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Abstract. The Gorenstein derived category is introduced and studied via Verdier’s

localization of homotopy category respect to the saturated multiplicative system of

Gorenstein quasi-isomorphisms; the relation between the Gorenstein derived cate-

gory and the derived category is given; for a Gorenstein ring or a finite-dimensional

k-algebra, the corresponding bounded Gorenstein derived categories are realized

as the homotopy categories of Gorenstein projective objects. This interprets the

Gorenstein derived functors as the Hom functor of the corresponding bounded

Gorenstein derived category. The Gorensteinness of a ring is measured by its

Gorenstein singularity category; and the stable category of a Frobenius category is

embedded into the Gorenstein singularity category as a triangulated subcategory.
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0. Introduction

In the past thirty five years, the theory and the use of derived categories and triangu-

lated categories have enjoyed a vigorous development (see e.g. [Ver2], [I], [BBD], [Hap1],

[CPS], [Ric1], [Kel2], [KZ], [Ko], [GM], [N], [RV], [O1], [KS], [Rou]). On the other hand,

relative homological algebra, especially Gorenstein homological algebra, has been devel-

oped to an advanced level (see e.g. [EC], [AB], [AF], [Y], [EJ2], [Ch], [AM], [Hol3], [CFH],

[Vel], [J], [CV]).

In the theory of triangulated categories, one obtains a new triangulated category by

Verdier’s localization from a saturated multiplicative system of a triangulated category,

and what one gets is usually (but not always) algebraic in the sense that it is triangle-

equivalent to the stable category of a Frobenius category. One gets in this way the derived

category from the saturated multiplicative system of quasi-isomorphisms of homotopy

category; by the projective resolutions the bounded derived category Db(A) is simplified

as the homotopy category K−,b(P) of upper bounded complexes of projective objects, with

only finitely many non-zero cohomology groups; and the classical right derived functors

Extn can be interpreted as the Hom functor of Db(A).
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In homological algebra ([CE]), projective and injective objects play a fundamental role.

In Gorenstein homological algebra, they are replaced respectively by Gorenstein projective

and Gorenstein injective objects, introduced by E. E. Enochs and O. M. G. Jenda ([EJ1]);

and one considers the Gorenstein projective and Gorenstein injective dimensions of objects

and of complexes (see e.g. [EJ1], [EJ2], [Ch], [Hol1]-[Hol3], [AF], [AM], [Y], [T]). Note

that the existence of proper Gorenstein projective (resp. co-proper Gorenstein injective)

resolutions is a non-trivial problem (see [J]; also [AM], [Ch], [Hol1], [T], [Vel]). Note

that the concept Gorenstein projective objects even goes back to M. Auslander and M.

Bridger [AB], where they introduced the G-dimension of finitely generated module M over

a two-sided Noetherian ring; and then L. L. Avramov, A. Martisinkovsky and I. Rieten

have proved that M is Goreinstein projective if and only if the G-dimension of M is zero

(the remark following Theorem (4.2.6) in [Ch]). Also note that the concept has also been

generalized to triangulated categories (see [AS], [Bel1], [Bel2]).

It is then natural to have a theory of the so-called Gorenstein derived category, which

is the aim of this paper. Note that a chain map f• is a quasi-isomorphism if and only if it

is projectively quasi-isomorphism in the sense that HomA(P, f•) is a quasi-isomorphism

for any projective object P , if and only if it is an injectively quasi-isomorphism. How-

ever, a Gorenstein projectively quasi-isomorphism is not a Gorenstein injectively quasi-

isomorphism. So, by Verdier’s localization of homotopy category respect to the saturated

multiplicative system of Gorenstein projectively quasi-isomorphisms we have the Goren-

stein projectively derived category Dgp(A) and its upper bounded and bounded version,

and dually we have the Gorenstein injectively derived category Dgi(A), which is not

triangle-equivalent to Dgp(A).

The relation between the Gorenstein derived category and the derived category is given

(Corollary 2.6). Some basic results in derived category have been developed to this set-

ting up. For examples, the homotopy category Kb(GP) of bounded complexes of Goren-

stein projective objects is a triangulated subcategory of Db
gp(A) (Theorem 2.11); for a

Gorenstein ring, or a finite-dimensional k-algebra, the corresponding bounded Gorenstein

derived category is realized as the homotopy category K−,gpb(GP) of upper bounded com-

plexes X• of Gorenstein projective objects, with only finitely many non-zero cohomology

groups Hn HomA(E, X•) for any Gorenstein projective object E (Theorem 3.5). This

permits to interpret the Gorenstein derived functors ExtnGP , established in [Hol3] (see also

[EJ1], [EJ2], [AM]), as the Hom functor of Db
gp(A) (Theorem 3.8).

As a Verdier’s quotient, the singularity category becomes an important topic in alge-

braic geometry and representation theory of algebras (see e.g. [Buc], [Ric2], [Hap2], [Bel1],

[O1], [O2], [Kr], [IK], [CZ]), as they measure the complexity of possible singularities. Also,

in Gorenstein homological algebra, one of the basic problems is to recognize Gorenstein

rings; and if no, to measure how far it is from the Gorensteinness (see e.g. [M], [J], [CV],

[IK], [Hap2], [Bel1]). In the final section we introduce and study the Gorenstein singularity

category, and prove that a ring R is Gorenstein if and only if the left and right Gorenstein

injectively singularity categories of R are zero (Theorem 4.1); and in general we embed the
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stable category of a Frobenius category into the Gorenstein injectively singularity category

as a triangulated subcategory (Theorem 4.3).

1. Notations and Preliminaries

We recall some basic notion and facts, and fix some notations frequently used in this

paper.

1.1. Throughout A is an abelian category with enough projective objects unless stated

otherwise, K(A) (resp. K−(A), and Kb(A)) is the homotopy (resp. upper bounded

homotopy, and bounded homotopy) category of A; D(A) (resp. D−(A), and Db(A)) is

the derived (resp. upper bounded derived, and bounded derived) category of A. For two

complexes X• and Y •, write HomA(X•, Y •) for the Hom complex. Then we have the

well-known formula HomK(A)(X
•, Y •[n]) = Hn HomA(X•, Y •), ∀ n.

For basics on triangulated categories and derived categories we refer to [Har], and also

[Ver1], [Ver2], [I], [BBD], [Hap1], [Kel2], [N], [GM], [KS]. In particular, by definition, tri-

angulated subcategories are full subcategories; and for a saturated multiplicative system

S of a triangulated category K, we refer to [Har] (see also [Ver1] and [I]) for the construc-

tion of the quotient triangulated category S−1K via Verdier’s localization, in which each

morphism f : X −→ Y is given by an equivalence class of right fractions a
s

presented by

X
s

⇐= Z
a

−→ Y with s ∈ S, Z ∈ K. We emphasize that the definition of a multiplicative

system we use (as in [Har], [Ver1], and [I]) is self-dual, it follows that we can also use left

fractions, and then get a quotient triangulated category isomorphic to S−1K, and these

two isomorphic quotient triangulated categories will be identified (this is needed in 2.7).

1.2. A complete A-projective resolution ([EJ1]) is an exact sequence

P• = · · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · ·

of projective objects of A, such that HomA(P•, P) is exact for every projective object P

of A; and an object E of A is Gorenstein projective if there is a complete A-projective

resolution P• such that E ∼= Im(P0 −→ P 0). It is clear that a projective object of A is

Gorenstein projective; and that in a complete A-projective resolution, all the images and

hence all the kernels and cokernels are Gorenstein projective. Denote by A-GP , or simply

GP , the full subcategory of A of Gorenstein projective objects. Note that GP is closed

under extensions, the kernel of an epimorphism, arbitrary coproducts (if A has arbitrary

coproducts) and direct summands. For more facts we refer to [EJ2] and [Hol1].

If A is the left module category R-Mod of ring R, then we write R-GP for A-GP ;

if A is the finitely generated module category R-mod of R, then we write R-Gproj for

A-GP . Note that one can construct the Gorenstein projective modules concretely by the

technique of upper triangular matrix artin algebras developed in [ARS] and [Rin]. See

[GZ].

If A has enough injective objects, then one has the dual concept of Gorenstein injective

objects, and the dual notations of GI, R-GI, and R-Ginj.
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Lemma 1.1. (i) Let E be a Gorenstein projective object of A. Then Exti
A(E, P ) =

0, ∀ i ≥ 1, for any projective object P .

(ii) Let · · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · · be a complete projective resolution

such that E ∼= Im(P0 −→ P 0). Then the sequences

· · · −→ HomA(P 1, P ) −→ HomA(P 0, P ) −→ HomA(E, P ) −→ 0

and

0 −→ HomA(E,P ) −→ HomA(P0, P ) −→ HomA(P1, P ) −→ · · ·

are exact for any projective object P .

(iii) Let R be a ring. Then R-Gproj ⊆ (R-GP) ∩ R-mod. If in addition R is left

coherent then R-Gproj = (R-GP) ∩ R-mod.

Proof. These are easy and well-known (for (iii) see e.g. [Chen]). �

1.3. Let A be a finite-dimensional k-algebra, and −∗ := Homk(−, k). Denote by A-proj

and A-inj the full subcategories of A-mod of the projective A-modules and of the injective

A-modules, respectively; and by ν the Nakayama functor HomA(−, A)∗ ∼= A∗ ⊗A − :

A-mod −→ A-mod. Then ν : A-proj −→ A-inj is an equivalence with a quasi-inverse

ν−1 = HomA(−∗, A) ∼= HomA(A∗,−) ∼= (−∗⊗A A∗)∗; and there is a natural isomorphism

HomA(P,−)∗ ∼= HomA(−, νP ) for P ∈ A-proj. Thus, if A is a self-injective algebra, then

ν is an auto-equivalence of A-mod, and ν is the Serre functor of A-proj. See [ARS] and

[Rin].

Proposition 1.2. (i) The Nakayama functor ν induces an equivalence A-Gproj ∼= A-

Ginj with a quasi-inverse ν−1.

(ii) For E ∈ A-Gproj there is a natural isomorphism HomA(E,−)∗ ∼= HomA(−, νE)

on the full subcategory of A-mod of the modules with finite projective dimension.

Proof. Let E ∈ A-Gproj with complete projective resolution P• = · · · −→ P−1 −→

P 0 −→ P 1 −→ · · · such that E ∼= Im(P−1 −→ P 0), where all P i are finite-dimensional

and projective. Then HomA(P•, A), and hence νP• is acyclic, with νE ∼= Im(νP−1 −→

νP 0). For any finite-dimensional injective module I ∼= νP with P projective, we have

HomA(I, νP•) ∼= HomA(νP, νP•) ∼= HomA(P,P•),

and hence HomA(I, νP•) is exact. Therefore, νP• is a complete injective resolution of

νE. Similarly one has ν−1(A-Ginj) ⊆ A-Gproj.

By Lemma 1.1(ii) 0 −→ νE −→ νP 0 −→ νP 1 is exact, and hence by the left exactness

of ν−1 the sequence 0 −→ ν−1νE −→ ν−1νP 0 −→ ν−1νP 1 is exact. Since ν−1νP i ∼= P i

it follows that ν−1νE ∼= E functorially. Similarly νν−1|A−Ginj
∼= id. This proves (i).

By Lemma 1.1(ii) we have the exact sequence HomA(P 1, P ) −→ HomA(P 0, P ) −→

HomA(E, P ) −→ 0 for any (finite-dimensional) projective module P , it follows that

HomA(P 1, X) −→ HomA(P 0, X) −→ HomA(E,X) −→ 0

and

HomA(P 1, A) ⊗A X −→ HomA(P 0, A) ⊗A X −→ HomA(E,A) ⊗A X −→ 0



GORENSTEIN DERIVED CATEGORIES AND GORENSTEIN SINGULARITY CATEGORIES 5

are exact for any module X with finite projective dimension. Then by the Five Lemma

HomA(E, A) ⊗A X ∼= HomA(E, X). Thus

HomA(E, X)∗ ∼= Homk(HomA(E, A) ⊗A X, k)

∼= HomA(X, Homk(HomA(E, A), k))

= HomA(X, νE). �

Corollary 1.3. (i) The Nakayama functor ν induces a triangle equivalence Kb(A-

Gproj) −→ Kb(A-Ginj).

(ii) For any E• ∈ Kb(A-Gproj), there is a natural isomorphism HomA(E•,−)∗ −→

HomA(−, νE•) on the bounded homotopy category of complexes of modules with finite

projective dimension.

Proof. (i) is clear by Proposition 1.2(i); and (ii) follows an argument in [Hap1], p. 37.

We omit the details. �

2. Gorenstein derived categories

This section is to introduce and study the Gorenstein derived category, as Verdier’s

quotient of homotopy category respect to the thick triangulated subcategory of Goren-

stein projectively acyclic complexes, or equivalently, as Verdier’s localization of homotopy

category respect to the saturated multiplicative system of Gorenstein projectively quasi-

isomorphisms.

Throughout this section A is an abelian category with enough projective objects, unless

stated otherwise.

2.1. A complex C• is Gorenstein projectively acyclic, or simply, GP-acyclic, if HomA(E, C•)

is acyclic for all Gorenstein projective objects E.

It follows from (i) below that a GP-acyclic complex is acyclic.

Lemma 2.1. (i) A complex C• is acyclic if and only if HomA(P, C•) is acyclic for any

projective object P .

(ii) ([CFH]) A complex C• is Gorenstein acyclic if and only if HomA(E•, C•) is

acyclic for any E• ∈ K−(GP), or equivalently, HomK(A)(E
•, C•[n]) = 0, ∀ n ∈ Z.

Proof. (i) The sufficiency: by the exactness of HomA(P, C•) we get HomA(P, Ker di/ im di−1)

= 0. Since A has enough projective objects, we have an epimorphism P −→ Ker di/ im di−1

for some P . Thus Ker di/ Im di−1 = 0, ∀ i.

(ii) We refer to Prop. 2.4 in [CFH] for a proof. �

2.2. A chain map f• : X• −→ Y • is a Gorenstein projectively quasi-isomorphism, or

in short, a GP-quasi-isomorphism, if HomA(E, f•) is a quasi-isomorphism, i.e., there are

isomorphisms of abelian groups

Hn HomA(E, f•) : Hn HomA(E, X•) ∼= Hn HomA(E, Y •), ∀ n ∈ Z,
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for all Gorenstein projective objects E.

By (i) below a GP-quasi-isomorphism is a quasi-isomorphism.

Lemma 2.2. (i) A chain map f• : X• −→ Y • is a quasi-isomorphism if and only if

HomA(P, f•) is a quasi-isomorphism for all projective objects P .

(ii) ([CFH]) A chain map f• : X• −→ Y • is a GP-quasi-isomorphism if and only if

there are isomorphisms for any E• ∈ K−(GP):

HomK(A)(E
•, f•[n]) : HomK(A)(E

•, X•[n]) ∼= HomK(A)(E
•, Y •[n]), ∀ n ∈ Z.

Proof. (i) By applying the cohomological functor HomK(A)(P,−) to the distinguished

triangle

X• −→ Y • −→ Con(f•) −→ X•[1]

we get the exact sequence

· · · −→ HomK(A)(P, Con(f•)[n − 1]) −→ HomK(A)(P, X•[n]) −→ HomK(A)(P, Y •[n])

−→ HomK(A)(P, Con(f•)[n]) −→ · · · .

By rewriting we have the exact sequence

· · · −→ Hn−1 HomA(P, Con(f•)) −→ Hn HomA(P, X•)
Hn HomA(P,f•)

−→ Hn HomA(P, Y •)

−→ Hn HomA(P, Con(f•)) −→ · · · ,

from which and Lemma 2.1(i) the assertion follows.

(ii) We refer to Prop. 2.6 in [CFH] for a proof. �

Lemma 2.3. (i) Let E• ∈ K−(GP), and f• : X• −→ E• be a GP-quasi-isomorphism.

Then there exists g• : E• −→ X• such that f•g• is homotopic to IdE• .

(ii) Let f• : E• −→ Q• be a GP-quasi-homomorphism with E•, Q• ∈ K−(GP).

Then f• is a homotopy equivalence.

Proof. (i) By Lemma 2.2(ii) we have an isomorphism

HomK(A)(E
•, f•) : HomK(A)(E

•, X•) ∼= HomK(A)(E
•, E•),

from which the assertion follows.

(ii) By (i) there exists g• : Q• −→ E• such that f•g• is homotopic to IdQ• . It is clear

that g• is also a GP-quasi-isomorphism. Again by (i) there exists h• : E• −→ Q• such

that g•h• is homotopic to IdE• . It follows that f• is a homotopy equivalence. �

2.3. The relation between GP-quasi-isomorphisms and GP-acyclic complexes is same as

the one between quasi-isomorphisms and acyclic complexes.

Lemma 2.4. (i) A chain map f• : X• −→ Y • is a GP-quasi-isomorphism if and only

if Con(f•) is a GP-acyclic complex.

(ii) The collection of GP-quasi-isomorphisms is a saturated multiplication system of

K(A), compatible with the triangulation.
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Proof. (i) By the similar argument as in the proof of Lemma 2.2(i).

(ii) This follows from (i) and the well-known correspondence between the thick tri-

angulated subcategories and the compatible saturated multiplication systems (see e.g.

[Ver1], [Ver2], or [N]). �

2.4. Denote by Kac(A) (resp. K−
ac(A), and Kb

ac(A)) the homotopy category of (resp.

upper bounded, and bounded) acyclic complexes of objects of A, and by Kgpac(A) (resp.

K−
gpac(A), and Kb

gpac(A)) the homotopy category of (resp. upper bounded, and bounded)

GP-acyclic complexes. Then Kgpac(A), K−
gpac(A), and Kb

gpac(A) are thick (èpaisse) tri-

angulated subcategories of Kac(A), K−
ac(A), and Kb

ac(A), respectively.

Define

Dgp(A) := K(A)/Kgpac(A), D−
gp(A) := K−(A)/K−

gpac(A)

and

Db
gp(A) := Kb(A)/Kb

gpac(A),

which are respectively called the Gorenstein projectively derived category, the upper bounded

Gorenstein projectively derived category, and the bounded Gorenstein projectively derived

category, respectively.

Remark. Let X be an additive full subcategory of A. Then Dgp(X ) := K(X )/Kgpac(X ),

D−
gp(X ) := K−(X )/K−

gpac(X ), and Db
gp(X ) := Kb(X )/Kb

gpac(X ), are also well-defined,

where Kgpac(X ) is the homotopy category of GP-acyclic complexes of objects in X .

Before giving the relation between Dgp(A) and the derived category D(A), we first

give a general result in the theory of triangulated categories.

2.5. Let K2 be a triangulated subcategory of triangulated category K. Recall that the

quotient K/K2 is defined via the Verdier localization K/K2 := S−1K, where

S := { f : X −→ Y in K | Con(f) ∈ K2 }

is the compatible multiplicative system of K determined by K2. If K2 is thick then S is

saturated, and in this case X ∼= 0 in K/K2 implies X ∈ K2. Assume K1 is a triangulated

subcategory of K and K2 is a full subcategory of K1. Then K2 is a triangulated subcategory

of K1 and

{ f : X −→ Y in K1 | Con(f) ∈ K2 } = S ∩ K1.

It follows that S∩K1 is the compatible multiplicative system of K1 determined by K2, and

hence we have the quotient K1/K2 := (S ∩K1)
−1K1. It is clear that the canonical functor

from K1/K2 to K/K2 is fully faithful, and hence K1/K2 can be viewed as a triangulated

subcategory of K/K2, and if K1 is saturated in K then K1/K2 is saturated in K/K2.

The following result should be well-known, however there are no references.

Theorem 2.5. Let K1 and K2 be triangulated subcategories of triangulated category K,

and K2 be a full subcategory of K1. Then there is an isomorphism of triangulated categories

(K/K2)/(K1/K2) ∼= K/K1.
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Proof. This is a standard application of the universal property. By the universal property

of K/K2, we get a unique triangle functor F such that the diagram

K

Q2 ""FF
FF

FF
FF

Q1 // K/K1

K/K2

F

::uuuuuuuu

commutes. Further by the universal property of (K/K2)/(K1/K2) we get a unique triangle

functor G such that the diagram

K/K2

fQ1 ''PPPPPPPPPP

F // K/K1

(K/K2)/(K1/K2)

G

77nnnnnnnnnn

commutes. Set F ′ := fQ1Q2. By the universal property of K/K1 we get a unique triangle

functor G′ such that the diagram

K

Q1 ""FF
FF

FF
FF

F ′

// (K/K2)/(K1/K2)

K/K1

G′

77nnnnnnnnnn

commutes.

By an easy verification we have the following commutative diagram

K

Q2 ""FF
FF

FF
FF

F ′

// (K/K2)/(K1/K2)

K/K2

G′G fQ1

77nnnnnnnnnn

.

On ther other hand we have by definition F ′ = fQ1Q2. It follows from the uniqueness we

have fQ1 = G′GfQ1, i.e., we have the commutative diagram

K/K2

fQ1 ''PPPPPPPPPP

fQ1 // (K/K2)/(K1/K2)

(K/K2)/(K1/K2)

G′G

55kkkkkkkkkkkkk

.

By the uniqueness we obtain G′G = Id(K/K2)/(K1/K2).

Similarly (but much easier) we have GG′ = IdK/K1
. This completes the proof. �

2.6. We immediately have

Corollary 2.6. There is an isomorphism of triangulated categories

D(A) ≃ Dgp(A)/(Kac(A)/Kgpac(A)); D−(A) ≃ D−
gp(A)/(K−

ac(A)/K−
gpac(A))

and

Db(A) ≃ Db
gp(A)/(Kb

ac(A)/Kb
gpac(A)).
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In particular, the dimension of Db
gp(A) is less or equal to the one of Db(A) as trian-

gulated categories.

Corollary 2.7. The following are equivalent

(i) D(A) ≃ Dgp(A) (resp. D−(A) ≃ D−
gp(A); Db(A) ≃ Db

gp(A));

(ii) Kac(A) = Kgpac(A) (resp. K−
ac(A) = K−

gpac(A); Kb
ac(A) = Kb

gpac(A));

(iii) Any quasi-isomorphism in K(A) (resp. in K−(A); in Kb(A)) is a GP-quasi-

isomorphism;

(iv) Any Gorenstein projective object is projective.

(v) Any Gorenstein projective object is of finite projective dimension.

Proof. (i) ⇐⇒ (ii) follows from Corollary 2.6. (ii) ⇐⇒ (iii) follows from Lemma 2.4(i)

and Verdier’s correspondence between the thick triangulated subcategories and the com-

patible saturated multiplication systems.

(iii) =⇒ (iv): Let E be a Gorenstein projective object, and 0 −→ X −→ Y
g

−→ Z−→ 0

be an arbitrary short exact sequence. Then g induces a quasi-isomorphism g•:

· · · // 0 //

��

X //

��

Y //

g

��

0 //

��

· · ·

· · · // 0 // 0 // Z // 0 // · · · .

By the assumption g• is a GP-quasi-isomorphism, thus 0 −→ HomA(E, X) −→ HomA(E,Y )

−→ HomA(E, Z) −→ 0 is exact, i.e., E is projective.

(iv) =⇒ (iii) follows from Lemma 2.2(i); and (v) =⇒ (iv) is Prop. 10.2.3 in [EJ2]: the

projective dimension of a Gorenstein projective object is either zero or infinite. �

2.7. The following is well-known (see e.g. ([Kel2], Lem. 10.3; or [KS], Prop. 10.2.6).

Lemma 2.8. Let B and D be two triangulated subcategories of a triangulated category

C. If one of the following conditions are satisfied then the canonical triangle functor

D/D ∩ B −→ C/B is fully faithful.

(i) Each morphism X −→ B with B ∈ B and X ∈ D admits a factorization X −→

B′ −→ B with B′ ∈ D ∩ B.

(ii) Each morphism B −→ Y with B ∈ B and Y ∈ D admits a factorization B −→

B′ −→ Y with B′ ∈ D ∩ B.

Theorem 2.9. Db
gp(A) and D−

gp(A) are triangulated subcategories of Dgp(A).

Proof. We first prove D−
gp(A) := K−(A)/K−

gpac(A) is a triangulated subcategory of

Dgp(A) := K(A)/Kgpac(A), by using Lemma 2.8(i). Let f• : X• −→ B• be a chain map

with B• ∈ Kgpac(A) and X• ∈ K−(A). We may assume that Xi = 0 for i > 0. Let B′•

be the complex with B′i = Bi for i ≤ 0, B′1 = Im d0 and B′j = 0 for j ≥ 2. Then f•
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admits the following natural factorization:

X• :

f•

��

· · · // X−1

��

// X0

��

// 0 //

��

0

��

// · · ·

B′• :

��

· · · // B−1 // B0 // Im d0 //

��

0 //

��

· · ·

B• : · · · // B−1 // B0 // B1 // B2 // · · ·

It remains to prove that B′• is GP-acyclic. Since B• is GP-acyclic it suffices to prove

that

HomA(E, B−1)
HomA(E,d−1)

−→ HomA(E, B0)
HomA(E,fd0)

−→ HomA(E, Im d0) −→ 0 (∗)

is exact for any Gorenstein projective object E, where ed0 : B0 −→ Im d0 is induced by d0.

By Lemma 2.1(i) B• is acyclic it follows that 0 −→ Im d0 −→ B1 −→ B2 is exact, and

hence 0 −→ HomA(E, Im d0)
σ

−→ HomA(E, B1) −→ HomA(E, B2) is exact. Consider the

following commutative diagram

Hom(E, B−1)
Hom(E,d−1)

// Hom(E, B0)

Hom(E,fd0) ''PPPPPPPPPPPP

Hom(E,d0)
// Hom(E,B1)

Hom(E,d1)
// Hom(E,B2)

Hom(E, Im d0)

)

	

σ

7nnnnnnnnnnnn

with the first row exact, by the GP-exactness of B•. Since σ is injective, it follows that

Ker HomA(E, ed0) = KerHomA(E,d0).

Also

ImHomA(E, ed0) ∼= Im HomA(E, d0) = Ker HomA(E,d1) ∼= HomA(E, Im d0),

i.e., HomA(E, ed0) is surjective. Thus (∗) is exact.

Dually, we can prove Db
gp(A) := Kb(A)/Kb

gpac(A) is a triangulated subcategory of

D−
gp(A) := K−(A)/K−

gpac(A), by using Lemma 2.8(ii). �

Remark 2.10. The proof above also proves that if (B•, d) is GP-acyclic, so is the trun-

cation · · · −→ Bi−1 −→ Bi −→ Im di −→ 0, for each i.

2.8. The following result makes the morphisms in Dgp(A) easier to understand.

Theorem 2.11. Let E• ∈ K−(GP) and Y • be an arbitrary complex. Then Q : f• 7→
f•

IdE•
gives an isomorphism of abelian groups

HomK(A)(E
•, Y •) ∼= HomDgp(A)(E

•, Y •).

In particular, Kb(GP) and K−(GP) can be viewed as triangulated subcategories of

Db
gp(A) and D−

gp(A), respectively.
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Proof. If f•

IdE•
= 0, then by the calculus of right fractions there exists a GP-quasi-

isomorphism t• : X• −→ E• such that f•t• is homotopic to zero. By Lemma 2.3(i) there

exists a GP-quasi-isomorphism g• : E• −→ X• such that t•g• is homotopic to IdE• . Thus

f• ∼ f•IdE• ∼ f•t•g• ∼ 0, i.e., Q is injective.

For any f•

s•
∈ HomDgp(A)(E

•, Y •), again by Lemma 2.3(i) there is a Gorenstein quasi-

isomorphism g• : E• −→ X• such that s•g• is homotopic to IdE• . By the calculus of

right fractions this implies that

f•

s•
=

f•g•

IdE•

= Q(f•g•),

i.e., Q is surjective. �

Final Remark 2.12. Assume that A has enough injective objects. Then one has

the dual concept: a GI-acyclic complex (i.e., a complex C• such that HomA(C•, E) is

acyclic for all Gorenstein injective objects E); a GI-quasi-isomorphism (i.e., a chain map

f• : X• −→ Y • such that HomA(f•, E) is a quasi-isomorphism for all Gorenstein injective

objects E); and the Gorenstein injectively derived category Dgi(A), the lower bounded

Gorenstein injectively derived category D+
gi(A), and the bounded Gorenstein injectively

derived category Db
gi(A). For example, Db

gi(A) is defined as Db
gi(A) := Kb(A)/Kb

giac(A),

where Kb
giac(A) denotes the homotopy category of bounded GI-acyclic complexes. Then

all the dual results hold. We need these in Section 4.

3. Bounded Gorenstein derived categories of Gorenstein rings

and finite-dimensional algebras

This section is to study the bounded Gorenstein derived categories of the full subcate-

gory of A of objects with finite Gorenstein projective dimension, and of finite-dimensional

k-algebras. As an application we obtain a description of the bounded Gorenstein derived

categories of Gorenstein rings. This also permit us to interpret the Gorenstein derived

functors, introduced in [Hol3] and [AM], as the Hom functor of the corresponding bounded

Gorenstein derived category.

Throughout this section A is an abelian category with enough projective objects, unless

stated otherwise.

3.1. An object M of A has a proper Gorenstein projective resolution if there is an exact

sequence E• = · · · −→ E1 −→ E0 −→ M −→ 0 such that all Ei are Gorenstein projective,

and that HomR(E, E•) stays exact for any Gorenstein projective object E. The second

requirement guarantee the uniqueness of such a resolution in the homotopy category (the

Comparison Theorem. See [EJ2], Exercise 8.1.2). The existence of a proper Gorenstein

projective resolution is a non-trivial problem (see [J]. Also [AM], [Ch], [Hol1], [T], [Vel]).

We need the following two results due to H. Holm, and P. Jφrgensen, respectively.

Lemma 3.1. ([Hol1], Theorem 2.10) If an object M has finite Gorenstein projective

dimension, then M admits a proper Gorenstein projective resolution G• −→ M −→ 0

with G• ∈ Kb(GP).
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For the definition of a dualizing complex over non-commutative rings we refer to [YZ],

Definition 1.1, or [J], Setup 1.4’. Note that if A is a finite-dimensional k-algebra then A

has a dualizing complex A∗ = Homk(A, k) . Combined with Setup 1.4’, Theorems 1.10

and 2.11 of Jφrgensen [J] we have

Lemma 3.2. ([J]) If A is a finite-dimensional k-algebra, then each module M (not

necessarily finitely generated) admits a proper Gorenstein projective resolution G• −→

M −→ 0 with G• ∈ K−(GP).

3.2. Denote by K−,gpb(GP) the full subcategory of K−(GP) of upper bounded com-

plexes X• with only finitely many non-zero cohomology groups Hn HomA(E, X•) for any

Gorenstein projective object E. Note that K−,gpb(GP) is a triangulated subcategory of

K−(GP). By the same argument as in the proof of Lemma 2.1(i) we know that any object

in K−,gpb(GP) has only finitely many non-zero cohomology groups.

Denote by fGP the full subcategory of A of objects with finite Gorenstein projective

dimension. Then fGP is an additive category and hence Kb(fGP) is a triangulated

category.

Proposition 3.3. (i) There exists a functor G : Kb(fGP) −→ Kb(GP), and a GP-quasi-

isomorphism φX• : GX• −→ X• in Kb(fGP) for X• ∈ Kb(fGP), which is functorial in

X•.

Moreover, the inclusion Kb(GP) −→ Kb(fGP) is a left adjoint of G.

(ii) Let A be a finite-dimensional k-algebra. Then there exists a functor G : Kb(A-Mod)

−→ K−,gpb(A-GP), and a GP-quasi-isomorphism φX• : GX• −→ X• in K−(A-Mod) for

X• ∈ Kb(A-Mod), which is functorial in X•.

Proof. First, construct F on objects by induction on w(X•) with X• ∈ Kb(X ), where X

is fGP for (i), or A-Mod for (ii). If w(X•) = 1, then we have a GP-quasi-isomorphism

φX• : GX• −→ X• by assumption, and GX• is unique by the Comparison Theorem

([EJ2], Exercise 8.1.2). Assume w(X•) ≥ 2, with Xj 6= 0 and Xi = 0 for i < j. Then we

have the distinguished triangle in Kb(X )

X•
1

u
−→ X•

2 −→ X• −→ X•
1 [1]

with X•
1 := X•≤j [−1], X•

2 := X•>j , where X•≤j denotes the brutal trunction. By

induction there exist GP-quasi-isomorphisms

φ1 : GX•
1 −→ X•

1 , φ2 : GX•
2 −→ X•

2

with GX•
1 , GX•

2 ∈ K−,gpb(A-GP). By Lemma 2.2(ii) we have an isomorphism

HomK−(X)(GX•
1 , GX•

2 ) −→ HomK−(X)(GX•
1 , X•

2 ).

It follows that there exists f• : GX•
1 −→ GX•

2 such that φ2 ◦ f• = u ◦φ1. By embedding

f• (uniquely) into a distinguished triangle in K−(GP)

GX•
1

f•

−→ GX•
2 −→ GX• −→ G•

1[1]
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we get a unique GX• ∈ K−(GP). By the axiom of a triangulated category, there exists a

morphism φX• : GX• −→ X• such that the following diagram commutes

GX•
1

f•

//

φ1

��

GX•
2

//

φ2

��

GX• //

φX•

��

G•
1[1]

φ1[1]

��
X•

1
u // X•

2
// X• // X•

1 [1].

For any Gorenstein projective object Q we have the commutative diagram with exact rows

(Q, GX•
1 ) //

(φ1)∗

��

(Q,GX•
2 ) //

(φ2)∗

��

(Q,GX•) //

(φX• )∗

��

(Q,GX•
1 [1])

(φ1[1])∗

��

// (Q,GX•
2 [1])

(φ2[1])∗

��
(Q, X•

1 ) // (Q, X•
2 ) // (Q,X•) // (Q,X•

1 [1]) // (Q,X•
1 [1])

where (Q,−) denotes the functor HomK−(A)(Q, [n] ◦ −). Since φ1 and φ2 are GP-quasi-

isomorphisms, it follows that (φ1)∗, (φ2)∗, (φ1[1])∗, (φ2[1])∗ are isomorphisms, and hence

(φX•)∗ is an isomorphism for each n, i.e., φX• is a GP-quasi-isomorphism. Since X• is

bounded and φX• : GX• −→ X• is a GP-quasi-isomorphism, it follows that GX• is in

Kb(GP) for (i), or in K−,gpb(GP) for (ii).

Secondly, for f• : X• −→ Y •, since φY • : GY • −→ Y • is a GP-quasi-isomorphism, it

follows that from Lemma 2.2(ii) that

HomK−(X)(GX•, GY •) ∼= HomK−(X)(GX•, Y •).

Thus, there exists a unique Gf• : GX• −→ GY • such that φY • ◦ Gf• = f• ◦ φX• . This

shows that G is a functor, and also that φX• : GX• −→ X• is functorial in X•.

Observe that in the case (i), again by the GP-quasi-isomorphism φY • : GY • −→ Y •

and Lemma 2.2(ii) it is clear that

HomKb(fGP)(Q
•, Y •) ∼= HomKb(GP)(Q

•, GY •),

which is functorial both in Q• ∈ Kb(GP) and Y • ∈ Kb(fGP), i.e., G is a right adjoint of

the inclusion Kb(GP) −→ Kb(fGP). This completes the proof. �

3.3. Denote by Kb
gpac(fGP) the bounded homotopy category of GP-acyclic complexes of

objects in fGP . Then Kb
gpac(fGP) is a thick triangulated subcategory of Kb(fGP). Put

Db
gp(fGP) := Kb(fGP)/Kb

gpac(fGP) (note that fGP is not an abelian category in general.

However Db
gp(fGP) is still well-defined. cf. 2.4 Remark). By Lemma 2.4 the saturated

multiplicative system determined by Kb
gpac(fGP) is the class of GP-quasi-isomorphisms

in Kb(fGP). It follows that Q(f•) is an isomorphism in Db
gp(fGP) if and only if f• :

G• −→ X• is a GP-quasi-isomorphisms in Kb(fGP), where Q : Kb(fGP) −→ Db
gp(fGP)

is the canonical localization functor.

Note that in general Db
gp(fGP) is not a full subcategory of Dgp(A). However, with the

similar argument as in the proof of Theorem 2.11 we have
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Lemma 3.4. Let E• ∈ Kb(GP) and Y • ∈ Kb(fGP). Then Q : f• 7→ f•

IdE•
gives an

isomorphism of abelian groups

HomKb(fGP)(E
•, Y •) ∼= HomDb

gp(fGP)(E
•, Y •).

In particular, Kb(GP) can be viewed as a triangulated subcategory of Db
gp(fGP).

3.4. Now we state the main result of this section.

Theorem 3.5. (i) Let A be an abelian category with enough projective objects. Then

there is a triangle-equivalence

Db
gp(fGP) ≃ Kb(GP).

(ii) Let A be a finite-dimensional k-algebra. Then there is a triangle-equivalence

Db
gp(A-Mod) ≃ K−,gb(A-GP).

Proof. (i) Let F : Kb(GP) −→ Db
gp(fGP) be the composition of the embedding

Kb(GP) −→ Kb(fGP) and the localization functor Q : Kb(fGP) −→ Db
gp(fGP). By

Proposition 3.3(i) F is dense; and by Lemma 3.4 F is fully faithful.

(ii) Let F : K−,gpb(A-GP) −→ D−
gp(A-Mod) be the composition of the embed-

ding K−,gpb(A-GP) −→ K−(A-Mod) and the localization functor Q : K−(A-Mod) −→

D−
gp(A-Mod). For any complex X• ∈ K−,gpb(A-GP), say, with Hi HomA(E, X•) = 0 for

i ≤ n, by the left exactness of HomA(E,−) it is clear that the following chain map is a

GP-quasi-isomorphism

X• :

f•

��

· · · // Xn−2 //

��

Xn−1

��

// Xn // Xn+1 // Xn+2 // · · ·

Y • : · · · // 0 // Ker dn // Xn // Xn+1 // Xn+2 // · · ·

It follows that the image of F falls in Db
gp(A-Mod) (note that Db

gp(A-Mod) is a full sub-

category of D−
gp(A-Mod) by Theorem 2.9), and hence F induces a functor, again denoted

by F : K−,gpb(A-GP) −→ Db
gp(A-Mod). Then by Proposition 3.3(ii) F is dense; and by

Theorems 2.11 and 2.9 F is fully faithful. �

3.5. Recall that a ring R is Gorenstein if R is two-sided Noetherian and R has finite

injective dimension, both as the left and the right R-module. If R is a Gorenstein ring, then

each left and right R-module has finite Gorenstein projective dimension ([EJ2], Theorem

11.5.1). It follows from Theorem 3.5(i) we have

Corollary 3.6. Let R be a Gorenstein ring. Then there is a triangle-equivalence

Db
gp(R-Mod) ≃ Kb(R-GP).

For a finite-dimensional Gorenstein k-algebra A, it follows from Theorem 3.5(ii) that

the embedding Kb(A-GP) →֒ K−,gb(A-GP) is an equivalence. This means

Corollary 3.7. Let A be a finite-dimensional Gorenstein k-algebra. Then any complex

in K−,gb(A-GP) is homotopical equivalent to a compex in Kb(A-GP).
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3.6. Let R be a ring. If an R-module M has a proper Gorenstein projective resolu-

tion G• −→ M −→ 0, then for any R-module N the Gorenstein right derived functor

Extn
R-GP(−, N) of HomR(−, N) is defined as

Extn
R-GP(M, N) := HnHomR(G•, N).

See [EJ1], [EJ2], [Hol3], [AM]. Note that Extn
R-GP (−,N) is only well-defined on the full

subcategory of objects with proper Gorenstein projective resolutions.

Theorem 3.8. Let R be a Gorenstein ring, or a finite-dimensional k-algebra. Then for

R-modules M and N we have

Extn
R-GP(M, N) = HomDb

gp(R-Mod)(M, N [n]), n ≥ 0.

Proof. If R is a Gorenstein ring, then each left and right R-module has finite Gorenstein

projective dimension ([EJ2], Theorem 11.5.1), and hence by Theorem 2.10 in [Hol1] (see

Lemma 3.1) any module M has a finite proper Gorenstein projective resolution, say G• −→

M −→ 0. Thus M ∼= G• in Db
gp(R-Mod). It follows from Corollary 3.6 that

HomDb
gp(R-Mod)(M, N [n]) = HomDb

gp(R-Mod)(G
•, N [n])

∼= HomKb(R-Mod)(G
•, N [n])

= HnHomR(G•, N)

= Extn
R-GP(M, N).

The case for finite-dimensional k-algebras can be similarly proved. �

Final Remark 3.9. Assume that A has enough injective objects. Dully we have

the concept of a co-proper Gorenstein injective resolution of an object M (i.e., an exact

sequence E• = 0 −→ M −→ E0 −→ E1 −→ · · · such that all Ei are Gorenstein injective,

and that HomR(E•, E) stays exact for any Gorenstein injective object E). Then all the

dual results of this section hold for Db
gi(A) (cf. Final Remark 2.12). Note that Lemma

3.1 has the dual version (Theorem 2.15 in [Hol3]).

For example, the dual of Corollary 3.6 says that if R is a Gorenstein ring, then there

is a triangle-equivalence

Db
gi(R-Mod) ≃ Kb(R-GI).

We need this remark in the next section.

4. Gorenstein singularity categories: a measure of Gorensteinness

A fundamental problem in relative homological algebra is to recognize Gorenstein rings;

and if no, to measure how far it is from the Gorensteinness (see e.g. [J], [CV], [IK], [M],

[Hap2]). In this section we prove that a ring R is Gorenstein if and only if the left and

right Gorenstein injectively singularity categories of R are zero; and in general we embed

the stable category of a Frobenius category into the left (or right) Gorenstein injectively

singularity category as a triangulated subcategory.
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4.1. Let R be a ring. By the dual version of Theorem 2.11 the canonical functor Kb(R-GI)

−→ Db
gi(R-Mod), which is the composition of the embedding Kb(R-GI) →֒ Kb(R-Mod)

and the localization Kb(R-Mod) −→ Db
gi(R-Mod), is fully faithful. Thus Kb(R-GI) can

be viewed as a thick triangulated subcategory of Db
gi(R-Mod). It is natural to consider

Verdier’s quotients Db
gi(R-Mod)/Kb(R-GI) and Db

gi(Mod-R)/Kb(GI-R), which are called

the left and right Gorenstein injectively singularity category of R, respectively, where Mod-

R and GI-R are respectively the right R-module category and the category of the right

Gorenstein injective R-modules.

Theorem 4.1. A two-sided Noetherian ring R is Gorenstein if and only if

Db
gi(R-Mod)/Kb(R-GI) = 0, and Db

gi(Mod-R)/Kb(GI-R) = 0.

Proof. By Final Remark 3.9 and its right module version it remains to prove the suffi-

ciency. Assume that Db
gi(R-Mod)/Kb(R-GI) = 0. Then for any left module M there is

a GI-quasi-isomorphism (see Final Remark 2.12) f• : M −→ G• with G• ∈ Kb(R-GI),

where M is viewed as the complex concentrated at component 0. Suppose Gi = 0 for

i < t. Then t ≤ 0. We may assume t = 0: in fact, if t < 0 then by the exactness of

HomR(G•, Gt) we see that Gt−1 −→ Gt splits, and hence G• can be shorten. In this way

we have a co-proper Gorenstein injective resolution 0 −→ M −→ G•, thus M has finite

Gorenstein injective dimension. In particular, the left R-module R has finite Gorenstein

injective dimension. It follows from Theorem 2.1 in [Hol2], which claims that if M has

finite projective dimension then the injective dimension of M is equal to the Gorenstein

injective dimension of M , that the left R-module R has finite injective dimension.

The same argument shows that the right R-module R has finite injective dimension.

That is, R is Gorenstein. �

Remark The reason of not using the Gorenstein projectively singularity categories of R

in Theorem 4.1 is caused by the definition of a Gorenstein ring: although there is also

an equivalent definition of Gorensteinness in terms of the projective dimensions of injec-

tive modules ([EJ2], Theorem 9.1.11), but it needs the projective dimensions of injective

modules are bounded.

However, if A is a finite-dimensional k-algebra, then by the same argument we have:

A is Gorenstein if and only if

Db
gp(A-Mod)/Kb(A-GP) = 0, and Db

gp(Mod-A)/Kb(GP-A) = 0.

4.2. By Theorem 4.1, the (left, or right) Gorenstein injectively singularity category could

be taken as a measure of how far a ring is from the Gorensteinness. In this and next

subsections we measure how big Db
gi(R-Mod)/Kb(R-GI) is by embedding canonically the

stable category of a Frobenius category into it.

Fix some notations. Let R be a ring and fGI be the full subcategory of R-Mod consisting

of R-modules with co-proper Gorenstein injective resolutions. Define

GI⊥GI := { M ∈ fGI | Exti
R-GI(R-GI, M) = 0, ∀ i ≥ 1}.
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Recall that if an R-module M has a co-proper Gorenstein injective resolution 0 −→

M −→ G•, then for any R-module N the Gorenstein right derived functor Extn
R-GI(N,−)

of HomR(N,−) is defined as

Extn
R-GI(N, M) := HnHomR(N, G•).

See [Hol3] and [EJ2]. Note that Extn
R-GI(N,−) is only well-defined on fGI.

Denote by R-GI(M, N) the subgroup of HomR(M, N) of R-maps from M to N which

factor through the Gorenstein injective modules, and by GI⊥GI the stable category of

GI⊥GI modulo R-GI, i.e., the objects of GI⊥GI are same as those of GI⊥GI , and the

morphism space from M to N of GI⊥GI is the quotient group HomR(M, N)/R-GI(M, N).

Lemma 4.2. Let R be a ring. If M ∈ fGI and N ∈ GI⊥GI , then there is a canonical

isomorphism

HomR(M, N)/R-GI(M, N) ≃ HomDb
gi

(R-Mod)/Kb(R-GI)(M, N).

Consequently, GI⊥GI is a full subcategory of Db
gi(R-Mod)/Kb(R-GI).

In particular, if R is Gorenstein then GI⊥GI = R-GI.

Proof. In what follows, a doubled arrow means a morphism belonging to the saturated

multiplicative system, determined by the thick triangulated subcategory Kb(R-GI) of

Db
gi(R-Mod) (see [Har], [Ver1], or [I]). A morphism from M to N in Db

gi(R-Mod)/Kb(R-GI)

is denoted by right fraction a
s

: M
s

⇐= Z• a
−→ N , where Z• ∈ Db

gi(R-Mod). Note that the

mapping cone Con(s) lies in Kb(R-GI). We have a distinguished triangle in Db
gi(R-Mod)

Z• s
=⇒ M −→ Con(s) −→ Z•[1]. (∗)

Consider the map θ : HomR(M, N) −→ HomDb
gi

(R-Mod)/Kb(R-GI)(M, N), given by

θ(f) = f
IdM

. First, we prove that θ is surjective. By M ∈ fGI we can take a co-proper

Gorenstein injective resolution

0 −→ M
ε

−→ G0 d0

−→ G1 d1

−→ · · · −→ Gn dn

−→ · · · .

Since M is GI-quasi-isomorphic to the complex G• := 0 −→ G0 −→ G1 −→ · · · , and G•

is GI-quasi-isomorphic to the complex 0 −→ G0 −→ · · · −→ Gl−1
։ Kerdl −→ 0 for each

l ≥ 2, it follows that M is isomorphic in Db
gi(R-Mod) to 0 −→ G0 −→ · · · −→ Gl−1 −→

Kerdl −→ 0 for each l ≥ 2. This complex induces a distinguished triangle in Db
gi(R-Mod)

G•<l[−1] −→ Kerdl[−l]
s′

=⇒ M
ε

−→ G•<l. (∗∗)

Note that s′ is in the saturated multiplicative system since the mapping cone G•<l of s′

lies in Kb(GI). Since Exti
R-GI(Kerdl, R-GI) = 0, ∀ i ≥ 1, and Con(s) ∈ Kb(R-GI), it

follows that there exists l0 ≫ 0 such that for each l ≥ l0

HomDb
gi

(R-Mod)(Kerdl[−l], Con(s)) = 0.

(To see this, let Con(s) be of the form 0 −→ W−t′ −→ · · · −→ W t −→ 0 with t′, t ≥ 0,

and each W i ∈ R-GI. Consider the distinguished triangle in Db
gi(R-Mod)

Con(s)<t[−1] −→ W t[−t] −→ Con(s) −→ Con(s)<t.
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Take l0 to be t + 1, and apply the cohomological functor HomDb
gi

(R-Mod)(Kerdl[−l],−) to

this distinguished triangle. Then by the dual of Theorem 3.8 the assertion follows from

induction and Exti
R-GI(Kerdl, R-GI) = 0, ∀ i ≥ 1.)

Write E = Kerdl0 , and take l = l0 in (∗∗). By applying HomDb
gi

(R-Mod)(E[−l0],−) to

(∗) we get h : E[−l0] −→ Z• such that s′ = s ◦ h. So we have a
s

= (a◦h)
s′

.

Apply HomDb
gi

(R-Mod)(−, N) to (∗∗), we get an exact sequence

HomDb
gi

(R-Mod)(M, N) −→ HomDb
gi

(R-Mod)(E[−l0], N) −→ HomDb
gi

(R-Mod)(G
•<l0 [−1], N).

We claim that HomDb
gi

(R-Mod)(G
•<l0 [−1], N) = HomDb

gi
(R-Mod)(G

•<l0 , N [1]) = 0.

(In fact, apply HomDb
gi

(R-Mod)(−,N [1]) to the distinguished triangle

G•<l0−1[−1] −→ Gl0−1[1 − l0] −→ G•<l0 −→ G•<l0−1

in Db
gi(R-Mod). Then the assertion follows from induction and the assumption N ∈

GI⊥GI .)

Thus, there exists f : M −→ N such that f ◦ s′ = a ◦ h. So we have a
s

= (a◦h)
s′

=
(f◦s′)

s′
= f

IdM
. This shows that θ is surjective.

On the other hand, if f : M −→ N with θ(f) = f
IdM

= 0 in Db
gi(R-Mod)/Kb(R-GI),

then there exists s : Z• =⇒ M with Con(s) ∈ Kb(R-GI) such that f ◦ s = 0. Use the

same notation as in (∗) and (∗∗). By the argument above we have s′ = s ◦ h, and hence

f ◦ s′ = 0. Therefore, by applying HomDb
gi

(R-Mod)(−, N) to (∗∗) we see that there exists

f ′ : G•<l0 −→ N such that f ′ ◦ ε = f .

Consider the following distinguished triangle in Db
gi(R-Mod)

G0[−1] −→ (G•<l0)>0 −→ G•<l0 π
−→ G0,

where π is the natural morphism. Again since N ∈ GI⊥GI , it follows from induc-

tion and the dual of Theorem 3.8 that HomDb
gi

(R-Mod)((G
•<l0)>0, N) = 0. By applying

HomDb
gi

(R-Mod)(−, N) to the above triangle we obtain an exact sequence

HomDb
gi

(R-Mod)(G
0, N) −→ HomDb

gi
(R-Mod)(G

•<l0 , N) −→ 0.

It follows that there exists g : G0 −→ N such that g◦π = f ′. Hence f = g◦(π◦ε), it follows

that f factors through G0 in R-Mod. This proves that the kernel of θ is R-GI(M, N),

which completes the proof. �

A very special case of this lemma is that if Db
gi(R-Mod) = Db(R-Mod) (i.e., the Goren-

stein injective modules are exactly the injective modules), then I⊥ is a full subcategory

of Db(R-Mod)/Kb(I), which is well-known (see e.g. [Hap2]).

4.3. We refer to Appendix A in [Kel1] (also [Q], and p.10 in [Hap1]) for the definition of

an exact category. An exact category (A, E) is a Frobenius category, if (A, E) has enough

injective objects and enough projective objects, such that the injective objects coincide

with the projective objects. Denote by A its stable category. For a morphism u : X −→ Y

in A, denote its image in A by u.
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Let R be a ring. Denote by a(GI) the full subcategory of R-Mod of modules M ∼=

Ker d0, where

E• = · · · −→ G−1 −→ G0 d0

−→ G1 −→ · · ·

is exact with all Gi ∈ R-GI, satisfying the following conditions:

(i) HomR(E•, G) is exact for any G ∈ R-GI;

(ii) Extj
R-GI(R-GI, Ker di) = 0 for j ≥ 1, i ≤ 0.

Since Ker di ∈ fGI, it follows that Extj
R-GI(R-GI, Ker di) is well-defined. It is clear that

GI ⊆ a(GI) ⊆ GI⊥GI (cf. 4.2).

Let E be the class of all the GI-acyclic complexes 0 −→ X −→ Y −→ Z −→ 0 in

a(GI), i.e., 0 −→ HomR(Z, G) −→ HomR(Y, G) −→ HomR(X, G) −→ 0 is exact for any

G ∈ R-GI.

Theorem 4.3. Let R be a ring. Then (a(GI), E) is a Frobenius category with R-GI as

the projective-injective objects; and the natural functor a(GI) −→ Db
gi(R-Mod)/Kb(R-GI)

is a fully faithful triangle functor.

Proof. By the definition of E any Gorenstein injective module is injective in a(GI); and

it is also projective in a(GI): this follows from the following claim, which follows from

Theorem 8.2.5 in [EJ2].

Claim: Let 0 −→ X −→ Y −→ Z −→ 0 be an element in E , and G ∈ R-GI. Then

there is the long exact sequence of abelian groups

0 −→ HomR(G, X) −→ HomR(G, Y ) −→ HomR(G, Z) −→ Ext1R-GI(G, X)

−→ Ext1R-GI(G, Y ) −→ Ext1R-GI(G, Z) −→ · · · −→ Extn
R-GI(G, X) −→ · · · .

For any X ∈ a(GI), by an easy argument we have 0 −→ X −→ G(X) −→ S(X) −→ 0

in E with G(X) ∈ R-GI. This implies that a(GI) has enough injectives. If X is injective

in a(GI), then by applying HomR(−, X) we see that the short exact sequence splits, and

hence X ∈ R-GI.

Similarly a(GI) has enough projectives, and any projective object in a(GI) is a Goren-

stein injective module. That is, (a(GI), E) is a Frobenius category with R-GI as the

projective-injective objects.

Since a(GI) ⊆ GI⊥GI , it follows from Lemma 4.2 that there is a canonical embedding

σ : a(GI) −→ Db
gi(R-Mod)/Kb(R-GI). It remains to show that σ is a triangle functor.

Let 0 −→ X
u

−→ Y
v

−→ Z −→ 0 be an element in E , and 0 −→ X
iX−→ G(X)

πX−→

S(X) −→ 0 be an element in E with G(X) ∈ R-GI. Then X
u

−→ Y
v

−→ Z
−w
−→ S(X) is a

distinguished triangle in a(GI), where w is an R-map such that the following diagram is

commutative

0 // X
u // Y

ρ

��

v // // Z

w

��

// 0

0 // X
iX // G(X)

πX // S(X) // 0;

(4.1)
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and any distinguished triangle in a(GI) is given in this way.

On the other hand, we have a distinguished triangle in Db
gi(R-Mod)

X
u

−→ Y
v

−→ Z
w′

−→ X[1](4.2)

with right fraction

w′ =
pX

v′
∈ HomDb

gi
(R-Mod)(Z, X[1]),(4.3)

where pX : Con(u) −→ X[1] is the natural chain map, and v′ : Con(u) −→ Z is the GI-

quasi-isomorphism induced by v. Denote by p′
X : Con(iX) −→ X[1] the natural morphism

of complexes, and π′
X : Con(iX) −→ S(X) the GI-quasi-isomorphism induced by πX .

Then right fraction βX := −
p′

X

π′
X

is in HomDb
gi

(R-Mod)(S(X), X[1]). We claim that w′ =

−βXw in Db
gi(R-Mod), and hence by (4.2), X

u
−→ Y

v
−→ Z

−βXw
−→ X[1] is a distinguished

triangle in Db
gi(R-Mod), and then a distinguished triangle in Db

gi(R-Mod)/Kb(R-GI).

In fact, by (4.3) the claim is equivalent to pX = −βX(wv′) in Db
gi(R-Mod). Denote

by ρ′ the chain map Con(u) −→ Con(iX) induced by ρ. Then −βX(wv′) = (
p′

X

π′
X

)(wv′) =

p′
Xρ′ = pX , where the second equality follows from the calculus of right fractions and

wv = πXρ in (4.1).

By the distinguished triangle X
iX−→ G(X) −→ Con(iX)

p′
X−→ X[1] in Db

gi(R-Mod) we

get the corresponding one in Db
gi(R-Mod)/Kb(R-GI) with G(X) = 0, it follows that p′

X ,

and hence βX , is an isomorphism in Db
gi(R-Mod)/Kb(R-GI). This shows that β : σ◦S −→

[1] ◦ σ is a natural isomorphism. This completes the proof. �

Remark 4.4. It seems to be interesting to know when a(GI) = Db
gi(R-Mod)/Kb(R-GI).
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