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0 — Review

0.1 Notation. Let g be a BKM algebra asso-
Ciated with an n x n BKM matrix A, and set
I={1,2,...,n}.

g=ndhdn,
n is generated by the e;, 1 € I,
n~ is generated by the f;, 1 € I,

h is the Cartan subalgebra.



Q = @ Za;, the root lattice of g.
i€l

Q1T = @ Z-gq;, the positive root lattice of g.
iel =

P:=1{h € b*|{a),h) € Z, 1 € I}, the weight
lattice of g.

Pt :={h € P|{(a),h) > 0,4 € I}, the domi-
nant weights.



0.2 Representations of g

A g-module V is called h-diagonalizable if

(a) V.= & V,, where
Aeh*

Vi={v eV |hu=Ah)v, h € h}.
(b) dim V) < +oo.

Let V be an b-diagonalizable g-module.

e V is called integrable, if for all « € I"¢, f;
and e; act locally nilpotently on V.

e VV is called a highest weight module if there
exists A € h* and 0 # vp € Vi, such that
(a) e;jun =0 for all 1 € 1.

(b) V =U(g)va.



If V is a highest weight module of highest
weight A, then

(a) V= U(n_)v/\.

(b) dim VA = 1.

(c) If Vy, # 0, then Ae A—QT.

Lemma. Let V be a highest weight g-module
of highest weight A. If V is integrable, then
(@), \) € Z>q for all 1 € I"®.

For each A € b* there exists a unique irre-
ducible highest weight g-module of highest weight
A. We denote in by V(A).



Lemma Take A € Pt and for all i € I, set
m; = (a),\) € Z>g. Let V be a highest weight
g-module of highest weight A.

Then V ~ V(A) (and thus irreducible) if and
only if:

(a) if m; = 0, then fi’U/\ = 0.

(b) for all ¢ € I"® one has f{”"'_l'lv/\ = 0.

Example. Let A € M{(R) and A € PT. Set
m = (ay,\) € Z>p. A basis for the g-module
V(A) is :

o {vp, f1vn, -5 T}, iT a1 = 2.
o {vp}, ifa;1 <0 and m = 0.

° {f]f’v/\|k€ZZo}, if a11 <0 and m > 0.



1 — The Path Model

From now on, we assume that the BKM matrix
has all its entries in Z.

A path 7 :[0,1] — RP is a continuous function
such that n(0) =0 and n(1) € P.

We identify two paths, if they are equal up to
a reparametrization.

P :=set of all paths.

We call the weight of a path = € P its endpoint,
and we write wt @ = 7w(1).



For all i € I define on h* (or on P):

ri(r) =x — (oz;/, ).

If 2 € I, then r; is a simple reflection. Set

W =<rilie I'"°>.

If i € I'™, then rf % 1, for all k> 0. Set

T =<rjlie I>.

Note that T is a monoid.



1.1 Distance of two weights.
Fix Ae Pt

Let u, v € TNA. We write u > v if there exists :

e a sequence of weights in T'A
on = >‘17>‘27“‘7)‘k: =V

e and positive roots in WNN AT
/817'"7/8k_1

such that A; = rg.A\;41 and (8Y,A\;4+1) > 0, for
all 2, with 1 <<k —1.

We call the distance of u and v and write
dist (i, v) the maximal length of such sequences.

If w = rgr > v and dist(u,v) = 1 we write

vV — L.



1.2 a-chains. Let u > v be two weights in T'A
and let O < a < 1 be a rational number. An
a-chain for (u,v) is a sequence :

. s Bs—1 B2 51 —.
UV = Vg = Ug_] < -+ U] < Vg =.U,

such that for all : with 1 << s :

(@) a(BY,v;) € Zso, if i€ WMren AT,
(b) CL(@/,V@) =1, if g; € WIll;,.
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1.3 Generalized Lakshmibai—Seshadri paths.
Suppose we have :
{1, Ao, ..., A} @ sequence of weights in T'A,

{0 <ayg <ap < -+ < ap = 1} a sequence of
rational numbers in [0, 1],

such that for all 2z, with 1 <:< k —1:
(1) there exists an a;-chain for (A\;, A\j4+1)

(2) if A, &= A, there exists an 1-chain for (A, N\).
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To these data we attach a piecewise linear path
which for t € [a;_1,a;], takes the form

7—1
m(t) = ) (a; —ai—1)Ni+ (¢t —aj_1)A;.
i=1

Such a path is called a Generalized Lakshmibai-
Seshadri path of shape A.
We denote the above path by

T = (A1,>\2,...,)\k;O,al,...,ak_l, 1).

PA := set of Generalized Lakshmibai-Seshadri
paths of shape A.

One can check that wt r e A — Q.
Then Py C P.
There is a unique path in Pp of weight A,

namely the linear path wa := (A;0,1).
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Remark.

For any p € P, denote by m,(t) = ut.

For all i € I, m. A(t) = (r;/A\)t is @ GLS path.
Similarly, for all w e W, m,a is @ GLS path.

For imaginary indices, this is not true in gen-
eral.
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1.4 Examples.

(1) Take A = (2) and g the associated Kac-
Moody algebra, M = {a}, r ;= rqa.

Take A € PT such that (aY,A) =m > 0. The
only GLS paths of shape A are :

mo = (A;0,1),

71 = (rA,A; 0,1 1),

mo = (rA\,A; 0, 2, 1),
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(2) Take A = (—k) with £ > 0, g the associated
generalized Kac-Moody algebra, N = {a}, r 1=

T

Take A € PT such that (aY,A) =m > 0. The
only GLS paths of shape A are :

o = (A;0,1),
w1 = (rA, N0, L 1),
7o = (12N, r/\/\O (Hk),m,l)

T3 = (7“3/\,7“2/\,?“/\ N\; O, m(1}|—k)2’ (1—|—k)’ m’ 1),

s = (rSA, ..., 7\, \; 0

1 1)
’m(k+1)3_1""’m(k—|—1)’m’ )

oooooooo
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1.5 Applications of the Littelmann
Path Model.
Define the character of Pp to be

char Pp = Y (D).
mePp

(1) The multiplicity of a weight v in V(A)
equals the number of different paths in Pa with
endpoint v. In particular,

char V(A) = char Pj.
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(2) By defining the tensor product of two paths
to be their concatenation, Littelmann gave a
combinatorial proof of the Parthasaraty-Ranga
Rao-Varadarajan conjecture for the decompo-
sition of the tensor product of two highest
weight modules.

(3) Littelmann defined root operators, €, f;
on P; these operators are similar to Kashiwara
crystal basis operators. In particular, one can
endow [P with a crystal structure. As a crystal
IP)/\ ~ B(/\)
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2 — Definition of the Root Operators.

We will define root operators fz-, e; on Pp, for
all 1 € 1.

For any i € I and w € Pp, let AT : [0,1] — R be
the continuous function defined by :

RE(1) = (o, m(1)).

Lemma. All local minima of AT

. 1 € I, T & P/\
are integers.

Set mI = min{h7(¢t)|t € [0,1]} € Z.
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Let PT € [0,1] N Q be maximal such that
hT(PF) =mT.
If PT =1 we set fymr =0.

If not, let QT € [P, 1]NQ be minimal such that

RT(QF) = mT + 1.

We set
ﬂ-(t)a S [07 Piﬂ-]?
fir(t) = riv(t) + miay, t€ [PF,QT],
W(t) — Oy, t e [QZT’ 1]

Notice that wt fim = wt 7© — «;.

Lemma. In [P7,QT] the function AT is strictly
increasing.
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The e; are defined as follows

Let &m %= 0. Then &r = = if and only if
fim' =

Then wt e;m =wt w4+ o

Lemma. Let 7 € Py and i € I'™. Then AT is
increasing, and one of the following is true :

1. P =0 and fimr # 0.

2. PF=1and f;r =0.
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Lemma. Take: € I and let m € P be such
that fimr ==" £ 0.

1. If i € I'™, then hT (t) > h7(t), so PT =

/ . . .

P =0, whereas QF < QF, with eq~uallty it

and only if a;; = 0. In particular, fFr # 0,
for all kK > 0.

2. Ifi e I™, then m™ = mTf—1 and PT = QT.
In particular, there exists £k € N such that

~

fz-kw = 0.
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Proposition. The set Py is stable under the
action of the root operators.

Sketch of Proof.
Letm = (M\1,..., s, ap,01,...,a05_1,1) bea GLS
path of shape A such that f;m # 0.

Since a GLS path =« is piecewise linear, P;T = at
forsome 0<t<k—1. If i € I'™, then ¢t = 0.

We can assume a,_1 < QF <ap fort4+1 <p<
k.

The path f;x is equal to

fz'ﬂ' = ()\1, Cee )\t,’l“i)\t_|_1, “ ,’I“Z')\p, )\p, “ )\k;
ap,ai, - - '7a'p—]_7Q%T7ap7 .. '70'1{:)7

with t = 0 if ¢ € '™,

We know that (o, ;) <0 and (o), \;) > 0, for
all j € {t+1,p}.
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We need to show that there exists

e an a;-chain for (A, 7iAs11),

e aj-chains for (r;A;,r;A;41) for all j € {t+
1,p— 1},

e an QT-chain for (r;Ap, Ap).
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Theorem. Let F denote the monoid gener-
ated by the f;, i€ I and wa(t) = At. Then

PA = Fmp.

Sketch of Proof.

e Since mp € P5 and the f;, i € I stabilise Py,
we obtain Fma C Pa.

e \We show that wa is the only path in Pp
such that e;mp = 0 for all z € I.

e Take any path w #= wa in PA. There exists
i € I and ©’ € Pp such that €;# = «’ and so
7 = f;x’. Then

wt 7’ = wt 7 + ;.
If 7/ % wa we continue the procedure.
A

e Since for any path m € Py, wt ™ < A this
procedure will stop.
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2—T he Character Formula.

Recall that for an h-diagonalisable g-module V/,
its character is defined to be :

char vV := Y (dim Vy)et.
AEh*

We have computed the character of the ir-
reducible integrable highest weight g-module
V(N).
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S S (— 1)) +[Flgw(A+p—s(F))
we Wpe p(n,, )N

char V(A) = > S (—1)Aw)FFTew(o—s(F))

we W Fe P(MNy,,)

e P(I;,,) is the set of all subsets of N, of
pairwise orthogonal roots.

e P(MN,,)"\ is the set of all sets F in P(N,,,),
such that (a/,A) =0 for all o; € F.

e |F| = Card F.

o S(F) — Z 7
o;€ F

e p € h* such that (o), p) = Sa;; for all i € I.
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Theorem. charPp = char V(A).

A crucial fact for the proof of the above is the
following :

Lemma. Let i, j € I"™ and w1, m € P be
such that fymy = fmo.

Then f;, f; commute and 71 = f;x}, for some
7'('6_ e Pa.
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Sketch of Proof of Theorem in case Il = T1;,,.

We need to show that :

3 v (=1)IFle=s(F)+m(1) =
welPp Fe P(N)

> (=D)IFleN=s(F)
Fe P(MA
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Let Q2 be the set of all pairs (Fp, mg) € P(IMN) xXPp
such that :

for all a; ¢ Fp with (o, s(Fp)) = 0 we have

57;71'0 = 0.
For (Fp, ™) € 2 define

Q(Fo,m0) := {(Fo\{aiy,.-.- a5}, fi; - fi,m0)} C
P(FI) X P/\.

Lemma. P(M) x Py = L Q(Fp, 7).
(Fo,mo) €S2
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What we need to show becomes :

5 s (L) Flems(P)Hm(1) =
(Fo,WO)EQ (F,W)EQ(Fo,ﬂ‘o)

v (=D)IFleN=s(F)
Fe P(mA

Set

> — - (—1)IFle=s(F)+7(1)
(Faﬂ')GQ(FO)TrO)
Lemma.

1. If |Q(Fp,m)| > 1, then = = 0.

2. If |Q(Fp,mg)| = 1, then g = wp and Fp €
P(MA.
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