ : X → Y a domi-
nant morphism. If y ∈ ϕ(X) and C is an irreducible component of the fiber ϕ−1(y)
then

dimC ≥ dimX − dimY.

Proof. Set m := dimY and let ψ : Y → Cm be a finite surjective morphism
(Theorem 3.1). If we denote by ϕ̃ : X → Cm the composition ψ ◦ ϕ, then every
fiber of ϕ̃ is a finite union of fibers of ϕ. Hence it suffices to prove the claim for the
morphism ϕ̃ = (f1, . . . , fm) : X → Cm. If a = (a1, . . . , am) ∈ ϕ̃(X) then ϕ̃−1(a) =
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VX(f1 − a1, f2 − a2, . . . , fm − am), and the claim follows from Proposition 3.4, a
consequence of Krull’s Principal Ideal Theorem. �

One might believe that the two propositions above imply that for any morphism
ϕ : X → Y the function y 7→ dimϕ−1(y) is upper-semicontinuous (see below). This
is not true as one can show by examples. However, a famous theorem of Chevalley
says that the function x 7→ dimx ϕ

−1(ϕ(x)) is upper-semicontinuous on X. The proof
is quite involved and we will not present it here.

Example 3.4. Consider the morphism ϕ : C2 → C2 given by (x, y) 7→ (x, xy).
It easy to see that the image ϕ(C2) is not locally closed in C2 and that the map
a 7→ dimϕ−1(a) is not upper-semicontinuous.

Constructible sets. Recall that a subset A ⊆ X of a variety X is called locally
closed if A is the intersection of an open and a closed subset, or, equivalently, if A is
open in its closure Ā. We have seen in examples that images of morphisms need not
to be locally closed in general. However, we will show that images of morphisms are
always “constructible” in the following sense.

Definition 3.3. A subset C of an affine variety X is called constructible if it is
a finite union of locally closed subsets.

Exercise 3.14. (1) Finite unions, finite intersections and complements of con-
structible sets are again constructible.

(2) If C is a constructible, then C contains a set U which is open and dense in C̄.

Proposition 3.7. If ϕ : X → Y is a morphism then the image of a constructible
subset is again constructible.

Proof. Since every open set is the union of finitely many special open sets it
suffices to show, in view of the exercise above, that the image of a morphism is
constructible. By Corollary 3.2 there is a dense open set U ⊆ ϕ(X) contained in the

image ϕ(X). Then the complement Y ′ := ϕ(X) \ U is closed and dimY ′ < dimY

(Exercise 3.3). By induction on dimϕ(X), we can assume that the claim holds for
the morphism ϕ′ : X ′ := ϕ−1(Y ′) → Y ′ induced by ϕ. But then ϕ(X) = U ∪ ϕ′(X ′)
and we are done. �

Degree of a morphism. Recall that a dominant morphism ϕ : X → Y between
irreducible varieties is called of finite degree d if dimX = dimY and d = [C(X) :
C(Y )] (see 2). This has the following geometric interpretation.

Proposition 3.8. Let X, Y be irreducible affine varieties and ϕ : X → Y a
dominant morphism of finite degree d. Then there is a dense open set U ⊆ Y such
that #ϕ−1(y) = d for all y ∈ U .

Proof. We have C(X) = C(Y )[r] where r satisfies the equation

rd + a1r
d−1 + · · ·+ ad = 0.

Replacing Y and X by suitable special open sets Yf and Xf (f ∈ O(Y )) we can
assume that

(1) O(X) is finite over O(Y ) (Theorem 3.3);
(2) r ∈ O(X);
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(3) ai ∈ O(Y );
(4) O(X) = O(Y )[r].

This implies that

O(X) =

d−1⊕

j=0

O(Y )rj ∼← O(Y )[t]/(td + a1t
d−1 + · · ·+ ad)

and so, for every y ∈ Y , we get

O(X)/O(X)my ≃ C[t]/(td + a1(y)t
d−1 + · · ·+ ad(y))

This means that the number of elements in the fiber ϕ−1(y) is equal to the number
of different solutions of the equation

(5) td + a1(y)t
d−1 + · · ·+ ad(y) = 0.

Now let D be the discriminant of an equation of degree d (see Example 1.2) and
define f(y) := D(a1(y), . . . , ad(y)). Then f ∈ O(Y ), and f(y) 6= 0 if and only if
equation (5) has d different solutions, or, equivalently, the fiber ϕ−1(y) has d points.
Thus, the special open set U := Yf ⊆ Y has the required property. �

Remark 3.4. One can show that the open set U constructed in the proof has
the property that the morphism ϕ−1(U)→ U is an unramified covering with respect
to the C-topology.

Exercise 3.15. What is the degree of the morphism Mn →Mn given by A 7→ Ak?

Exercise 3.16. Let ϕ : X → Y be a dominant morphism where X and Y are both
irreducible. If there is an open dense set U ⊆ X such that ϕ|U is injective, then ϕ is
birational.
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4. TANGENT SPACES AND DIFFERENTIALS

Zariski tangent space. A tangent vector δ in a point x0 of an affine variety X
is “rule” to differentiate regular functions, i.e., it is a C-linear map δ : O(X) → C
satisfying

(6) δ(f · g) = f(x0) δ(g) + g(x0) δ(f) for all f, g ∈ O(X).

Such a map is called a derivation of O(X) in x0. It follows that δ(fn) = nfn−1(x0)δ(f)
and so, for any polynomial F = F (y1, . . . , ym), we get

δ(F (f1, . . . , fm)) =

m∑

j=1

∂F

∂yj
(f1(x0), . . . , fm(x0)) δ(fj).

This implies that a derivation in x0 is completely determined by its values on a
generating set of the algebra O(X). Moreover, a linear combination of derivations in
x0 is again a derivation in x0. As a consequence, the derivations in x0 form a finite
dimensional subspace of Hom(O(X),C).

Definition 4.1. The Zariski tangent space Tx0
X of a variety X in a point x0 is

defined to be the set of all tangent vectors in x0:

Tx0
X := Derx0

(O(X)) := {δ : O(X)→ C | δ a C-linear derivation in x0}.
Tx0

X is a finite dimensional linear subspace of Hom(O(X),C).

Exercise 4.1. Let δ ∈ TxX be a tangent vector in x.

(1) δ(c) = 0 for every constant c ∈ O(X).

(2) If f ∈ O(X) is invertible, then δ(f−1) = − δf

f(x)2
.

Example 4.1. If X = Cn and a = (a1, . . . , an) ∈ Cn then

TaCn =
⊕

i

C
∂

∂xi

∣∣∣∣
a

where ∂
∂xi

∣∣∣
a
(f) := ∂f

∂xi
(a). Thus we have a canonical isomorphism TaCn ≃ Cn by

identifying δ ∈ Dera(C[x1, . . . , xn]) with (δx1, . . . , δxn) ∈ Cn.

More generally, if V is a finite dimensional vector space and x0 ∈ V we define,
for every v ∈ V , the tangent vector ∂v,x0

: O(V )→ C in x0 by

∂v,x0
(f) :=

f(x0 + tv)− f(x0)

t

∣∣∣∣
t=0

,

and thus obtain a canonical isomorphism V
∼→ Tx0

V , for every x0 ∈ V .

Let δ ∈ TxX be a tangent vector. SinceO(X) = C⊕mx we see that δ is determined
by its restriction to mx. Moreover, formula (6) shows that δ vanishes on m2

x. Hence,
δ induces a linear map δ̄ : mx/m

2
x → C.

Lemma 4.1. Given an affine variety X and a point x ∈ X there is a canonical
isomorphism

TxX
∼→ Hom(mx/m

2
x,C).

given by δ 7→ δ̄ := δ|mx
.
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Proof. We have already seen that δ 7→ δ̄ is injective. On the other hand, let
C ⊆ mx be a complement of m2

x so that O(X) = C⊕ C ⊕m2
x. If λ : C → C is linear

then one easily sees that the extension of λ to a linear map δ on O(X) by putting
δ|C⊕m2

x
= 0 is a derivation in x. �

Exercise 4.2. The canonical homomorphism O(X) → OX,x induces an isomorphism

mx/m
2
x
∼→ m/m2 where m ⊆ OX,x is the maximal ideal.

If U = Xf ⊆ X is a special open set and x ∈ U then TxU = TxX in a canonical
way. In fact, a derivation δ′ of O(U) induces a derivation δ of O(X) by restriction:
δ(h) := δ′(h|U), and every derivation δ of O(X) “extends” to a derivation δ′ of
O(U) = O(X)f by setting δ′( h

fm ) = (−m) δh
fm+1 (see Exercise 4.1). The same result

follows from Exercise 4.2 using Lemma 4.1.

Exercise 4.3. If Y ⊆ X is a closed subvariety and x ∈ Y then dimTxY ≤ dimTxX.
(Hint: The surjection O(X)→ O(Y ) induces a surjection mx,X/m

2
x,X → mx,Y /m

2
x,Y .)

Proposition 4.1. dimTxX ≥ dimxX.

Proof. If C ⊆ X is an irreducible component passing through x we have
dimTxC ≤ dim TxX (Exercise 4.3). Thus we can assume that X is irreducible.
Choose f1, . . . , fr ∈ mx such that the residue classes modulo m2

x form a basis of
mx/m

2
x, hence r = dimTxX, by Lemma 4.1. Since the zero set VX(f1, . . . , fr) has {x}

as an irreducible component (see Exercise 3.5) it follows from Proposition 3.4 that

0 = dim{x} ≥ dimX − r = dimX − dimTxX.

Hence the claim. �

Proposition 4.2. There is a canonical isomorphism T(x,y)X × Y ∼→ TxX ⊕ TyY
where x ∈ X and y ∈ Y .

Proof. Every derivation δ of O(X ×Y ) in (x, y) induces, by restriction, deriva-
tions δX of O(X) in x and δY of O(Y ) in y. This defines a linear map T(x,y)X×Y →
TxX⊕TyY which is injective, because δ(f ·h) = δXf ·h(y) = f(x) ·δY h for f ∈ O(X)
and h ∈ O(Y ).

In order to see that the map is surjective we first claim that given two derivations
δ1 ∈ TxX and δ2 ∈ TyY there is a unique linear map δ : O(X × Y ) → C such that
δ(f · h) = δ1f · h(y) = f(x) · δ2h. This follows from Proposition 2.5 and the universal
property of the tensor product. Now it is easy to see that this map δ is a derivation
in (x, y) and that δX = δ1 and δY = δ2. �

Tangent spaces of subvarieties. Let X ⊆ V be closed subvariety of the vector
space V and x0 ∈ X. If δ ∈ Tx0

V = V is a tangent vector which vanishes on
I(X) = ker(res : O(V )→ O(X)) then the induced map δ̄ : O(X)→ C is a derivation
in x0, and vice versa. Thus we have the following result.

Proposition 4.3. If X ⊆ V is a closed subvariety and x0 ∈ X then

Tx0
X = {δ ∈ Tx0

V | δ(f) = 0 for all f ∈ I(X)} ⊆ Tx0
V = V.
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More explicitly, let V = Cn and assume that the ideal I(X) is generated by f1, . . . , fs ∈
C[x1, . . . , xn]. Then, for x0 ∈ X, we get

Tx0
X = {a = (a1, . . . , an) ∈ Cn |

n∑

i=1

ai
∂fj

∂xi
(x0) = 0 for j = 1, . . . , s}.

In particular,

dim Tx0
X = n− rk

[
∂fj

∂xi

(x0)

]

i,j

.

The matrix

[
∂fj

∂xi

(x0)

]

i,j

is called the Jacobian matrix at the point x0 and will be

denoted by Jac(f1, . . . , fs)(x0).

Example 4.2. Consider the plane curve C = V(y2 − x3) ⊆ C2. Then I(C) =
(y2 − x3) and so the tangent space in an arbitrary point x0 = (a, b) ∈ C is given by
T(a,b)C = {(u, v) ∈ C2 | −3a2u + 2bv = 0}. Since (a, b) = (t2, t3) for some t ∈ C we
get

T(t2,t3)C =





C2 for t = 0,

C

[
2

3t

]
for t 6= 0.

Exercise 4.4. Calculate the tangent spaces of the plane curves C1 := V(y − x2) and
C2 = V(y2 − x2 − x3) in arbitrary points (a, b).

Remark 4.1. Consider the C-algebra C[ε] := C[t]/(t2) called the algebra of dual
numbers. By definition, we have C[ε] = C⊕ Cε and ε2 = 0. If X is an affine variety
and ρ : O(X)→ C[ε] an algebra homomorphism, then ρ is of the form ρ = evx⊕δxε
for some x ∈ X where evx is the evaluation map at x and δx a derivation in x, i.e.,
ρ(f) = f(x) + δx(f)ε. Conversely, if δx is a derivation in x then ρ := evx⊕δxε is
an algebra homomorphism. If X = V is a vector space, then the homomorphisms
ρ : O(V ) → C[ε] are in one-to-one correspondence with the elements of V ⊕ V ε. In
fact, there are canonical bijections

AlgC(O(V ),C[ε])
∼→ Hom(V,C[ε])

∼→ V ⊕ V ε,
and the inverse map associates to x + vε ∈ V ⊕ V ε the algebra homomorphism
ρ : f 7→ f(x+ vε). Since

f(x+ vε) = f(x) + ∂v,xf ε

it follows again from the above that TxV can be canonically identified with V . This
formula is very useful for calculating tangent spaces as we will see below.

Example 4.3. (a) The tangent space of GLn at E is the space of all n×n-matrices
and the tangent space of SLn at E ∈ SLn is the subspace of traceless matrices:

TE SLn = sln := {A ∈Mn | trA = 0} ⊆ TE GLn = gln := Mn.

In fact, I(SLn) = (det) and an easy calculation shows that det(E+Aε) = 1+tr(A)ε
which implies, by Proposition 4.3, that A ∈ Mn belongs to TE SLn if and only if
trA = 0.
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(b) Next we look at the orthogonal group On := {A ∈Mn | AAt = E}. As a closed
subset On is defined by

(
n+1

2

)
quadratic equations and so dim On ≥ n2−

(
n+1

2

)
=

(
n
2

)
.

On the other hand, we have

(E +Xε)(E +Xε)t = E + (X +X t)ε

which shows that TE On ⊆ {X ∈ Mn | X skewsymmetric}. Since this space has
dimension

(
n
2

)
and since dimE On = dim On (Exercise 1.22) it follows from Proposi-

tion 4.1 that

TE On = TE SOn = son := {X ∈Mn | X skewsymmetric}.
Exercise 4.5. If X,Y ⊆ Cn are closed subvarieties and z ∈ X ∩ Y then Tz(X ∩ Y ) ⊆

TzX ∩ TzY ⊆ Cn.

Nonsingular varieties. We have seen in Proposition 4.1 that for every point x
of an affine variety X one has dim TxX ≥ dimxX. We will show now that equality
holds in an open set and we will characterize these points.

Definition 4.2. The variety X is called nonsingular or smooth in x ∈ X if
dimTxX = dimxX. Otherwise it is singular in x. The variety is called nonsingular
or smooth if it is nonsingular in every point. We denote by Xsing the set of singular
points of X.

Example 4.4. Let H := V(f) ⊆ Cn be a hypersurface where f ∈ C[x1, . . . , xn] is
square-free and non-constant, and so I(H) = (f). Then the tangent space in a point
x0 ∈ H is given by

Tx0
X := {a = (a1, . . . , an) |

∑

i

ai
∂f

∂xi
(x0) = 0},

and so

Hsing = V(f,
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn
) ⊆ H.

It follows that Hsing is a proper closed subset whose complement is dense. (This is

clear for irreducible hypersurfaces since a non-zero derivative ∂f
∂xi

cannot be a multiple

of f and so V(f, ∂f
∂x1
, · · · , ∂f

∂xn
) is a proper closed subset of V(f). This implies that

every irreducible component of H contains a non-empty open set of nonsingular
points which does not meet the other components, and the claim follows.)

It is also interesting to remark that a common point of two or more irreducible
components of H is always singular. We will see that this true in general (Corol-
lary 4.1).

Proposition 4.4. Let X be an irreducible affine variety. Then the set Xsing of
singular points of X is a proper closed subset of X whose complement is dense.

Proof. We can assume that X is an irreducible closed subvariety of Cn of di-
mension d. If I(X) = (f1, . . . , fs), then, by Proposition 4.3,

Xsing = {x ∈ X | rk
[
∂fj

∂xi
(x)

]
< n− d}

which is the closed subset defined by the vanishing of all (n−d)×(n−d) minors of the
Jacobian matrix Jac(f1, . . . , fs). In order to see that Xsing has a dense complement,
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we use the fact, that every irreducible variety contains a special open set which is
isomorphic to a special open set of an irreducible hypersurface H (see Lemma 3.3).
Since H contains a dense open set of non-singular points (see Example 4.4 above)
the claim follows. �

Exercise 4.6. If X is an affine variety such that all irreducible components have the
same dimension. Then Xsing is closed and has a dense complement.
(We will see later in Corollary 4.1 that this holds for every affine variety.)

Exercise 4.7. The hypersurface H ⊆ C3 from Exercise 2.13 is nonsingular.

Exercise 4.8. Let q ∈ C[x1, . . . , xn] be a quadratic form and Q := V(q) ⊆ Cn. Then 0
is a singular point of Q. It is the only singular point if and only if q is nondegenerate.

Exercise 4.9. Determine the singular points of the plane curves

Ep := V(y2 − p(x))
where p(x) is an arbitrary polynomial, and deduce a necessary and sufficient condition for
Ep to be nonsingular.

Exercise 4.10. Let X ⊆ Cn be a closed cone (see Exercise 1.3). Then Xsing is a cone,
too. Moreover, 0 ∈ X is a nonsingular point if and only if X is subvector space.

Exercise 4.11. Let X be an affine variety such that the group of automorphisms acts
transitively on X. Then X is smooth.

Associated graded algebras. Let R be C-algebra and a ⊆ R an ideal. The
associated graded algebra graR is defined in the following way. Consider the C-vector
space

graR :=
⊕

i≥0

ai/ai+1 = R/a⊕ a/a2 ⊕ a2/a3 ⊕ · · ·

and define the multiplication of (homogeneous) elements by

(f + ai+1) · (h+ aj+1) := fh+ ai+j+1

for f ∈ ai, h ∈ aj . It is easy to see that this defines a multiplication on graR. By
definition, R/a is a subalgebra of graR, and graR is generated by a/a2 as a R/a-
algebra. In particular, if R is finitely generated as a C-algebra, then so is graR.

We want to use this construction to give the following characterization of non-
singular points.

Theorem 4.1. Let X be an affine variety. A point x ∈ X is nonsingular if and
only if the associated graded algebra grmx

O(X) is a polynomial ring. In particular,
the local ring OX,x of a nonsingular point x is a domain and so x belongs to a unique
irreducible component of X.

Before we can give the proof we have to explain some technical results from
commutative algebra. Let R be a C-algebra and m ⊆ R a maximal ideal. Consider
the subalgebra R̃ of R[t, t−1] generated as an R-algebra by t and mt−1:

R̃ := R[t,mt−1] = · · · ⊕m2t−2 ⊕mt−1 ⊕R⊕ Rt⊕ Rt2 ⊕ · · · ⊆ R[t, t−1].

In the following lemma we collect some basic properties of this construction.

Lemma 4.2. (1) If R is finitely generated then so is R̃.
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(2) There is a canonical isomorphism R̃/R̃t
∼→ grmR.

(3) If a ⊆ m is an ideal and ã := a[t, t−1] ∩ R̃ then R̃/ã
∼→ R̃/a.

(4) If n ⊆ R is the nilradical, then ñ := n[t, t−1] ∩ R̃ is the nilradical of R̃, and

R̃/ñ
∼→ R̃/n.

(5) Assume that R is a finitely generated domain. Then R̃ is a domain, and we
have

dim R̃ = dimR + 1 and dim R̃/R̃t = dimR.

(6) Assume that R finitely generated and that the minimal primes p1, . . . , pr are

all contained in m. Then the p̃1, . . . , p̃r are the minimal primes of R̃.

Proof. (1) If R = C[h1, · · · , hm] and m = (f1, . . . , fn) then

R̃ = C[h1, . . . , hm, t, f1t
−1, . . . , fnt

−1],

and so R̃ is finitely generated.

(2) By definition, we have

R̃t = · · · ⊕m3t−2 ⊕m2t−1 ⊕m⊕Rt⊕Rt2 ⊕ · · · .
Hence

R̃/R̃t = · · · ⊕ (m2/m3)t−2 ⊕ (m/m2)t−1 ⊕ R/m
and the claim follows.

(3) The canonical map π : R[t, t−1] → (R/a)[t, t−1] induces, by our construction,

a surjective homomorphism π̃ : R̃→ R̃/a with kernel ker π ∩ R̃ = a[t, t−1] ∩ R̃.

(4) Put Rred := R/n. Then Rred[t, t
−1] is reduced, i.e. without nilpotent elements

6= 0, and so is R̃red. Since the kernel of the map R[t, t−1] → Rred[t, t
−1] is equal to

n[t, t−1] and consists of nilpotent elements the claim follows from (3).

(5) The first part is clear since R[t, t−1] is a domain. Since R̃t = R[t, t−1] we
get dim R̃ = dimR[t, t−1] = dimR[t] = dimR + 1. Moreover, by the Principal Ideal

Theorem (Theorem 3.2) we have dim R̃/R̃t = dim R̃− 1.

(6) It follows from (3) and (5) that the ideals p̃i are prime. Since
⋂

i pi = n we
obtain from (2) ⋂

i

p̃i =
⋂

i

pi[t, t
−1] ∩ R̃ = n[t, t−1] ∩ R̃ = ñ.

Since p̃i ∩R[t] = pi[t] there are no inclusions p̃i ⊆ p̃j for i 6= j, and the claim follows.
(We use here the well-know fact that the minimal primes in a finitely generated
C-algebra are characterized by the condition

⋂
pi = n, cf. Remark 1.5.) �

In the next lemma we give some properties of the associated graded algebra grmR
where m is a maximal ideal of R.

Lemma 4.3. Let R be a C-algebra and m ⊆ R a maximal ideal.

(1) Assume that
⋂

j mj = (0). If grmR is a domain, then so is R.

(2) Denote by mRm ⊆ Rm the maximal ideal of the localization Rm. There is a

natural isomorphism grmR
∼→ grmRm

Rm of graded C-algebras.
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Proof. (1) If ab = 0 for non-zero elements a, b ∈ R, we can find i, j ≥ 0 such
that a ∈ mi \ mi+1 and b ∈ mj \ mj+1. Thus ā := a + mi+1 and b̄ := b + mj+1 are
non-zero elements in grmA, and āb̄ = ab+ mi+j+1 = 0. This contradiction proves the
claim.

(2) Set M := mRm ⊆ Rm. The image of S := R \m in R/mk consists of invertible
elements and so R/mk → Rm/M

k is surjective. It is also injective, because Rm/M
k

can be identified with the localization of R/mk at S. Thus R/mk ∼→ Rm/M
k and so

mi/mi+1 ∼→Mi/Mi+1 for all i ≥ 0. �

Finally, we need the following result due to Krull. It implies that in a local
Noetherian C-algebra R with maximal ideal m we have

⋂
j≥0 mj = (0).

Lemma 4.4 (Krull). Let R be a Noetherian C-algebra, a ⊆ R an ideal and
b :=

⋂
j≥0 aj. Then ab = b. In particular, there is an a ∈ a such that (1 + a)b = 0.

Proof. The second claim follows from the first and the Lemma of Nakayama
(Lemma 3.4). Let a = (a1, . . . , as) and put

I := 〈f | f ∈ R[x1, . . . , xs] homogeneous and f(a1, . . . , as) ∈ b〉 ⊆ R[x1, . . . , xs].

It is easy to see that I is an ideal of R[x1, . . . , xs] and so I = (f1, . . . , fk) where the fj

are homogeneous. Choose an n ∈ N, n > deg fj for all j. By definition, b ⊆ an and so,
for every b ∈ b, there is a homogeneous polynomial f ∈ R[x1, · · · , xs] of degree n such
that f(a1, . . . , as) = b. It follows that f =

∑
j hjfj where the hj are homogeneous of

degree > 0, and so b = f(a1, . . . , as) =
∑

j hj(a1, . . . , as)fj(a1, . . . , as) ∈ ab. �

The next proposition is a reformulation of our main Theorem 4.1. For later use
we will prove it in this slightly more general form.

Proposition 4.5. Let R be a finitely generated C-algebra and let m ⊆ R be a
maximal ideal. Then dim grmR = dimRm. Moreover, dimC m/m2 = dimRm if and
only if grmR is a polynomial ring. If this holds, then Rm is a domain.

Proof. Inverting an element from R\m does not change grmR (Lemma 4.3(2)).
Therefore we can assume that all minimal primes of R are contained in m. In par-
ticular, we have dimRm = dimR = maxi dimR/pi where p1, . . . , pr are the minimal
prime ideals. Moreover, every element from R \m is a non-zero divisor.

Now consider the C-algebra R̃ = R[t,mt−1] ⊆ R[t, t−1] introduced above. It

follows from Lemma 4.2 that R̃ has the following two properties:

(i) R̃/R̃t
∼→ grmR, by (2).

(ii) dim R̃/R̃t = dimR, by (5) and (6).

Hence, dim grmR = dimRm, proving the first claim.

Assume now that dimC m/m2 = dimRm =: n. Then we obtain a surjective homo-
morphism

ρ : C[y1, . . . , yn]→ grmR

by sending y1, . . . , yn to a C-basis of m/m2. But every proper residue class ring of
C[y1, . . . , yn] has dimension < n, and so the homomorphism ρ is an isomorphism.
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On the other hand, if grmR is a polynomial ring then dimRm = dim grmR =
dimC m/m2. Moreover,

⋂
j>0 mj = (0) by Lemma 4.4, because every element from

R \m is a non-zero divisor, and so R is a domain by Lemma 4.3(1). �

Corollary 4.1. If X is an affine variety, then Xsing ⊆ X is a closed subset
whose complement is dense in X.

Proof. Let X =
⋃

iXi is the decomposition of X into irreducible components.
A point x ∈ Xi is a singular point of X if and only if it is either a singular point of
Xi or it belongs to two different irreducible components. Thus

Xsing =
⋃

i

(Xi)sing ∪
⋃

j 6=k

Xj ∩Xk,

and the claim follows easily. �

Let us denote by ÔX,x the mx-adic completion of the local ring OX,x. It is defined
to be the inverse limit

ÔX,x := lim
←−
O(X)/mk

x.

(We refer to [Eis95, I.7.1 and I.7.2] for more details and some basic properties.)

Since
⋂

mk
x = {0} we have a natural embedding OX,x ⊆ ÔX,x.

If X = Cn and x = 0 then the completion coincides with the algebra of formal
power series in n variables:

ÔCn,0 = C[[x1, . . . , xn]].

The next result is an easy consequence of Theorem 4.1 above.

Corollary 4.2. The point x ∈ X is non-singular if and only if ÔX,x is isomor-
phic to the algebra of formal power series in dimxX variables.

Remark 4.2. A famous result of Auslander-Buchsbaum states that the local ring
OX,x in a nonsingular point of a variety X is always a unique factorization domain.
For a proof we refer to [Mat89, §20, Theorem 20.3].

Vector fields and tangent bundle. Let X be an affine variety. Denote by
TX :=

⋃
x∈X TxX the disjoint union of the tangent spaces and by p : TX → X the

natural projection, δ ∈ TxX 7→ x. We call TX the tangent bundle of X. We will see
later that TX has a natural structure of an affine variety and that p is a morphism.

A section ξ : X → TX of p, i.e. p ◦ ξ = IdX or ξx := ξ(x) ∈ TxX for all x ∈ X,
is a collection (ξx)x∈X of tangent vectors and thus can be considered as an operator
on regular functions f ∈ O(X):

ξf(x) := ξxf for x ∈ X.
Definition 4.3. An (algebraic) vector field on X is a section ξ : X → TX with

the property that ξf ∈ O(X) for all f ∈ O(X). The space of algebraic vector fields
is denoted by Vec(X).
(In the following, we will mostly talk about “vector fields” and omit the term “alge-
braic” whenever it is clear from the context.)
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Thus a vector field ξ can be considered as a linear map ξ : O(X) → O(X), and
so Vec(X) is a subvector space of End(O(X)). More generally, the vector fields form
a module over O(X) where the product fξ for f ∈ O(X) is defined in the obvious
way: (fξ)x := f(x)ξx.

Example 4.5. Let X = V be a C-vector space and fix a vector v ∈ V . Then
∂v ∈ Vec(V ) is defined by x 7→ ∂v,x. It follows that

∂vf :=
f(x+ tv)− f(x)

t

∣∣∣∣
t=0

∈ O(X)

which implies that this vector field is indeed algebraic. We claim that every algebraic
vector field on V is of this form. In fact, if V = Cn then

Vec(Cn) =

n⊕

i=1

C[x1, . . . , xn]
∂

∂xi

which means that every algebraic vector field ξ on Cn is of the form ξ =
∑

i hi
∂

∂xi

where hi ∈ C[x1, . . . , xn] = O(Cn). (This follows from the two facts that every vector
field ξ on Cn is of this form with arbitrary functions hi and that ξ(xi) = hi.)

Another observation is that for every vector field ξ on X the corresponding linear
map ξ : O(X)→ O(X) is a derivation, i.e. ξ is a linear differential operator :

ξ(fh) = f ξh+ h ξf for all f, h ∈ O(X).

Proposition 4.6. The map sending a vector field to the corresponding linear
differential operator defines a bijection Vec(X)

∼→ Der(O(X),O(X)) ⊆ End(O(X)).

Proof. It remains to show that every derivation ξ : O(X) → O(X) is given by
an algebraic vector field. For this, define ξx := evx ◦ξ. Then the vector field (ξx)x∈X

is algebraic and the corresponding linear map is ξ. �

The Example 4.5 above shows that for X = V we have a canonical isomorphism
TX ≃ X × V , using the identifications TxX = V ≃ {x} × V . Then p : TX → X is
identified with the projection prX and algebraic vector fields correspond to morphism
ξ : X → X × V of the form ξ(x) = (x, ξx).

Proposition 4.7. Let X ⊆ V be a closed subset.

(1) If ξ ∈ Vec(V ) then ξ|X defines a vector field on X (i.e. ξx ∈ TxX for all
x ∈ X) if and only if ξf = 0 for all f ∈ I(X). Moreover, it suffices to test
a system of generators of the ideal I(X).

(2) There is a canonical bijection TX
∼→ {(x, δ) | δ ∈ TxX ⊆ V } where the

latter is a closed subset of X × V . Thus TX has the structure of an affine
variety. Using coordinates, we get

TX
∼→ {(x, a1, . . . , an) |

n∑

i=1

ai
∂f

∂xi

(x) = 0 for all f ∈ I(X)} ⊆ X ×Cn

(3) A vector field ξ on X is algebraic if and only if ξ : X → TX is a morphism.
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Proof. (1) We have ξx ∈ TxX for all x ∈ X if and only if ξxf = 0 for all x and
all f ∈ I(X) which is equivalent to ξf |X = 0 for all f ∈ I(X).

(2) We can assume that V = Cn and O(V ) = C[x1, . . . , xn]. If I(X) = (f1, . . . fm)
then, by (1),

T ′X := {(x, δx) ∈ X × V | δ ∈ TxX}

= {(x, a1, . . . , an) |
n∑

i=1

ai
∂fj

∂xi
(x) = 0 for j = 1, . . . , m} ⊆ X × Cn

which shows that this is a closed subspace of X × Cn. Now (2) follows easily.

(3) Using the identification of TX with the closed subvariety T ′X above, an
arbitrary section ξ : X → TX has the form ξx =

∑
hi(x)

∂
∂xi

with arbitrary functions
hi on X. The vector field ξ is algebraic if and only if hi = ξx̄i is regular on X which
is equivalent to the condition that ξ : X → TX is a morphism. �

Example 4.6. Consider the curve H := V(xy− 1) ⊆ C2. Then I(H) = (xy− 1).
For a vector field ξ = a(x, y)∂x + b(x, y)∂y on C2 we get

ξ(xy − 1) = a(x, y)y + b(x, y)x.

Thus ξ(xy−1)|H = 0 if and only if ay+bx = 0 onH . It follows that x∂x−y∂y defines a
vector field ξ0 on H and that Vec(H) = O(C)ξ0. (In fact, setting h := ay|H = −bx|H
we get a|H = h · x|H and b|H = −h · y|H.)

The tangent bundle TH ⊆ H × C2 has the following description (see Proposi-
tion 4.7(1)):

TH = {(t, t−1, α, β) | αt−1 + βt = 0} = {(t, t−1,−βt2, β | t ∈ C∗, β ∈ C} ∼→ H ×C.

Example 4.7. Now consider Neil’s parabola C := V(y2 − x3) ⊆ C2 (see Ex-
ample 1.8). Then a vector field a∂x + b∂y defines a vector field on C if and only
if

−3ax2 + 2by = 0 on C.

To find the solutions we use the isomorphism O(C)
∼→ C[t2, t3], x 7→ t2, y 7→ t3

(see Example 2.4). Thus we have to solve the equation 3āt = 2b̄ in C[t2, t3]. This is
easy: Every solution is a linear combination (with coefficients in C[t2, t3]) of the two
solutions (2t2, 3t3) and (2t3, 3t4). This shows that

ξ0 := (2x∂x + 3y∂y)|D and ξ1 := (2y∂x + 3x2∂y)|D
are vector fields on C and that Vec(C) = O(C)ξ0 +O(C)ξ1. Moreover, x̄2ξ0 = ȳξ1.

Our calculation also shows that every vector field on C vanishes in the singular
point 0 of the curve. For the tangent bundle we get

TC = {(t2, t3, α, β) | −3αt4 + 2βt3 = 0} ⊆ C × C2

which has two irreducible components, namely

TC = {(t2, t3, 2α, 3αt) | t, α ∈ C} ∪ {(0, 0)} × C2

Exercise 4.12. Determine the vector fields on the curve D := V(y2 − x2 − x3) ⊆ C2.
Do they all vanish in the singular point of D?
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Exercise 4.13. Determine the vector fields on the curves D1 := {(t, t2, t3) ∈ C3 | t ∈
C} and D2 := {(t3, t4, t5) ∈ C3 | t ∈ C}.
(Hint: For D2 one can use that O(D2) ≃ C[t3, t4, t5] = C⊕⊕

i≥3 Cti.)

Proposition 4.8. The vector fields Vec(X) on X form a Lie algebra with Lie
bracket

[ξ, η] := ξ ◦ η − η ◦ ξ.
Proof. By Proposition 4.6 it suffices to show that for any two derivations ξ, η

of O(X) the commutator ξ ◦ η− η ◦ ξ is again a derivation. But this is a general fact
and holds for any associative algebra, see the following Exercise 4.15. �

Exercise 4.14. Let A be an arbitrary associative C-algebra. Then A is a Lie algebra
with Lie bracket [a, b] := ab− ba, i.e., the bracket [ , ] satisfies the Jacobi identity

[a, [b, c]] = [[a, b], c] + [b, [a, c]] for all a, b, c ∈ A.
Exercise 4.15. Let R be an associative C-algebra. If ξ, η : R → R are both C-

derivations, then so is the commutator ξ ◦ η − η ◦ ξ. This means that the derivations
Der(R) form a Lie subalgebra of EndC(R).

Exercise 4.16. Let X ⊆ Cn be a closed and irreducible. Then dimTX ≥ 2 dimX. If
X is smooth then TX is irreducible and smooth of dimension dimTX = 2dimX.
(Hint: If I(X) = (f1, . . . fm) then TX ⊆ Cn ×Cn is defined by the equations

fj = 0 and
n∑

i=1

yi
∂fj

∂xi
(x) = 0 for j = 1, . . . ,m.

The Jacobian matrix of this system of 2m equations in 2n variables x1, . . . , xn, y1, . . . , yn

has the following block form[
Jac(f1, . . . , fm) 0

∗ Jac(f1, . . . , fm)

]

and thus has rank ≥ 2 · rk Jac(f1, . . . , fm) = 2(n− dimX).)

Differential of a morphism. Let ϕ : X → Y be a morphism of affine varieties
and let x ∈ X.

Definition 4.4. The differential of ϕ in x is the linear map

dϕx : TxX → Tϕ(x)Y

defined by δ 7→ dϕx(δ) := δ ◦ ϕ∗.
If Z ⊆ X is a closed subvariety and z ∈ Z, then we get for the induced morphism

ϕ|Z : Z → Y that d(ϕ|Z)z = dϕz|TzZ . Another obvious remark is that the differential
of a constant morphism is the zero map.

Remark 4.3. Set y := ϕ(x). The comorphism ϕ∗ : O(Y ) → O(X) defines a ho-
momorphism my → mx and thus a linear map ϕ̄∗ : my/m

2
y → mx/m

2
x. It is easy to see

that the differential dϕx corresponds to the dual map of ϕ̄∗ under the isomorphisms
TxX ≃ Hom(mx/m

2
x,C) and TyY ≃ Hom(my/m

2
y,C) (see Lemma 4.1).

Example 4.8. Using the identification T(x,y)X × Y = TxX ⊕ TyY (see Proposi-
tion 4.2) we easily see that the differential d(prX)x : T(x,y)X × Y → TxX coincides
with the linear projection prTxX .
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Proposition 4.9. Let ϕ = (f1, . . . , fm) : Cn → Cm, fj ∈ O(Cn) = C[x1, . . . , xn].
Then the differential

dϕx : TxCn = Cn → Tϕ(x)Cm = Cm

of ϕ in x ∈ Cn is given by the Jacobi matrix

Jac(f1, . . . , fm)(x) =

(
∂fj

∂xi
(x)

)

i,j

.

Proof. The identification of the tangent space TxCn = Derx(O(Cn)) with Cn is
given by δ 7→ (δx1, . . . , δxn) (see Example 4.1). This implies that

dϕx(δ) = ((δ ◦ ϕ∗)(y1), . . . , (δ ◦ ϕ∗)(ym)) = (δf1, . . . , δfm).

Now the claim follows since

δfj =
n∑

i=1

∂fj

∂xi
(x) · δxi.

�

Exercise 4.17. Let ϕ : X → Y and ψ : Y → Z be morphisms of affine varieties and
let x ∈ X. Then

d(ψ ◦ ϕ)x = dψy ◦ dϕx

where y := ϕ(x) ∈ Y .

In order to calculate explicitly differentials of morphisms we will again use the
algebra C[ε] of dual numbers (Remark 4.1). Recall that for δ ∈ TxX the map ρ :=
evx⊕δε : O(X)→ C[ε] is a homomorphism of algebras and vice versa. If ϕ : X → Y
is a morphism and x ∈ X, y := ϕ(x) ∈ Y , then we obtain, by definition, the following
commutative diagram:

O(X)
evx⊕δε // C[ε]

O(Y )

ϕ∗

OO

evy ⊕dϕx(δ)ε

77ooooooooooooo

If X := V and Y := W are vector spaces then a homomorphism ρ : O(V ) → C[ε]
corresponds to an element x ⊕ vε ∈ V ⊕ V ε where ρ(f) = f(x+ vε), and so ρ ◦ ϕ∗
corresponds to the element ϕ(x+vε) ∈W ⊕Wε. Thus we obtain the following result
which is very useful for calculating differentials of morphisms.

Lemma 4.5. Let ϕ : V →W be a morphism between vector spaces, and let x ∈ V
and v ∈ TxV = V . Then we have

ϕ(x+ εv) = ϕ(x) + dϕx(v) ε

where both sides are considered as elements of W ⊕Wε.

Example 4.9. The differential of the morphism ?m : Mn → Mn, A 7→ Am, in E
is m · Id. In fact, (E +Xε)m = E +mXε.

The differential of ϕ : M2 → M2, ϕ(A) := A2, in an arbitrary matrix A is given
by dϕA(X) = AX +XA, because (A+Xε)2 = A2 + (AX +XA)ε.

The differential of the matrix multiplication µ : Mn ×Mn → Mn in (E,E) is the
addition: (E +Xε)(E + Y ε) = E + (X + Y )ε.
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Exercise 4.18. Consider the multiplication µ : M2 ×M2 →M2 and show:

(1) dµ(A,B) is surjective, if A or B is invertible.
(2) If rkA = rkB = 1, then dµ(A,B) has rank 3.
(3) We have rk dµ(A,0) = rk dµ(0,A) = 2 rkA.

Exercise 4.19. Calculate the differential of the morphism ϕ : End(V )× V → V given
by (ρ, v) 7→ ρ(v), and determine the pairs (ρ, v) where dϕ(ρ,v) is surjective.

Tangent spaces of fibers. Let ϕ : X → Y be a morphism, x ∈ X and F :=
ϕ−1(ϕ(x)) the fiber through x. Since ϕ|F is the constant map, its differential in any
point is zero and so TxF ⊆ ker dϕx. This proves the first part of the following result.

Proposition 4.10. Let ϕ : X → Y be a morphism, x ∈ X and F := ϕ−1(ϕ(x))
the fiber through x.

(1) TxF ⊆ ker dϕx.
(2) If the fiber F is reduced in x, then TxF = ker dϕx.

Proof. Put y := ϕ(x) ∈ Y . By definition the fiber is reduced in x if and only
if the ideal in the local ring OX,x generated by ϕ∗(my) is perfect which means that
OF,x = OX,x/ϕ

∗(my)OX,x (see Definition 2.2).
Now let δ ∈ TxX be a derivation of O(X) in x. If δ ∈ ker dϕx then δ ◦ ϕ∗ = 0.

Hence δ, regarded as a derivation of OX,x, vanishes on ϕ∗(my)OX,x and thus induces
a derivation of OF,x in x, i.e., δ ∈ TxF . �

Example 4.10. Let X ⊆ Cn be a closed subset and I(X) = (f1, . . . , fm). Con-
sider the morphism ϕ = (f1, . . . , fm) : Cn → Cm. Then X = ϕ−1(0), and this fiber is
reduced in every point. Thus, for every x ∈ X,

TxX = ker dϕx = ker Jac(f1, . . . , fm)(x)

as we have already seen in Proposition 4.3.

Exercise 4.20. For every point (x, y) ∈ X × Y we have TxX = ker d(prY )(x,y) and
TyX = ker d(prX)(x,y) where prX ,prY are the canonical projections (see Proposition 4.2).

Exercise 4.21. For the closed subset N ⊆ M2 of nilpotent 2 × 2-matrices we have
I(N) = (tr,det).

Morphisms of maximal rank. The main result of this section is the following
theorem.

Theorem 4.2. Let ϕ : X → Y be a dominant morphism between two irreducible
varieties X and Y . Then there is a dense open set U ⊆ X such that dϕx : TxX →
Tϕ(x)Y is surjective for all x ∈ U .

We first work out an important example which will be used in the proof of the
proposition above.

Example 4.11. Let Y be an irreducible affine variety and X ⊆ Y × C an ir-
reducible hypersurface. Assume that I(X) = (f) where f =

∑n
i=0 fit

i ∈ O(Y )[t] =
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O(Y × C) and fn = 1. Consider the following diagram:

X
⊆ //

p
##GGGGGGGGG Y × C

prY

��
Y

Then the differential dp(y,a) : T(y,a)X → TyY is surjective if
∂f

∂t
(y, a) 6= 0, and this

holds on a dense open set of X.

Proof. We have T(y,a)X ⊆ T(y,a)Y × C = TyY ⊕ C, and this subspace is given
by T(y,a)X = {(δ, λ) | (δ, λ)f = 0}, because I(X) = (f). Now we have

(δ, λ)f =
n∑

i=0

(δfi · ai + fi(y) · i · ai−1 · λ) =
n∑

i=0

δfi · ai +
∂f

∂t
(y, a) · λ

Since dp(y,a)(δ, λ) = δ we see that dp(y,a) is surjective if ∂f
∂t

(y, a) 6= 0 which proves the

first claim. But ∂f
∂t

cannot be a multiple of f and thus does not vanish on X, proving
the second claim. �

The next lemma shows that the situation described in the example above always
holds on an open set for every morphism of finite degree.

Lemma 4.6. Let X, Y be irreducible affine varieties and ϕ : X → Y a morphism
of finite degree. Then there is a special open set U ⊆ Y and a closed embedding
γ : ϕ−1(U) →֒ U × C with the following properties:

(i) I(γ(U)) = (f) where f =
∑n

i=0 fit
i ∈ O(U)[t];

(ii) prU ◦γ = ϕ|ϕ−1(U).

ϕ−1(U)

γ

))
≃ //

ϕ
&&LLLLLLLLLLL

VU×C(f)

p

��

⊆ // U ×C

prU

yyrrrrrrrrrrr

U

Proof. We have to show that there is a non-zero s ∈ O(Y ) such that O(X)s ≃
O(Y )s[t]/(f) with a polynomial f ∈ O(Y )s[t]. Then the claim follows by setting
U := Ys.

By assumption, the field C(X) is a finite extension of C(Y ) of degree n, say,

C(X) = C(Y )[h] ≃ C(Y )[t]/(f)

where f =
∑n

i=0 fit
i, fi ∈ C(Y ) and fn = 1. There is an non-zero element s ∈ O(Y )

such that

(a) fi ∈ O(Y )s for all i,
(b) h ∈ O(X)s and
(c) O(X)s = O(Y )s[h] =

⊕n−1
i=0 O(Y )sh

i.

In fact, (a) and (b) are clear. For (c) we first remark thatO(Y )s[h] =
⊕n−1

i=0 O(Y )sh
i ⊆

O(X)s, because of (a) and (b). If h1, . . . , hm is a set of generators of O(X) we can
find a non-zero s ∈ O(Y ) such that hi ∈ O(Y )s[h], proving (c).



50 A. BASICS FROM ALGEBRAIC GEOMETRY

Setting U := Ys we get ϕ−1(U) = Xs and O(Xs) = O(Ys)[t]/(f), by (c), and the
claim follows. �

Proof of Theorem 4.2. By the Decomposition Theorem (Theorem 3.3) we
can assume that ϕ is the composition of a finite surjective morphism and a projection
of the form Y ×Cr → Y . Since the differential of the second morphism is surjective
in any point we are reduced to the case of a finite morphism. Now the claim follows
from Lemma 4.6 above and the Example 4.11. �

Lemma 4.7. Let ϕ : X → Y be a morphism, x ∈ X and y := ϕ(x) ∈ Y . Assume
that X is smooth in x and dϕx is surjective.

(1) Y is smooth in y.
(2) The fiber ϕ−1(y) is reduced and smooth in x, and dimx F = dimxX−dimy Y .

Proof. By assumption,

dimTxF ≤ dim ker dϕx = dim TxX − dimTyY ≤ dimX − dimY ≤ dimx F

which implies that we have equality everywhere. In particular, X and F are both
smooth in x.

If we denote by m̄ ⊆ O(X)/myO(X) the maximal ideal corresponding to x ∈ F
one easily sees that m̄/m̄2 is the cokernel of the natural map my/m

2
y → mx/m

2
x induced

by ϕ∗. The duality between mx/m
2
x and TxX (see Lemma 4.1 and Remark 4.3) implies

that dim ker dϕx = dimC m̄/m̄2. Since dim ker dϕx = dimx F = dimO(X)x/myO(X)x

it follows that O(X)x/myO(X)x is a domain (Proposition 4.5), and so F is reduced
in x. �

Corollary 4.3. For every morphism ϕ : X → Y there is a dense special open
set U ⊆ X such that all fibers of the morphism ϕ|U : U → Y are reduced and smooth.

Proof. One easily reduces to the case where X is irreducible. Then there is
a special open set U ⊆ X which is smooth (Corollary 4.1) and such that dϕx is
surjective for all x ∈ U (Theorem 4.2). Now the claim follows from the previous
Lemma 4.7. �

Corollary 4.4 (Lemma of Sard). Let ϕ : Cn → Cm be a dominant morphism

and set S := {x ∈ Cn | dϕx is not surjective}. Then S is closed and ϕ(S) is a proper
closed subset of Cm. In particular, there is a dense open set U ⊆ Cm such that all
fibers ϕ−1(y) for y ∈ U are reduced and smooth of dimension n−m.

Proof. If ϕ = (f1, . . . , fm) then S = {x ∈ Cn | rk Jac(f1, . . . , fm)(x) < m}
and so S is closed in Cn. Moreover, the differential of ϕ|S : S → Cm at any point of
S is not surjective. Therefore, by Theorem 4.2, the closure of the image ϕ(S) has
dimension strictly less than m. �

Exercise 4.22. Let f ∈ C[x1, . . . , xn] be a non-constant polynomial. Then V(f −λ) is
a smooth hypersurface for almost all λ ∈ C.

Corollary 4.5. If ϕ : X → Y is a morphism such that dϕx = 0 for all x ∈ X,
then the image ϕ(X) is finite. In particular, if X is connected then ϕ is constant.
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Proof. If X ′ ⊆ X is an irreducible component and Y ′ := ϕ(X ′), then the
induced morphism ϕ′ : X ′ → Y ′ has the same property, namely dϕ′x = 0 for all
x ∈ X ′. It follows now from Theorem 4.2 that dim Y ′ = 0. Hence ϕ is constant on
X ′. �

Example 4.12. Let V be a vector space and W ⊆ V a subspace. If X ⊆ V is a
closed irreducible subvariety such that TxX ⊆W for all x ∈ X then X ⊆ x+W for
any x ∈ X.
(This follows from the previous corollary applied to the morphism ϕ : X → V/W
induced by the linear projection V → V/W .)
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5. NORMAL VARIETIES AND DIVISORS

Normality.

Definition 5.1. Let A ⊆ B be rings. An element b ∈ B is integral over A if b
satisfies an equation of the form

bn =

n−1∑

i=0

aib
i where ai ∈ A.

Equivalently, b ∈ B is integral over A if and only if the subring A[b] ⊆ B is a finite
A-module.

If every element from B is integral over A we say that B is integral over A.

Exercise 5.1. Let A ⊆ B be rings. If A is Noetherian and B finite over A, then B is
integral over A.

Lemma 5.1. Let A ⊆ B ⊆ C be rings and assume that A is Noetherian.

(1) If B is integral over A and C integral over B, then C is integral over A.
(2) The set

B′ := {b ∈ B | b is integral over A}
is a subring of B.

Proof. (1) Let c ∈ C. Then we have an equation cm =
∑m−1

j=0 bjc
j with bj ∈ B.

In particular, the coefficients bj are integral over A and so, by induction, A1 :=
A[b0, b1, . . . , bm−1] is a finitely generated A-module. Moreover, A1[c] is a finitely gen-
erated A1-module, hence a finitely generated A-module. But then A[c] ⊆ A1[c] is also
finitely generated.

(2) Let b1, b2 ∈ B′. Then A[b1] is integral over A and b2 is integral over A, hence
integral over A[b1], and so A[b1, b2] is integral over A[b1]. Thus, by (1), A[b1, b2] is
integral over A which implies that b1 + b2 and b1b2 are both integral over A, hence
belong to B′. �

Exercise 5.2. Let f ∈ C[x] be a non-constant polynomial. Then C[x] is integral over
the subalgebra C[f ].

Definition 5.2. Let A be a domain with field of fraction K. We call A integrally
closed if the following holds:

If x ∈ K is integral over A then x ∈ A.

An affine variety X is normal if X is irreducible and O(X) is integrally closed. We
say that X is normal in x ∈ X if the local ring OX,x is integrally closed.

Example 5.1. A unique factorization domain A is integrally closed. In particular,
Cn is a normal variety.
(Let K be the field of fractions of A and x ∈ K integral over A: xn =

∑n−1
i=0 aix

i

where ai ∈ A. Write x = a
b

where a, b ∈ A have no common divisor. Then an =

b(
∑n−1

i=0 aib
n−i−1ai) which implies that b is a unit in A and so x ∈ A.)

Exercise 5.3. If the domain A is integrally closed, then so is every ring of fraction AS

where 1 ∈ S ⊆ A is multiplicatively closed.
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Lemma 5.2. Let X be an irreducible variety. Then X is normal if and only if all
local rings OX,x are integrally closed.

Proof. If X is normal then OX,x = O(X)mx
is integrally closed (see the Exercise

above), and the reverse implication follows from O(X) =
⋂

x∈X OX,x (Exercise 1.26).
�

Integral closure and normalization.

Proposition 5.1. Let A be a finitely generated C-algebra with no zero-divisors
6= 0 and with field of fractions K, and let L/K be a finite field extension. Then

A′ := {x ∈ L | x is integral over A} ⊇ A

is a finitely generated C-algebra which is finite over A.

Proof. We already know that A′ is a C-algebra (Lemma 5.1(2)).

(a) We first assume that A = C[z1, . . . , zm] is a polynomial ring and K =
C(z1, . . . , zm). Let L = K[x] where x is integral over A and [L : K] =: n. De-
note by x1 := x, x2, . . . , xn the conjugates of x in some Galois extension L′ of K.
Clearly, all xj are integral over A, because they satisfy the same equation as x.

If y =
∑n−1

i=0 cix
i (ci ∈ K) is an arbitrary element of L we obtain the “conjugates”

of y in L′ in the form

yj =
n−1∑

i=0

cix
i
j for j = 1, . . . , n.

The n × n-matrix X := (xi
j) has determinant d =

∏
j<k(xj − xk) which is integral

over A. Obviously, d2 is symmetric, hence fixed under the Galois group of L′/K, and
so d2 ∈ K. Since d2 is also integral over A we finally get d2 ∈ A. From Cramer’s rule
we obtain 


c1
...
cn


 = X−1



y1
...
yn


 =

1

d
Adj(X)



y1
...
yn




This shows that if y is integral over A then so is dci for all i, hence d2ci ∈ A for all
i. This implies that d2A′ ⊆∑n−1

i=0 Ax
i, and so A′ is a finitely generated A-module.

(b) For the general case we use Noether’s Normalization Lemma (Theorem 3.1)
which states that A contains a polynomial ring A0 = C[x1, . . . , xm] such that A is
finite over A0. Thus A is integral over A0 and therefore, by Lemma 5.1(1)

A′ = {x ∈ L | x is integral over A0}.
It follows from part (a) that A′ is a finitely generated A0-module, hence also a finitely
generated A-module. �

Definition 5.3. Let A be a finitely generated C-algebra with no zero-divisors
6= 0. If L is a finite field extension of the field of fractions of A, then

A′ := {x ∈ L | x is integral over A} ⊇ A

is called the integral closure of A in L. Clearly, A′ is integrally closed.
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Let X be an irreducible affine variety and denote by O(X)′ ⊆ C(X) the integral
closure of O(X) in its field of fractions C(X). By Proposition 5.1 there is a normal

variety X̃ and a finite birational morphism η : X̃ → X such that O(X̃) ≃ O(X)′.
More precisely, we have the following result.

Lemma 5.3. Let X be an irreducible variety and η : X̃ → X a morphism with the
following two properties:

(1) X̃ is normal;
(2) η is finite and birational.

Then O(X̃) is the integral closure of η∗(O(X)) in C(X̃) = η∗(C(X)), and we have
the following universal property:

(P) If Y is a normal affine variety then every dominant morphism ϕ : Y → X
factors through η: There is a uniquely determined ϕ̃ : Y → X̃ such that
ϕ = η ◦ ϕ̃:

X̃

η

��
Y

ϕ //

ϕ̃

88q
q

q
q

q
q

q

X

Proof. Since η is birational we have η∗(O(X)) ⊆ O(X̃) ⊆ C(X̃) = η∗(C(X)).
By (2) O(X̃) is finite, hence integral over η∗(O(X)), and by (1) it is the integral
closure of η∗(O(X)).

If Y is normal affine variety and ϕ : Y → X a dominant morphism then

O(X)
∼→ ϕ∗(O(X)) ⊆ O(Y ) ⊆ C(Y ).

Denote by O(X)′ the integral closure of O(X) in C(X). Since O(Y ) is integrally
closed it follows that ϕ∗(O(X)′) ⊆ C(Y ) is contained in O(Y ). Since η∗ induces
an isomorphism O(X)′

∼→ O(X̃) there is a uniquely determined homomorphism

ρ : O(X̃)→ O(Y ) which makes the following diagram commutative:

O(X̃)

ρ

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

O(X)′

≃

OO

vvnnnnnnnnnnnnn

O(Y ) O(X)
ϕ∗

oo
?�

⊆

OO
η∗

ZZ

Clearly, the corresponding morphism ϕ̃ : Y → X̃ is the unique morphism such that
ϕ = η ◦ ϕ̃. �

Definition 5.4. The morphism η : X̃ → X constructed above is called normal-
ization of X. It follows from Lemma 5.3 that it is unique up to a uniquely determined
isomorphism.

Exercise 5.4. If ϕ : X → Y is a finite surjective morphism where X is irreducible and
Y is normal, then #ϕ−1(y) ≤ degϕ for all y ∈ Y . (See Proposition 3.8 and its proof.)
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Proposition 5.2. Let X be an irreducible variety. Then the set

Xnorm := {x ∈ X | X is normal in x}
is open and dense in X.

Proof. Let O(X)′ ⊆ C(X) be the integral closure of O(X) and define

a := {f ∈ O(X) | fO(X)′ ⊆ O(X)}.
Then a is a non-zero ideal of O(X), because O(X)′ is finite over O(X), and Xnorm =
X \ VX(a). In fact, for S := O(X) \mx we have

OX,x = O(X)S ⊆ O(X)′S

and the latter is the integral closure of OX,x. On the other hand, O(X)S = O(X)′S
if and only if S ∩ a 6= ∅ which is equivalent to x /∈ VX(a). �

Exercise 5.5. Consider the morphism ϕ : C2 → C4, (x, y) 7→ (x, xy, y2, y3).

(1) ϕ is finite and ϕ : C2 → Y := ϕ(C2) is the normalization.
(2) 0 ∈ Y is the only non-normal and the only singular point of Y .
(3) Find defining equations for Y ⊆ C4 and generators of the ideal I(Y ).

Exercise 5.6. If X is a normal variety then so is X × Cn.

Discrete valuation rings and smoothness. Let K be a field.

Definition 5.5. A discrete valuation of the field K is a surjective map ν : K∗ :=
K \ {0} → Z with the following properties:

(a) ν(xy) = ν(x) + ν(y);
(b) ν(x+ y) ≥ min(ν(x), ν(y)).

To simplify the notation one usually defines ν(0) :=∞.

Example 5.2. Let K = Q and p ∈ N a prime number. Define νp(x) := r ∈ Z if p
occurs with exponent r in the rational number x 6= 0. Then νp : Q∗ → Z is a discrete
valuation of Q.

The following lemma collects some facts about discrete valuations. The easy
proofs are left to the reader.

Lemma 5.4. Let K be a field and ν : K∗ → Z a discrete valuation.

(1) A := {x ∈ K | ν(x) ≥ 0} is a subring of K.
(2) m := {x ∈ K | ν(x) > 0} ⊆ A is a maximal ideal of A.
(3) {x ∈ K | ν(x) = 0} are the units of A.
(4) For every non-zero x ∈ K we have x ∈ A or x−1 ∈ A.
(5) m = (x) for every x ∈ K with ν(x) = 1.
(6) mk = {x ∈ K | ν(x) ≥ k} and these are all non-zero ideals of A.
(7) If m = (x) then every z ∈ K has a unique expression of the form z = txk

where k ∈ Z and t is a unit of A.

Definition 5.6. A domain A is called a discrete valuation ring if there is a
discrete valuation ν of its field of fractions K such that A = {x ∈ K | ν(x) ≥ 0}. In
particular, A has all the properties listed in Lemma 5.4 above.

Exercise 5.7. Let A be a discrete valuation ring with field of fraction K. If B ⊆ K is
a subring containing A then either B = A or B = K.
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In the sequel we will use the following characterization of a discrete valuation
rings (see [AtM69, Proposition 9.2]).

Proposition 5.3. Let A be a Noetherian local domain of dimension 1, i.e. the
maximal ideal m 6= (0) and (0) are the only prime ideals in A. Then the following
statements are equivalent:

(i) A is a discrete valuation ring.
(ii) A is integrally closed.
(iii) The maximal ideal m is principal.
(iv) dimA/m m/m2 = 1.
(v) Every non-zero ideal of A is a power of m.
(vi) There is an x ∈ A such that every non-zero ideal of A is of the form (xk).

Proof. (i)⇒(ii): If x ∈ K and x /∈ A then A[x] = K which is not finite over A.

(ii)⇒(iii): Let a ∈ m, a 6= 0. Then mk ⊆ (a) and mk−1 6⊆ (a) for some k > 0.
Choose an element b ∈ mk−1 \ (a) and put x := a

b
. Then x−1m = 1

a
bm ⊆ 1

a
mk ⊆ A.

If x−1m ⊆ m then x−1 would be integral over A and so x−1 ∈ A, contradicting the
construction. Thus x−1m = A and so m = (x).

(iii)⇒(iv): If m = (x) then m/m2 = A/m · (x+ m2), and m2 6= m.

(iv)⇒(v): Let a ⊆ A be a non-zero ideal. Then
√

a = m and so mk ⊆ a for some
k ∈ N. Put Ā := A/mk and denote by m̄ ⊆ Ā the image of m. Since m = (x) + m2

we get m = (x) + mk for all k ∈ N and so m̄ = (x̄) ⊆ Ā. Now it is easy to see that
ā = m̄r for some r ≤ k, and so a = mr.

(v)⇒(vi): We have m 6= m2. Choose x ∈ m \m2. Then, by assumption, (x) = mk

for some k ≥ 1, and so m = (x).

(vi)⇒(i): By assumption, every element a ∈ A has a unique expression of the
form a = txk where k ∈ N and t a unit of A. Define ν(a) := k. This has a well-
defined extension to K∗ by setting ν(a

b
) := ν(a)− ν(b) for a, b ∈ A, b 6= 0. One easily

verifies that ν is a discrete valuation of K and that A is the corresponding valuation
ring. �

If Y be an irreducible curve, i.e. dim Y = 1, then the local rings OY,y satisfy the
assumptions of the proposition above. The equivalence of (i), (ii) and (iv) then gives
the following result. (In fact, we do not need to assume that Y is irreducible; cf.
Theorem 4.1.)

Proposition 5.4. Let Y be an affine variety and y ∈ Y such that dimy Y = 1.
Then the following statements are equivalent:

(i) The local ring OY,y is a discrete valuation ring.
(ii) Y is normal in y.
(iii) Y is smooth in y.

In particular, a normal curve is smooth and an irreducible smooth curve is normal.

Remark 5.1. Let X be an irreducible variety and H ⊆ X an irreducible hyper-
surface, i.e. codimX H = 1. The ideal p := I(H) of H is a minimal prime ideal 6= (0)
and thus the localization OX,H := O(X)p is a local Noetherian domain of dimension
1. If X is normal it follows from Proposition 5.3 that OX,H is a discrete valuation
ring which corresponds to a discrete valuation νH : C(X)∗ → Z.
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E.g. if f ∈ C[x1, . . . , xn] is a non-constant irreducible polynomial and H :=
V(f), then the valuation νH has the following description: For a rational function
r ∈ C(x1, . . . , xn) we have νH(r) = m if f occurs with exponent m in a primary
decomposition of r.

Normal varieties. We start with the following generalization of the previous
result saying that normal curves are smooth (Proposition 5.4). Recall that the sin-
gular points Xsing of an affine variety form a closed subset with a dense complement
(Proposition 4.1).

Proposition 5.5. Let X be a normal affine variety. Then codimX Xsing ≥ 2.

Proof. (a) Let H ⊆ X be an irreducible hypersurface and assume that I(H) =
(f). We claim that if x ∈ H is a singular point of X then x is a singular point
of H , too. In fact, O(H) = O(X)/(f) and mH,x = mx/fO(X). Thus mH,x/m

2
H,x =

(mx/m
2
x)/C · f̄ and so dimTxH ≥ dimTxX − 1 > dimX − 1 = dimH .

(b) Now assume that codimX Xsing = 1, and let H ⊆ Xsing be an irreducible
hypersurface of X. If p := I(H) is a principal ideal it follows from (a) that H
consists of singular points. But this contradicts the fact that the smooth points of
an irreducible variety form a dense open set.

In general, the localization OX,H is a discrete valuation ring (Remark 5.1) and
therefore its maximal ideal pOX,H is principal (Proposition 5.3). This implies that
we can find an element s ∈ O(X) \ p such that the ideal pO(X)s ⊆ O(X)s = O(Xs)
is principal. Since pO(X)s = I(H ∩Xs) we arrive again at a contradiction, namely
that all points of H ∩Xs are singular. �

Another important property of normal varieties is that regular functions can be
extended over closed subset of codimension ≥ 2.

Proposition 5.6. Let X be a normal affine variety and r ∈ C(X) a rational
function which is defined on an open set U ⊆ X. If codimX X \ U ≥ 2 then r is a
regular function on X.

Proof. Define the ”ideal of denominators” a := {q ∈ O(X) | q · r ∈ O(X)}. By
definition U ⊆ V \ VX(a) and so, by assumption, codimX VX(a) ≥ 2.

Using Noether’s Normalization Lemma (Theorem 3.1) we can find a finite
surjective morphism ϕ : X → Cn. We have ϕ(VX(a)) = V(a ∩ C[x1, . . . , xn]) and
dimϕ(VX(a)) = dimV(a ∩ C[x1, . . . , xn]) ≤ n − 2. This implies that we can find
two polynomials q1, q2 ∈ a∩C[x1, . . . , xn] with no common divisor (see the following

Exercise 5.8). As a consequence, we can find p1, p2 ∈ O(X) such that r =
p1

q1
=
p2

q2
.

If r = r(1), r(2), . . . , r(d) are the conjugates of r in some finite field extension
L/C(x1, . . . , xn) of degree d containing C(X) we have

r(i) =
pi

1

q1
=
pi

2

q2
for i = 1, . . . , d
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where the p
(i)
1 are the conjugates of p1 and the p

(i)
2 the conjugates of p2. The element

r ∈ C(X) satisfies the equation

d∏

i=1

(t− r(i)) = td +

d∑

j=1

bjt
n−j = 0

where the coefficients bj ∈ C(x1, . . . , xn) are given by the elementary symmetric
functions sj in the following form:

bj = ±sj(r
(1), . . . , r(d)) = ± 1

qj
1

sj(p
(1)
1 , . . . , p

(d)
1 ) = ± 1

qj
2

sj(p
(1)
1 , . . . , p

(d)
2 ).

Since p1, p2 ∈ O(X) are integral over C[x1, . . . , xn] we see that both sj(p
(1)
1 , . . . , p

(d)
1 )

and sj(p
(1)
2 , . . . , p

(d)
2 ) belong to C[x1, . . . , xn]. Since q1 and q2 have no common factor

this implies that bj ∈ C[x1, . . . , xn]. As a consequence, r is integral over C[x1, . . . , xn]
and thus belongs to O(X). �

Exercise 5.8. Let a ⊆ C[x1, . . . , xn] be an ideal with the property that any two
elements f1, f2 ∈ a have a non-trivial common divisor. Then there is a non-constant h
which divides every element of a.

Corollary 5.1. If X is a normal variety then O(X) =
⋂

p
O(X)p where p runs

through the minimal prime ideals 6= (0).

Proof. Let r ∈ ⋂
p
O(X)p and define a := {q ∈ O(X) | q · r ∈ O(X)}. It

follows that a 6⊆ p for all minimal primes p 6= 0, and so VX(a) does not contain an
irreducible hypersurface. This implies that codimX VX(a) ≥ 2 and so r is regular by
the Proposition 5.6 above. �

We thus have the following characterization of normal varieties. An irreducible
variety X is normal if and only if the following two condition hold:

(a) For every minimal prime p 6= (0) the local ring O(X)p is a discrete valuation
ring;

(b) O(X) =
⋂

p
O(X)p where p runs through the minimal prime ideals 6= (0).

We have seen in examples that there are bijective morphisms which are not
isomorphisms. This cannot happen if the target variety is normal.

Proposition 5.7. Let X be an irreducible and Y a normal affine variety and let
ϕ : X → Y be a dominant morphism. Assume

(a) codimY Y \ ϕ(X) ≥ 2, and
(b) degϕ = 1.

Then ϕ is an isomorphism.

Proof. By assumption (b), we have the following commutative diagram:

O(Y )
⊆−−−→ O(X)

⊆

y ⊆

y
C(Y ) C(X)
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If H ⊆ Y is an irreducible hypersurface then, by assumption (a), H meets the image

ϕ(X) in a dense set and so ϕ(ϕ−1(H)) = H . This implies that there is an irreducible

hypersurface H ′ ⊆ X such that ϕ(H ′) = H . If we denote by p := I(H) ⊆ O(Y ) and
p′ := I(H ′) ⊆ O(X) the corresponding minimal prime ideals we get p′ ∩ O(Y ) = p.
Thus

O(Y )p ⊆ O(X)p′ $ C(Y ) = C(X).

Since O(Y )p is a discrete valuation ring this implies O(Y )p = O(X)p′ (see Exer-
cise 5.7). Thus, by Corollary 5.1,

O(X) ⊆
⋂

p′

O(X)p′ =
⋂

p

O(Y )p = O(Y ),

and the claim follows. �

There is a partial converse of Proposition 5.5 which is a special case of the so-
called Serre Criterion for Normality which we will explain below without giving a
proof.

Proposition 5.8. Let H ⊆ Cn be an irreducible hypersurface. If the singular
points Hsing have codimension ≥ 2 in H, then H is normal.

Example 5.3. Let Qn := V(x2
1 + x2

2 + · · ·+ x2
n) ⊆ Cn. Then dimQn = n− 1 and

0 ∈ Qn is the only singular point. Thus Qn is normal for n ≥ 3.

Exercise 5.9. Show that the nilpotent cone N := {A ∈M2 | A nilpotent} is a normal
variety.

Proposition 5.9 (Serre’s Criterion). Let X ⊆ Cn be the zero set of f1, . . . , fr ∈
C[x1, . . . , xn]: X := V(f1, . . . , fr). Define

X ′ := {x ∈ X | rk Jac(f1, . . . , fr)(x) < r}.
(1) If X \X ′ is dense in X then I(X) = (f1, . . . , fr) and X ′ = Xsing.
(2) If codimX X \X ′ ≥ 2 then X is normal.

Example 5.4. let N := {A ∈ Mn | A nilpotent} the nilpotent cone in Mn. We
claim that N is a normal variety.

Proof. Consider the morphism π : Mn → Cn, π(A) := (trA, trA2, . . . , trAn).
Then N = π−1(0). If P ∈ N is a nilpotent element of rank n− 1 then rk dπP = n. In
fact, tr(P + εX)k = tr(P k + εkP k−1X) = εk tr(P k−1X). Taking P in Jordan normal
form one easily sees that dπP : X 7→ (trX, trPX, trP 2X, . . . , trP n−1X) is surjective.
It follows that rk Jac(f1, . . . , fn)(P ) = n for the functions fj(A) := trAj and for
P ∈ N ′ := {nilpotent matrices of rank n−1}. Now one shows that codimN N \N ′ =
2. �

Divisors. Let X be a normal affine variety. Define

H := {H ⊆ X | H irreducible hypersurface}.
Definition 5.7. A divisor on X is a finite formal linear combination

D =
∑

H∈H

nH ·H where nH ∈ Z.
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We write D ≥ 0 if nH ≥ 0 for all H ∈ H. The set of divisors forms the divisor group

DivX =
⊕

H∈H

Z ·H.

Recall that for any irreducible hypersurface H ∈ H we have defined a discrete
valuation νH : C(X)∗ → Z whose discrete valuation ring is the local ring OX,H (see
Remark 5.1).

Definition 5.8. For f ∈ C(X)∗ we define the divisor of (f) by

(f) :=
∑

H∈H

νH(f) ·H.

Such a divisors is called a principal divisor.

Remarks 5.2. (1) (f) is indeed a divisor, i.e. νH(f) 6= 0 only for finitely
many H ∈ H.
(This is clear for f ∈ O(X)\{0}, because νH(f) > 0 if and only if H ⊆ V(f),
and follows for a general f = p

q
because (f) = (p)− (q), by definition.)

(2) (f · h) = (f) + (h) for all f, h ∈ C(X).
(3) (f) ≥ 0 if and only if f ∈ O(X).

(We have νH(f) ≥ 0 if and only if f ∈ OX,H . Since
⋂

H∈HOX,H = O(X) the
claim follows.)

(4) (f) = 0 if and only if f is a unit in O(X).
(If (f) = 0 then, by (3), f ∈ O(X) and f−1 ∈ O(X).)

Definition 5.9. Two divisors D,D′ ∈ DivX are called linearly equivalent , writ-
ten D ∼ D′, if D − D′ is a principal divisor. The set of equivalence classes is the
divisor class group of X:

ClX := DivX/{principal divisors}
It follows that we have an exact sequence of commutative groups

1→ O(X)∗ → C(X)∗ → DivX → ClX → 0

Remark 5.3. We have ClX = 0 if and only if O(X) is a unique factorization
domain. In fact, a unique factorization domain is characterized by the condition that
all minimal prime ideals p 6= (0) are principal.

Example 5.5. Let C ⊆ C2 be a smooth curve. If f ∈ O(C) and f̃ ∈ C[x, y] a
representative of f , then

(f) =
∑

P∈C∩V(f̃)

mP · P,

and the integers mP > 0 can be understood as the intersection multiplicity of C
and V(f̃) in P . E.g. if the intersection is transversal, i.e., TPC ∩ TPV(f̃) = (0) then
mP = 1 (see the following Exercise 5.10).

Exercise 5.10. Let C,E ⊆ C2 be two irreducible curves, I(C) = (f) and I(E) = (h).
If P ∈ C ∩ E define mP := dimC C[x, y]/(f, h). Show that

(1) If C is smooth and h̄ = h|C ∈ O(C), then (h̄) =
∑

P∈C∩E mP · P
(2) If P ∈ C ∩E and TPC ∩ TPE = (0) then mP = 1.
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Exercise 5.11. (1) For the parabola C = V(y − x2) we have ClC = (0).
(2) For an elliptic curve E = V(y2 − x(x2 − 1)) every divisor D is linearly equivalent

to 0 or to P for a suitable point P ∈ E.
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