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0 – Review

0.1 Notation. Let g be a BKM algebra asso-

ciated with an n × n BKM matrix A, and set

I = {1,2, . . . , n}.

g = n⊕ h⊕ n−,

n is generated by the ei, i ∈ I,

n− is generated by the fi, i ∈ I,

h is the Cartan subalgebra.
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Q =
⊕
i∈I
Zαi, the root lattice of g.

Q+ =
⊕
i∈I
Z≥0αi, the positive root lattice of g.

P := {h ∈ h∗ | 〈α∨i , h〉 ∈ Z, i ∈ I}, the weight

lattice of g.

P+ := {h ∈ P | 〈α∨i , h〉 ≥ 0, i ∈ I}, the domi-

nant weights.
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0.2 Representations of g

A g-module V is called h-diagonalizable if

(a) V =
⊕

λ∈h∗
Vλ, where

Vλ = {v ∈ V |hu = λ(h)v, h ∈ h}.
(b) dim Vλ < +∞.

Let V be an h-diagonalizable g-module.

• V is called integrable, if for all i ∈ Ire, fi

and ei act locally nilpotently on V .

• V is called a highest weight module if there

exists Λ ∈ h∗ and 0 6= vΛ ∈ VΛ, such that

(a) eivΛ = 0 for all i ∈ I.

(b) V = U(g)vΛ.
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If V is a highest weight module of highest

weight Λ, then

(a) V = U(n−)vΛ.

(b) dimVΛ = 1.

(c) If Vλ 6= 0, then λ ∈ Λ−Q+.

Lemma. Let V be a highest weight g-module

of highest weight Λ. If V is integrable, then

〈α∨i ,Λ〉 ∈ Z≥0 for all i ∈ Ire.

For each Λ ∈ h∗ there exists a unique irre-

ducible highest weight g-module of highest weight

Λ. We denote in by V (Λ).
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Lemma Take Λ ∈ P+ and for all i ∈ I, set

mi = 〈α∨i ,Λ〉 ∈ Z≥0. Let V be a highest weight

g-module of highest weight Λ.

Then V ' V (Λ) (and thus irreducible) if and

only if:

(a) if mi = 0, then fivΛ = 0.

(b) for all i ∈ Ire one has f
mi+1
i vΛ = 0.

Example. Let A ∈ M1(R) and Λ ∈ P+. Set

m = 〈α∨1 ,Λ〉 ∈ Z≥0. A basis for the g-module

V (Λ) is :

• {vΛ, f1vΛ, . . . , fm
1 vΛ}, if a11 = 2.

• {vΛ}, if a11 ≤ 0 and m = 0.

• {fk
1vΛ | k ∈ Z≥0}, if a11 ≤ 0 and m > 0.
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1 – The Path Model

From now on, we assume that the BKM matrix

has all its entries in Z.

A path π : [0,1]→ RP is a continuous function

such that π(0) = 0 and π(1) ∈ P .

We identify two paths, if they are equal up to

a reparametrization.

P :=set of all paths.

We call the weight of a path π ∈ P its endpoint,

and we write wt π = π(1).
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For all i ∈ I define on h∗ (or on P ):

ri(x) = x− 〈α∨i , x〉αi.

If i ∈ Ire, then ri is a simple reflection. Set

W :=< ri | i ∈ Ire > .

If i ∈ Iim, then rk
i 6= 1, for all k > 0. Set

T :=< ri | i ∈ I > .

Note that T is a monoid.
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1.1 Distance of two weights.

Fix Λ ∈ P+.

Let µ, ν ∈ TΛ. We write µ > ν if there exists :

• a sequence of weights in TΛ
µ := λ1, λ2, . . . , λk := ν

• and positive roots in WΠ ∩∆+

β1, . . . , βk−1

such that λi = rβi
λi+1 and 〈β∨i , λi+1〉 > 0, for

all i, with 1 ≤ i ≤ k − 1.

We call the distance of µ and ν and write
dist (µ, ν) the maximal length of such sequences.

If µ = rβν > ν and dist (µ, ν) = 1 we write

ν
β← µ.
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1.2 a-chains. Let µ > ν be two weights in TΛ

and let 0 < a ≤ 1 be a rational number. An

a-chain for (µ, ν) is a sequence :

ν := νs
βs← νs−1

βs−1← · · · β2← ν1
β1← ν0 =: µ,

such that for all i with 1 ≤ i ≤ s :

(a) a〈β∨i , νi〉 ∈ Z>0, if βi ∈ WΠre ∩∆+.

(b) a〈β∨i , νi〉 = 1, if βi ∈ WΠim.

10



1.3 Generalized Lakshmibai–Seshadri paths.

Suppose we have :

{λ1, λ2, . . . , λk} a sequence of weights in TΛ,

{0 < a1 < a2 < · · · < ak = 1} a sequence of

rational numbers in [0,1],

such that for all i, with 1 ≤ i ≤ k − 1:

(1) there exists an ai-chain for (λi, λi+1)

(2) if λk 6= Λ, there exists an 1-chain for (λk,Λ).
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To these data we attach a piecewise linear path
which for t ∈ [aj−1, aj], takes the form

π(t) =
j−1∑

i=1

(ai − ai−1)λi + (t− aj−1)λj.

Such a path is called a Generalized Lakshmibai-
Seshadri path of shape Λ.

We denote the above path by

π = (λ1, λ2, . . . , λk; 0, a1, . . . , ak−1,1).

PΛ := set of Generalized Lakshmibai-Seshadri
paths of shape Λ.

One can check that wt π ∈ Λ−Q+.

Then PΛ ⊂ P.

There is a unique path in PΛ of weight Λ,
namely the linear path πΛ := (Λ; 0,1).
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Remark.

For any µ ∈ P , denote by πµ(t) = µt.

For all i ∈ Ire, πriΛ(t) = (riΛ)t is a GLS path.

Similarly, for all w ∈ W , πwΛ is a GLS path.

For imaginary indices, this is not true in gen-

eral.

13



1.4 Examples.

(1) Take A = (2) and g the associated Kac-

Moody algebra, Π = {α}, r := rα.

Take Λ ∈ P+ such that 〈α∨,Λ〉 = m > 0. The

only GLS paths of shape Λ are :

π0 = (Λ; 0,1),

π1 = (rΛ,Λ; 0, 1
m,1),

π2 = (rΛ,Λ; 0, 2
m,1),

........

πm = (rΛ; 0,1).
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(2) Take A = (−k) with k ≥ 0, g the associated

generalized Kac-Moody algebra, Π = {α}, r :=

rα.

Take Λ ∈ P+ such that 〈α∨,Λ〉 = m > 0. The

only GLS paths of shape Λ are :

π0 = (Λ; 0,1),
π1 = (rΛ,Λ; 0, 1

m,1),

π2 = (r2Λ, rΛ,Λ; 0, 1
m(1+k),

1
m,1),

π3 = (r3Λ, r2Λ, rΛ,Λ; 0, 1
m(1+k)2

, 1
m(1+k),

1
m,1),

........

πs = (rsΛ, . . . , rΛ,Λ; 0, 1
m(k+1)s−1, . . . , 1

m(k+1),
1
m,1),

........
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1.5 Applications of the Littelmann

Path Model.

Define the character of PΛ to be

char PΛ =
∑

π∈PΛ

eπ(1).

(1) The multiplicity of a weight ν in V (Λ)

equals the number of different paths in PΛ with

endpoint ν. In particular,

char V (Λ) = char PΛ.
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(2) By defining the tensor product of two paths

to be their concatenation, Littelmann gave a

combinatorial proof of the Parthasaraty-Ranga

Rao-Varadarajan conjecture for the decompo-

sition of the tensor product of two highest

weight modules.

(3) Littelmann defined root operators, ẽi, f̃i

on P; these operators are similar to Kashiwara

crystal basis operators. In particular, one can

endow P with a crystal structure. As a crystal

PΛ ' B(Λ).
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2 – Definition of the Root Operators.

We will define root operators f̃i, ẽi on PΛ, for

all i ∈ I.

For any i ∈ I and π ∈ PΛ, let hπ
i : [0,1]→ R be

the continuous function defined by :

hπ
i (t) = 〈α∨i , π(t)〉.

Lemma. All local minima of hπ
i , i ∈ I, π ∈ PΛ

are integers.

Set mπ
i = min{hπ

i (t) | t ∈ [0,1]} ∈ Z.
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Let Pπ
i ∈ [0,1] ∩Q be maximal such that

hπ
i (P

π
i ) = mπ

i .

If Pπ
i = 1 we set f̃iπ = 0.

If not, let Qπ
i ∈ [Pπ

i ,1]∩Q be minimal such that

hπ
i (Q

π
i ) = mπ

i + 1.

We set

f̃iπ(t) =





π(t), t ∈ [0, Pπ
i ],

riπ(t) + mπ
i αi, t ∈ [Pπ

i , Qπ
i ],

π(t)− αi, t ∈ [Qπ
i ,1].

Notice that wt f̃iπ = wt π − αi.

Lemma. In [Pπ
i , Qπ

i ] the function hπ
i is strictly

increasing.
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The ẽi are defined as follows :

Let ẽiπ 6= 0. Then ẽiπ = π′ if and only if

f̃iπ
′ = π.

Then wt ẽiπ = wt π + αi

Lemma. Let π ∈ PΛ and i ∈ Iim. Then hπ
i is

increasing, and one of the following is true :

1. Pπ
i = 0 and f̃iπ 6= 0.

2. Pπ
i = 1 and f̃iπ = 0.
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Lemma. Take i ∈ I and let π ∈ PΛ be such

that f̃iπ = π′ 6= 0.

1. If i ∈ Iim, then hπ′
i (t) ≥ hπ

i (t), so Pπ′
i =

Pπ
i = 0, whereas Qπ′

i ≤ Qπ
i , with equality if

and only if aii = 0. In particular, f̃k
i π 6= 0,

for all k ≥ 0.

2. If i ∈ Ire, then mπ′
i = mπ

i −1 and Pπ′
i = Qπ

i .

In particular, there exists k ∈ N such that

f̃k
i π = 0.
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Proposition. The set PΛ is stable under the

action of the root operators.

Sketch of Proof.

Let π = (λ1, . . . , λk; a0, a1, . . . , ak−1,1) be a GLS

path of shape Λ such that f̃iπ 6= 0.

Since a GLS path π is piecewise linear, Pπ
i = at

for some 0 ≤ t ≤ k − 1. If i ∈ Iim, then t = 0.

We can assume ap−1 < Qπ
i ≤ ap for t + 1 ≤ p ≤

k.

The path f̃iπ is equal to

fiπ = (λ1, . . . , λt, riλt+1, . . . , riλp, λp, . . . λk;

a0, a1, . . . , ap−1, Qπ
i , ap, . . . , ak),

with t = 0 if i ∈ Iim.

We know that 〈α∨i , λt〉 ≤ 0 and 〈α∨i , λj〉 > 0, for

all j ∈ {t + 1, p}.
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We need to show that there exists

• an at-chain for (λt, riλt+1),

• aj-chains for (riλj, riλj+1) for all j ∈ {t +

1, p− 1},

• an Qπ
i -chain for (riλp, λp).
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Theorem. Let F denote the monoid gener-
ated by the f̃i, i ∈ I and πΛ(t) = Λt. Then

PΛ = FπΛ.

Sketch of Proof.

• Since πΛ ∈ PΛ and the f̃i, i ∈ I stabilise PΛ,
we obtain FπΛ ⊂ PΛ.

• We show that πΛ is the only path in PΛ
such that ẽiπΛ = 0 for all i ∈ I.

• Take any path π 6= πΛ in PΛ. There exists
i ∈ I and π′ ∈ PΛ such that ẽiπ = π′ and so
π = f̃iπ

′. Then

wt π′ = wt π + αi.

If π′ 6= πΛ we continue the procedure.

• Since for any path π ∈ PΛ, wt π ≤ Λ this
procedure will stop.

24



2–The Character Formula.

Recall that for an h-diagonalisable g-module V ,

its character is defined to be :

char V :=
∑

λ∈h∗
(dim Vλ)e

λ.

We have computed the character of the ir-

reducible integrable highest weight g-module

V (Λ).
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char V (Λ) =

∑
w∈ W

∑
F∈ P(Πim)Λ

(−1)`(w)+|F |ew(Λ+ρ−s(F ))

∑
w∈ W

∑
F∈ P(Πim)

(−1)`(w)+|F |ew(ρ−s(F ))

• P(Πim) is the set of all subsets of Πim of

pairwise orthogonal roots.

• P(Πim)Λ is the set of all sets F in P(Πim),

such that 〈α∨i ,Λ〉 = 0 for all αi ∈ F .

• |F | = Card F .

• s(F ) =
∑

αi∈ F
αi.

• ρ ∈ h∗ such that 〈α∨i , ρ〉 = 1
2aii for all i ∈ I.
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Theorem. char PΛ = char V (Λ).

A crucial fact for the proof of the above is the

following :

Lemma. Let i, j ∈ Iim and π1, π2 ∈ PΛ be

such that f̃iπ1 = f̃jπ2.

Then f̃i, f̃j commute and π1 = f̃jπ
′
1, for some

π′1 ∈ PΛ.
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Sketch of Proof of Theorem in case Π = Πim.

We need to show that :

∑
π∈PΛ

∑
F∈ P(Π)

(−1)|F |e−s(F )+π(1) =

∑
F∈ P(Π)Λ

(−1)|F |eΛ−s(F )
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Let Ω be the set of all pairs (F0, π0) ∈ P(Π)×PΛ

such that :

for all αi /∈ F0 with 〈α∨i , s(F0)〉 = 0 we have

ẽiπ0 = 0.

For (F0, π0) ∈ Ω define

Ω(F0, π0) := {(F0 \ {αi1, . . . αik}, f̃i1 · · · f̃ikπ0)} ⊂
P(Π)× PΛ.

Lemma. P(Π)× PΛ =
⊔

(F0,π0)∈Ω
Ω(F0, π0).
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What we need to show becomes :

∑
(F0,π0)∈Ω

∑
(F,π)∈Ω(F0,π0)

(−1)|F |e−s(F )+π(1) =

∑
F∈ P(Π)Λ

(−1)|F |eΛ−s(F )

Set

Σ :=
∑

(F,π)∈Ω(F0,π0)

(−1)|F |e−s(F )+π(1)

Lemma.

1. If |Ω(F0, π0)| > 1, then Σ = 0.

2. If |Ω(F0, π0)| = 1, then π0 = πΛ and F0 ∈
P(Π)Λ.
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