A Littelmann Path Model for Borcherds-Kac-Moody algebras

05 and 12 December 2008 Polyxeni Lamprou arXiv:0804.1485

0 - Review

0.1 Notation. Let \mathfrak{g} be a BKM algebra associated with an $n \times n$ BKM matrix A, and set $I = \{1, 2, \dots, n\}.$

 $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{h} \oplus \mathfrak{n}^-$,

 ${\mathfrak n}$ is generated by the $e_i,\,i\in I$,

 \mathfrak{n}^- is generated by the $f_i, i \in I$,

 \mathfrak{h} is the Cartan subalgebra.

$$Q = \bigoplus_{i \in I} \mathbb{Z}\alpha_i, \text{ the root lattice of } \mathfrak{g}.$$

 $Q^+ = \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i$, the positive root lattice of \mathfrak{g} .

 $P := \{h \in \mathfrak{h}^* | \langle \alpha_i^{\vee}, h \rangle \in \mathbb{Z}, i \in I \}, \text{ the weight lattice of } \mathfrak{g}.$

 $P^+ := \{h \in P \mid \langle \alpha_i^{\vee}, h \rangle \ge 0, i \in I\}$, the dominant weights.

0.2 Representations of \mathfrak{g}

A g-module V is called h-diagonalizable if (a) $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}$, where $V_{\lambda} = \{ v \in V \mid hu = \lambda(h)v, h \in \mathfrak{h} \}.$ (b) dim $V_{\lambda} < +\infty$.

Let V be an \mathfrak{h} -diagonalizable \mathfrak{g} -module.

- V is called integrable, if for all $i \in I^{re}$, f_i and e_i act locally nilpotently on V.
- V is called a highest weight module if there exists Λ ∈ h* and 0 ≠ v_Λ ∈ V_Λ, such that
 (a) e_iv_Λ = 0 for all i ∈ I.
 (b) V = U(𝔅)v_Λ.

If V is a highest weight module of highest weight Λ , then (a) $V = U(\mathfrak{n}^-)v_{\Lambda}$. (b) dim $V_{\Lambda} = 1$. (c) If $V_{\lambda} \neq 0$, then $\lambda \in \Lambda - Q^+$.

Lemma. Let V be a highest weight \mathfrak{g} -module of highest weight Λ . If V is integrable, then $\langle \alpha_i^{\vee}, \Lambda \rangle \in \mathbb{Z}_{>0}$ for all $i \in I^{re}$.

For each $\Lambda \in \mathfrak{h}^*$ there exists a unique irreducible highest weight \mathfrak{g} -module of highest weight Λ . We denote in by $V(\Lambda)$. **Lemma** Take $\Lambda \in P^+$ and for all $i \in I$, set $m_i = \langle \alpha_i^{\vee}, \Lambda \rangle \in \mathbb{Z}_{\geq 0}$. Let V be a highest weight g-module of highest weight Λ .

Then $V \simeq V(\Lambda)$ (and thus irreducible) if and only if:

(a) if $m_i = 0$, then $f_i v_{\Lambda} = 0$. (b) for all $i \in I^{re}$ one has $f_i^{m_i+1}v_{\Lambda} = 0$.

Example. Let $A \in M_1(\mathbb{R})$ and $\Lambda \in P^+$. Set $m = \langle \alpha_1^{\vee}, \Lambda \rangle \in \mathbb{Z}_{\geq 0}$. A basis for the g-module $V(\Lambda)$ is :

- $\{v_{\Lambda}, f_1v_{\Lambda}, \dots, f_1^mv_{\Lambda}\}$, if $a_{11} = 2$.
- $\{v_{\Lambda}\}$, if $a_{11} \leq 0$ and m = 0.
- $\{f_1^k v_{\Lambda} | k \in \mathbb{Z}_{\geq 0}\}$, if $a_{11} \leq 0$ and m > 0.

<u>1 – The Path Model</u>

From now on, we assume that the BKM matrix has all its entries in \mathbb{Z} .

A path $\pi : [0, 1] \to \mathbb{R}P$ is a continuous function such that $\pi(0) = 0$ and $\pi(1) \in P$.

We identify two paths, if they are equal up to a reparametrization.

 \mathbb{P} :=set of all paths.

We call the weight of a path $\pi \in \mathbb{P}$ its endpoint, and we write wt $\pi = \pi(1)$. For all $i \in I$ define on \mathfrak{h}^* (or on P): $r_i(x) = x - \langle \alpha_i^{\vee}, x \rangle \alpha_i.$

If $i \in I^{re}$, then r_i is a simple reflection. Set $W := < r_i \, | \, i \in I^{re} > .$

If $i \in I^{im}$, then $r_i^k \neq 1$, for all k > 0. Set $T := < r_i \mid i \in I > .$

Note that T is a monoid.

1.1 Distance of two weights.

Fix $\Lambda \in P^+$.

Let $\mu, \nu \in T\Lambda$. We write $\mu > \nu$ if there exists :

- a sequence of weights in $T \wedge \mu := \lambda_1, \lambda_2, \dots, \lambda_k := \nu$
- and positive roots in $W\Pi \cap \Delta^+$ $\beta_1, \ldots, \beta_{k-1}$

such that $\lambda_i = r_{\beta_i} \lambda_{i+1}$ and $\langle \beta_i^{\vee}, \lambda_{i+1} \rangle > 0$, for all *i*, with $1 \le i \le k-1$.

We call the *distance* of μ and ν and write dist (μ, ν) the maximal length of such sequences.

If $\mu = r_{\beta}\nu > \nu$ and dist $(\mu, \nu) = 1$ we write $\nu \stackrel{\beta}{\leftarrow} \mu$.

9

1.2 *a*-chains. Let $\mu > \nu$ be two weights in $T\Lambda$ and let $0 < a \le 1$ be a rational number. An *a*-chain for (μ, ν) is a sequence :

$$\nu := \nu_s \stackrel{\beta_s}{\leftarrow} \nu_{s-1} \stackrel{\beta_{s-1}}{\leftarrow} \cdots \stackrel{\beta_2}{\leftarrow} \nu_1 \stackrel{\beta_1}{\leftarrow} \nu_0 =: \mu,$$

such that for all i with $1 \leq i \leq s$:

(a) $a\langle \beta_i^{\vee}, \nu_i \rangle \in \mathbb{Z}_{>0}$, if $\beta_i \in W \prod_{re} \cap \Delta^+$. (b) $a\langle \beta_i^{\vee}, \nu_i \rangle = 1$, if $\beta_i \in W \prod_{im}$.

1.3 Generalized Lakshmibai–Seshadri paths.

Suppose we have :

 $\{\lambda_1, \lambda_2, \ldots, \lambda_k\}$ a sequence of weights in $T\Lambda$,

 $\{0 < a_1 < a_2 < \cdots < a_k = 1\}$ a sequence of rational numbers in [0, 1],

such that for all *i*, with $1 \le i \le k - 1$:

(1) there exists an a_i -chain for $(\lambda_i, \lambda_{i+1})$

(2) if $\lambda_k \neq \Lambda$, there exists an 1-chain for (λ_k, Λ) .

To these data we attach a piecewise linear path which for $t \in [a_{j-1}, a_j]$, takes the form

$$\pi(t) = \sum_{i=1}^{j-1} (a_i - a_{i-1})\lambda_i + (t - a_{j-1})\lambda_j.$$

Such a path is called a Generalized Lakshmibai-Seshadri path of shape Λ .

We denote the above path by

$$\pi = (\lambda_1, \lambda_2, \dots, \lambda_k; 0, a_1, \dots, a_{k-1}, 1).$$

 \mathbb{P}_{Λ} := set of Generalized Lakshmibai-Seshadri paths of shape Λ .

One can check that wt $\pi \in \Lambda - Q^+$.

Then $\mathbb{P}_{\Lambda} \subset \mathbb{P}$.

There is a unique path in \mathbb{P}_{Λ} of weight Λ , namely the linear path $\pi_{\Lambda} := (\Lambda; 0, 1)$.

Remark.

For any $\mu \in P$, denote by $\pi_{\mu}(t) = \mu t$.

For all $i \in I^{re}$, $\pi_{r_i \Lambda}(t) = (r_i \Lambda)t$ is a GLS path.

Similarly, for all $w \in W$, $\pi_{w\Lambda}$ is a GLS path.

For imaginary indices, this is not true in general.

1.4 Examples.

(1) Take A = (2) and \mathfrak{g} the associated Kac-Moody algebra, $\Pi = \{\alpha\}, r := r_{\alpha}$.

Take $\Lambda \in P^+$ such that $\langle \alpha^{\vee}, \Lambda \rangle = m > 0$. The only GLS paths of shape Λ are :

$$\pi_0 = (\Lambda; 0, 1),$$

$$\pi_1 = (r\Lambda, \Lambda; 0, \frac{1}{m}, 1),$$

$$\pi_2 = (r\Lambda, \Lambda; 0, \frac{2}{m}, 1),$$

.....

$$\pi_m = (r \Lambda; 0, 1).$$

(2) Take A = (-k) with $k \ge 0$, \mathfrak{g} the associated generalized Kac-Moody algebra, $\Pi = \{\alpha\}, r := r_{\alpha}$.

Take $\Lambda \in P^+$ such that $\langle \alpha^{\vee}, \Lambda \rangle = m > 0$. The only GLS paths of shape Λ are :

15

1.5 Applications of the Littelmann Path Model.

Define the character of \mathbb{P}_Λ to be

char
$$\mathbb{P}_{\Lambda} = \sum_{\pi \in \mathbb{P}_{\Lambda}} e^{\pi(1)}.$$

(1) The multiplicity of a weight ν in $V(\Lambda)$ equals the number of different paths in \mathbb{P}_{Λ} with endpoint ν . In particular,

char
$$V(\Lambda) = \text{char } \mathbb{P}_{\Lambda}$$
.

(2) By defining the tensor product of two paths to be their concatenation, Littelmann gave a combinatorial proof of the Parthasaraty-Ranga Rao-Varadarajan conjecture for the decomposition of the tensor product of two highest weight modules.

(3) Littelmann defined root operators, \tilde{e}_i , \tilde{f}_i on \mathbb{P} ; these operators are similar to Kashiwara crystal basis operators. In particular, one can endow \mathbb{P} with a crystal structure. As a crystal $\mathbb{P}_{\Lambda} \simeq B(\Lambda)$.

2 – Definition of the Root Operators.

We will define root operators \tilde{f}_i , \tilde{e}_i on \mathbb{P}_{Λ} , for all $i \in I$.

For any $i \in I$ and $\pi \in \mathbb{P}_{\Lambda}$, let $h_i^{\pi} : [0, 1] \to \mathbb{R}$ be the continuous function defined by :

$$h_i^{\pi}(t) = \langle \alpha_i^{\vee}, \pi(t) \rangle.$$

Lemma. All local minima of h_i^{π} , $i \in I$, $\pi \in \mathbb{P}_{\Lambda}$ are integers.

Set $m_i^{\pi} = \min\{h_i^{\pi}(t) \mid t \in [0, 1]\} \in \mathbb{Z}.$

Let $P_i^{\pi} \in [0, 1] \cap \mathbb{Q}$ be maximal such that $h_i^{\pi}(P_i^{\pi}) = m_i^{\pi}.$ If $P_i^{\pi} = 1$ we set $\tilde{f}_i \pi = 0.$

If not, let $Q_i^{\pi} \in [P_i^{\pi}, 1] \cap \mathbb{Q}$ be minimal such that $h_i^{\pi}(Q_i^{\pi}) = m_i^{\pi} + 1.$

We set

$$\widetilde{f}_{i}\pi(t) = \begin{cases}
\pi(t), & t \in [0, P_{i}^{\pi}], \\
r_{i}\pi(t) + m_{i}^{\pi}\alpha_{i}, & t \in [P_{i}^{\pi}, Q_{i}^{\pi}], \\
\pi(t) - \alpha_{i}, & t \in [Q_{i}^{\pi}, 1].
\end{cases}$$

Notice that wt $\tilde{f}_i \pi = \text{wt } \pi - \alpha_i$.

Lemma. In $[P_i^{\pi}, Q_i^{\pi}]$ the function h_i^{π} is strictly increasing.

The \tilde{e}_i are defined as follows :

Let $\tilde{e}_i \pi \neq 0$. Then $\tilde{e}_i \pi = \pi'$ if and only if $\tilde{f}_i \pi' = \pi$.

Then wt $\tilde{e}_i \pi = \text{wt } \pi + \alpha_i$

Lemma. Let $\pi \in \mathbb{P}_{\Lambda}$ and $i \in I^{im}$. Then h_i^{π} is increasing, and one of the following is true :

1.
$$P_i^{\pi} = 0$$
 and $\tilde{f}_i \pi \neq 0$.

2. $P_i^{\pi} = 1$ and $\tilde{f}_i \pi = 0$.

20

Lemma. Take $i \in I$ and let $\pi \in \mathbb{P}_{\Lambda}$ be such that $\tilde{f}_i \pi = \pi' \neq 0$.

- 1. If $i \in I^{im}$, then $h_i^{\pi'}(t) \ge h_i^{\pi}(t)$, so $P_i^{\pi'} = P_i^{\pi} = 0$, whereas $Q_i^{\pi'} \le Q_i^{\pi}$, with equality if and only if $a_{ii} = 0$. In particular, $\tilde{f}_i^k \pi \neq 0$, for all $k \ge 0$.
- 2. If $i \in I^{re}$, then $m_i^{\pi'} = m_i^{\pi} 1$ and $P_i^{\pi'} = Q_i^{\pi}$. In particular, there exists $k \in \mathbb{N}$ such that $\tilde{f}_i^k \pi = 0$.

Proposition. The set \mathbb{P}_{Λ} is stable under the action of the root operators.

Sketch of Proof.

Let $\pi = (\lambda_1, \dots, \lambda_k; a_0, a_1, \dots, a_{k-1}, 1)$ be a GLS path of shape Λ such that $\tilde{f}_i \pi \neq 0$.

Since a GLS path π is piecewise linear, $P_i^{\pi} = a_t$ for some $0 \le t \le k - 1$. If $i \in I^{im}$, then t = 0.

We can assume $a_{p-1} < Q_i^{\pi} \le a_p$ for $t+1 \le p \le k$.

The path $\tilde{f}_i \pi$ is equal to $f_i \pi = (\lambda_1, \dots, \lambda_t, r_i \lambda_{t+1}, \dots, r_i \lambda_p, \lambda_p, \dots \lambda_k;$ $a_0, a_1, \dots, a_{p-1}, Q_i^{\pi}, a_p, \dots, a_k),$ with t = 0 if $i \in I^{im}$.

We know that $\langle \alpha_i^{\vee}, \lambda_t \rangle \leq 0$ and $\langle \alpha_i^{\vee}, \lambda_j \rangle > 0$, for all $j \in \{t + 1, p\}$.

22

We need to show that there exists

- an a_t -chain for $(\lambda_t, r_i\lambda_{t+1})$,
- a_j -chains for $(r_i\lambda_j, r_i\lambda_{j+1})$ for all $j \in \{t + 1, p-1\}$,
- an Q_i^{π} -chain for $(r_i \lambda_p, \lambda_p)$.

Theorem. Let \mathcal{F} denote the monoid generated by the $\tilde{f}_i, i \in I$ and $\pi_{\Lambda}(t) = \Lambda t$. Then

$$\mathbb{P}_{\Lambda} = \mathcal{F}\pi_{\Lambda}.$$

Sketch of Proof.

- Since $\pi_{\Lambda} \in \mathbb{P}_{\Lambda}$ and the $\tilde{f}_i, i \in I$ stabilise \mathbb{P}_{Λ} , we obtain $\mathcal{F}\pi_{\Lambda} \subset \mathbb{P}_{\Lambda}$.
- We show that π_{Λ} is the only path in \mathbb{P}_{Λ} such that $\tilde{e}_i \pi_{\Lambda} = 0$ for all $i \in I$.
- Take any path $\pi \neq \pi_{\Lambda}$ in \mathbb{P}_{Λ} . There exists $i \in I$ and $\pi' \in \mathbb{P}_{\Lambda}$ such that $\tilde{e}_i \pi = \pi'$ and so $\pi = \tilde{f}_i \pi'$. Then

wt
$$\pi' =$$
 wt $\pi + \alpha_i$.

If $\pi' \neq \pi_{\Lambda}$ we continue the procedure.

• Since for any path $\pi \in \mathbb{P}_{\Lambda}$, wt $\pi \leq \Lambda$ this procedure will stop.

<u>2–The Character Formula.</u>

Recall that for an \mathfrak{h} -diagonalisable \mathfrak{g} -module V, its character is defined to be :

char
$$V := \sum_{\lambda \in \mathfrak{h}^*} (\dim V_{\lambda}) e^{\lambda}.$$

We have computed the character of the irreducible integrable highest weight \mathfrak{g} -module $V(\Lambda)$.

char
$$V(\Lambda) = \frac{\sum\limits_{w \in W} \sum\limits_{F \in \mathcal{P}(\Pi_{im})^{\Lambda}} (-1)^{\ell(w) + |F|} e^{w(\Lambda + \rho - s(F))}}{\sum\limits_{w \in W} \sum\limits_{F \in \mathcal{P}(\Pi_{im})} (-1)^{\ell(w) + |F|} e^{w(\rho - s(F))}}$$

- $\mathcal{P}(\Pi_{im})$ is the set of all subsets of Π_{im} of pairwise orthogonal roots.
- $\mathcal{P}(\Pi_{im})^{\Lambda}$ is the set of all sets F in $\mathcal{P}(\Pi_{im})$, such that $\langle \alpha_i^{\vee}, \Lambda \rangle = 0$ for all $\alpha_i \in F$.

•
$$|F| = \text{Card } F$$
.

•
$$s(F) = \sum_{\alpha_i \in F} \alpha_i$$
.

• $\rho \in \mathfrak{h}^*$ such that $\langle \alpha_i^{\vee}, \rho \rangle = \frac{1}{2}a_{ii}$ for all $i \in I$.

Theorem. char $\mathbb{P}_{\Lambda} = \operatorname{char} V(\Lambda)$.

A crucial fact for the proof of the above is the following :

Lemma. Let $i, j \in I^{im}$ and $\pi_1, \pi_2 \in \mathbb{P}_{\Lambda}$ be such that $\tilde{f}_i \pi_1 = \tilde{f}_j \pi_2$. Then \tilde{f}_i, \tilde{f}_j commute and $\pi_1 = \tilde{f}_j \pi'_1$, for some $\pi'_1 \in \mathbb{P}_{\Lambda}$. Sketch of Proof of Theorem in case $\Pi = \Pi_{im}$.

We need to show that :

$$\sum_{\pi \in \mathbb{P}_{\Lambda}} \sum_{F \in \mathcal{P}(\Pi)} (-1)^{|F|} e^{-s(F) + \pi(1)} =$$
$$\sum_{F \in \mathcal{P}(\Pi)^{\Lambda}} (-1)^{|F|} e^{\Lambda - s(F)}$$

Let Ω be the set of all pairs $(F_0, \pi_0) \in \mathcal{P}(\Pi) \times \mathbb{P}_{\Lambda}$ such that :

for all $\alpha_i \notin F_0$ with $\langle \alpha_i^{\vee}, s(F_0) \rangle = 0$ we have $\tilde{e}_i \pi_0 = 0$.

For $(F_0, \pi_0) \in \Omega$ define

 $\Omega(F_0, \pi_0) := \{ (F_0 \setminus \{\alpha_{i_1}, \dots \alpha_{i_k}\}, \tilde{f}_{i_1} \cdots \tilde{f}_{i_k} \pi_0) \} \subset \mathcal{P}(\Pi) \times \mathbb{P}_{\Lambda}.$

Lemma. $\mathcal{P}(\Pi) \times \mathbb{P}_{\Lambda} = \bigsqcup_{(F_0,\pi_0) \in \Omega} \Omega(F_0,\pi_0).$

What we need to show becomes :

$$\sum_{\substack{(F_0,\pi_0)\in\Omega\\F\in\mathcal{P}(\Pi)^{\Lambda}}}\sum_{\substack{(F,\pi)\in\Omega(F_0,\pi_0)\\(-1)^{|F|}e^{\Lambda-s(F)}}}(-1)^{|F|}e^{-s(F)+\pi(1)} =$$

Set

$$\Sigma := \sum_{(F,\pi)\in\Omega(F_0,\pi_0)} (-1)^{|F|} e^{-s(F) + \pi(1)}$$

Lemma.

- 1. If $|\Omega(F_0, \pi_0)| > 1$, then $\Sigma = 0$.
- 2. If $|\Omega(F_0, \pi_0)| = 1$, then $\pi_0 = \pi_{\Lambda}$ and $F_0 \in \mathcal{P}(\Pi)^{\Lambda}$.